治疗和/或营养效果增强的活性成分 衍生物和含有所述衍生物的口服组合物 本发明涉及L-肉毒碱和低级烷酰基L-肉毒碱的稳定的非吸湿性盐,与相应的内盐同类物质相比,上述盐具有增强的营养学和/或治疗学效果;本发明还涉及含有这样的盐的固体组合物,特别是适合口服给药的固体组合物。
长期以来已知肉毒碱及其烷酰基衍生物具有各种治疗学应用,例如在心血管领域,其能用于治疗急性和慢性心肌局部缺血、心绞痛、心力衰竭和心律不齐。在神经学领域,乙酰基L-肉毒碱能够用于治疗中枢神经系统障碍和周围神经疾病,特别是糖尿病性周围神经疾病。丙酰基L-肉毒碱能够用于治疗慢性闭塞性动脉硬化,特别是能够用于治疗显示严重伤残性间歇性跛行(disabling intermittentclaudication)症状的患者。
另一方面,肉毒碱及其衍生物的应用领域一直被广泛并迅速地推广,而不单纯局限于其纯粹的治疗学应用,尽管其应用时可能联合其治疗学作用。
已经被公认的事实是:对于职业运动员和任何业余水平的运动者来说,L-肉毒碱能够对骨骼肌肉系统提供能量,并增加对长时间和高强度困难和痛苦的耐力,从而增强这些运动者的运动效果和能力。
另外,对于素食者来说,由于其饮食中的肉毒碱含量低并且赖氨酸和蛋氨酸(这两种氨基酸是L-(-)-肉毒碱在肝和肾中的生物合成前体)含量低,L-(-)-肉毒碱或其低级烷酰基衍生物组成不可缺少的营养补充成分;同样,对于那些长期以低蛋白质饮食来生活的人来说,L-(-)肉毒碱或其低级烷酰基衍生物也是不可缺少的营养补充成分。
因此,含有肉毒碱或其衍生物作为单一成分或与另外地活性成分联合的各种组合物近来已经进入食品添加剂、保健食品和能量食品等产品的市场。
长期以来已知L-(-)-肉毒碱及其烷酰基衍生物当以下式内盐存在时吸湿性过强,并且不太稳定,其中R=H或C1-C5低级烷基。
这样在原料和终产物的加工、稳定性和储存方面将导致复杂的问题。例如,必须把L-(-)-肉毒碱片剂进行发泡包装以使其不与空气接触,否则即使在正常湿度条件下,它们也会发生改变和肿胀以及变糊和变粘。
迄今为止,由于L-(-)-肉毒碱盐或其烷酰基衍生物具有与所谓的内盐(或“内铵”)相同的治疗、营养或饮食活性,因此通过应用不产生非所希望的毒性或副作用的“可药用酸”对内盐进行成盐作用,可以尝试解决内盐的吸湿性问题。
目前已经存在大量文献特别是专利文献公开了这样的稳定的、非吸湿性稳定盐的制备方法。
在L-肉毒碱盐中,目前已发现特别是L-肉毒碱酒石酸盐和L-肉毒碱酸式富马酸盐具有实际应用价值。
虽然,前述“可药用盐”或多或少地解决了L-肉毒碱内盐的吸湿性问题,在这些盐中没有任何盐的阴离子部分能够协同地增强所述盐自身“肉毒碱”部分的营养学、能量和/或治疗效果。
另外,用于制备非吸湿性L-肉毒碱盐的酸均不能形成烷酰基L-肉毒碱的非吸湿性盐。因此,例如,L-(-)-肉毒碱酸式富马酸盐和L-(-)-肉毒碱酒石酸盐为非吸湿性化合物,但是乙酰基L(-)-肉毒碱酸式富马酸盐或酒石酸盐分别为强吸湿性化合物,它们与相应的内盐具有同样的缺陷。
本发明的目的是提供稳定的L-肉毒碱或低级烷酰基L-肉毒碱的非吸湿性盐,该盐比其相应的内盐具有更强的治疗学和/或营养学效果。
显然,与相应的内盐相比,应用本发明的盐不但没有吸湿性并且还高度稳定,而且这些盐的阴离子部分能够在作为一个整体增加该盐的营养学、能量和/或治疗效果。因此,这些新盐的上述效果不能单独归因于该盐的“肉毒碱”部分。
通过式(I)的L-肉毒碱和烷酰基L-肉毒碱与氨基酸的盐可以达到上述目的:其中:
-R为氢或具有2-5个碳原子的直链或支链烷酰基;和
-Y-为存在于蛋白质中的氨基酸阴离子。
术语“存在于蛋白质的氨基酸”指可以通过对天然蛋白质进行控制水解得到的20种氨基酸中的任何一种(例如参见:J.David Rawn,Biochemistry,第3章“氨基酸和蛋白质的一级结构”;McGraw-Hill,1990)。
所述阴离子Y-可以在氨基部位成盐,优选地与氢卤酸例如盐酸或磷酸成盐。
当R为烷酰基时,优选从乙酰基、丙酰基、丁酰基、戊酰基和异戊酰基中选择。
为了举例证明氨基酸的一般营养学和治疗学效果,可以参见关于此问题所出版的非常大量的文献(例如参见:F.Fidanza和G.Liguori,Nutrizione umana,第3章:“Le Proteine”,Casa Editrice LibrariaIdelson,1995;和I.Goldberg(Ed.),Functional Foods,第12章,“氨基酸、肽和蛋白质”,Chapman & Hall,Inc.1994),由于必需氨基酸特别是其中的支链氨基酸的特殊作用,对其进行一下简单的论述是有意义的。
长期以来已知在9种必需氨基酸(即通常存在于蛋白质中,不能由机体自身合成得到,只能从饮食中补充)中,支链氨基酸(BAA)缬氨酸、亮氨酸和异亮氨酸刺激骨骼肌和肝中的蛋白质合成。而且已经公知:骨骼肌是产生能量的BAAs分解代谢中开始步骤的主要部位。
附图中举例说明了肌肉细胞中蛋白质和氨基酸之间相互关系的简化形式,在BAAs氧化分解代谢中的第一个代谢反应是转氨基化,即转氨基酶-控制的α-氨基转移以形成支链α-酮酸(BKA)和另一种不同的氨基酸。所述BKA可以得到一个氨基,从而又变回到BAA,或者BKA可以进一步进行不可逆降解并产生能量。BKAs在肌细胞中以这种方式代谢程度较低。大部分BKAs通过血液从肌肉流向其它器官(如肝和肾),其中BKAs被降解或进行再氨基化。
已经公知:艰苦的锻炼能增加BAAs氧化。实际上,业已证明:与非训练的个体相比,处于休息状态的良好训练的运动员的骨骼肌氧化更多的BAAs。而且,业已显示:在体育锻炼期间骨骼肌氧化的BAAs来自于运动期间降解的肌蛋白和经血液流入肌肉的BAAs。在运动期间经血液递送的BAAs的主要来源为肝。
还已经知道:运动引起运动外的瞬变期,其中骨骼肌中蛋白合成与蛋白降解之间的平衡被改变成蛋白降解的相对增加。结果,艰苦的锻炼引起肌肉用尽一部分它自己的蛋白结构。
已经明显显示:蛋白质氧化对由运动引起的能量需要增加所作的贡献量相对较小;然而,BAAs氧化所作的贡献量可以非常大,因为其氧化产生氨基酸即丙氨酸和谷氨酰胺,当用作能量来源时,这些氨基酸可以从肌肉转移至其它部位。丙氨酸可以通过血流转移至肝,在肝中其用于形成葡萄糖,而葡萄糖是脑中的优选“燃料”,而谷氨酰胺是肾和肠的能量来源。因此,在运动期间蛋白质和BAA的氧化增加是一个明显的必然事件。
运动期间肌肉中BAAs氧化的功能之一是从肌肉中除去乳酸。事实上,在艰苦的锻炼下,肌肉以基本上厌氧的方式消耗葡萄糖,因而直接从丙酮酸中生成乳酸。乳酸在肌肉中积累与肌肉疲劳和肌肉痉挛发作有关,因此应该避免。
参照附图可以看出,通过α-酮戊二酸/谷氨酸循环,BAAs的氨基被转移至丙酮酸上,导致丙氨酸的形成。丙氨酸被转运至肝,在那里其参与葡萄糖的合成。在丙氨酸合成中涉及的丙酮酸没有被转变成乳酸。因此,BAAs氧化可用于调控骨骼肌中积累的乳酸。
而且,必须除去降解反应中产生的氢离子以避免pH降低的任何危险性。通过与谷氨酸结合(其中氢离子以铵离子形式)得到谷氨酰胺从肌肉中除去氢离子。当被肾吸收时,铵离子(和此处的氢离子)被尿提取出来。
还已经被公知的事实是:艰苦锻炼期间,肝中出现BAAs的静损失,尽管骨骼肌同时从血流中吸收BAAs。因此,BAAs在肌肉细胞中的增加氧化似乎引起BAAs从肝蛋白中损失。而且还被注意到:氨基酸特别是谷氨酰胺可以部分地阻碍肝中的蛋白降解速率。还特别注意到:运动期间,肝中的谷氨酰胺输出量增加,可能与该氨基酸对蛋白合成的这种作用有关。
下列非限制性实施例显示本发明一些盐的制备和理化性质。
实施例1
乙酰基L-肉毒碱L-异亮氨酸盐酸盐
氯化乙酰基L-肉毒碱,分子量:239,熔点:135℃(降解)
L-异亮氨酸,分子量:131,熔点:284℃。
C15H30N2O6Cl,分子量:369.8把23.9g(0.1摩尔)氯化乙酰基L-肉毒碱溶解于300mL蒸馏水中。在搅拌下,把13.1g(0.1摩尔)L-异亮氨酸加入到上述溶液中。完全溶解后,加入300mL异丁醇,在40℃下真空浓缩所得混合物。把得到的残余物溶解于乙酸乙酯中,然后电磁搅拌所得混合物。8小时后,把所有产品微细地弄碎,在4号古氏滤器上真空过滤。得到的固体用乙酸乙酯洗涤,在恒温加热炉中40℃温度下干燥过夜。
得到34g标题化合物。产率95%。熔点:170℃(分解)。该化合物为非吸湿性的。
进行如下分析:
HPLC;NMR;DSC;[α]D20;K.F.;E.A.;pHK.Fischer:1.1%元素分析 C% H% N% Cl%计算值 48.7 8.17 7.57 9.58测定值 48.9 8.15 7.61 9.58pH: 3.6(c=0.5%H2O)[α]D20= -12.4(c=0.5%H2O)NMR D2O δ=5.6-5.5(1H,m,CH-CO);3.9-3.6(2H,m,CH2-N);3.6-3.5(1H,d,CH-NH2);3.2-3.1(9H,s,(CH3)3N);2.7-2.4(2H,m,CH2-COO);2.1(3H,s,CO-CH3);2-1.9(1H,m,CH-CH-NH2);1.6-1.1(2H,m,CH2-CH3);1-0.9(3H,d,CH3-CH);0.9-0.8(3H,t,CH3-CH2)HPLC:柱 Hypersi APS-2(5μm)250×4温度 =30℃洗脱剂 KH2PO4/CH3CN(65-35v/v)0.05MpH: 4.7(用H3PO4)流速: 0.7毫升/分钟乙酰基L-肉毒碱:Rt=8.5L-异亮氨酸: Rt=5.8比例: 乙酰基L-肉毒碱55%;L-异亮氨酸35.5%
实施例2
丙酰基L-肉毒碱L-异亮氨酸盐酸盐(BS/209)氯化丙酰基L-肉毒碱,分子量:253,熔点:175℃(分解)L-亮氨酸,分子量:131,熔点:293℃。
C16H32N2O6Cl,分子量:383.8
在40℃下,把25.3g(0.1摩尔)氯化丙酰基L-肉毒碱溶解于400mL蒸馏水中。在搅拌下,把13.1g(0.1摩尔)L-亮氨酸加入到上述溶液中。完全溶解后,在20mm/Hg下,用水泵在40℃下旋转蒸发仪中真空浓缩所得混合物。浓缩完成后,用异丙醇溶解所得混合物,再次浓缩直至完全干燥。
把得到的残余物用乙酸乙酯溶解,电磁搅拌1小时后,把整个产品捣碎,在4号古氏滤器上真空过滤。得到的固体用乙酸乙酯洗涤,在30℃的恒温干燥箱中干燥过夜。
得到36g标题化合物。产率95%。熔点:161℃(分解)。该化合物为非吸湿性的。
进行如下分析:
NMR;DSC;M.P.;[α]D20;K.F.;E.A.;pH
K.Fischer:1.4%
pH: 3.7(c=0.5%H2O)
[α]D20= -12.88(c=0.5%H2O)NMR D2O δ=5.6-5.5(1H,m,CH-OCO);3.8-3.7(1H,t,CH-NH2);3.7-3.6(2H,M,CH2-N);3.2(9H,s,(CH3)3-N;2.8-2.7(2H,q,CH2-CH3);2.7-2.5(2H,m,CH2-COOH);1.8-1.7(2H,t,CH2-CH);1.7-1.5(1H,m,CH);1.1-1(3H,t,CH3-CH2);1-0.9(6H,d,CH3CH3-CH)
元素分析 C% H% N% Cl%
计算值 50.06 8.4 7.3 9.24
测定值 49.98 8.31 7.27 9.21
实施例3
L-肉毒碱L-缬氨酸磷酸盐(BS/204)
L-肉毒碱内盐,分子量:161,熔点:197-198℃
L-缬氨酸,分子量:117,熔点:315℃。
C12H28N2O9P,分子量:375.3
把16.1g(0.1摩尔)L-肉毒碱内盐溶解于300mL蒸馏水中,然后往该溶液中加入11.7g(0.1摩尔)L-缬氨酸和7.5mL 85%的磷酸(0.1摩尔)。
完全溶解后,加入300mL异丁醇,在25mm/Hg下,用水泵,在40℃温度下,用旋转蒸发仪真空浓缩整个混合物。将这样得到的残余物溶解于乙酸乙酯,然后进行电磁搅拌。把整个产品捣碎后,用4号古氏滤器进行真空过滤。用乙酸乙酯洗涤所得固体,在30℃的恒温干燥箱中干燥过夜。
得到32g标题化合物。产率96%。熔点:229℃(分解)。该化合物为非吸湿性的。
进行如下分析:
NMR;DSC;[α]D20;K.F.;E.A.;pH;HPLC
K.Fischer:0.5%
[α]D20= -10.1(c=0.5%H2O)
pH: 3.5(c=0.5%H2O)NMR D2O δ=4.6-4.5(1H,m,CH-OH);3.7-3.6(1H,CH-CH-NH2);3.5-3.4(2H,d,CH2-N);3.3(9H,s,(CH3)3-N);2.5-2.4(2H,d,CH2-COO);2.3-2.2(1H.m,CH-CH);1.1-1(6H,d,CH3CH3-CH)元素分析 C% H% N% P%计算值 38.40 7.52 7.46 8.25测定值 33.29 7.61 7.39 8.21HPLC:柱 Hypersi APS-2(5μm)250×4温度 =30℃洗脱剂 KH2PO4/CH3CN(65-35v/v)0.05NpH: 4.7(用H3PO4)流速: 0.7毫升/分钟L-肉毒碱: Rt=10.1L-缬氨酸: Rt=5.2
实施例4
乙酰基L-肉毒碱L-半胱氨酸盐酸盐(BS/197)
乙酰基L-肉毒碱内盐,分子量:203,熔点:140-141℃(分解)。吸湿性强
L-半胱氨酸盐酸盐,分子量:157.6,熔点:170℃(分解),吸湿性强。
C12H25N2O6S,分子量:360.85把20.3g(0.1摩尔)乙酰基L-肉毒碱内盐溶解于50mL蒸馏水中,然后在搅拌下往该溶液中加入15.7g(0.1摩尔)L-半胱氨酸盐酸盐。
完全溶解后,在25mm/Hg下,用水泵,在40℃温度下,用旋转蒸发仪真空浓缩整个混合物,加入异丁醇,然后进行共沸蒸馏。用溶剂例如丙酮或乙酸乙酯溶解所得到的残余物,把得到的混合物机械搅拌过夜。用4号古氏滤器真空过滤所得到的混合物。在30℃的恒温干燥箱中把得到的固体真空干燥过夜。
得到33.5g标题化合物。熔点:184℃(分解)。产率96%。化合物为白色晶体,非吸湿性固体。
进行如下分析:
NMR;M.P.;R.P.;E.A.;pH;K.F.K.F.= 0.6%[α]D20= -11.5(c=1%H2O)pH: 3.9(c=1%H2O)元素分析 C% H% N% Cl% S%计算值 39.94 6.98 7.76 9.82 8.88测定值 39.81 7.11 7.69 9.79 8.83NMR D2O δ=5.5-5.4 (1H,m,-CH-);4.5-4.3(1H,t,CH-NH2);3.8-3.5(2H,m,N-CH2);3.3-3.2(2H,d,CH2-SH);3.1(9H,s,N-(CH3)3);2.7-2.5(2H,m,-CH2-COOH);2(3H,s,COCH3)
实施例5
乙酰基L-肉毒碱L-精氨酸盐酸盐(BS/207)氯化乙酰基L-肉毒碱,分子量:239,熔点:135℃(分解)。L-精氨酸盐酸盐,分子量:210.67,熔点:226℃。
C15H36N5O6Cl2,分子量:453.29
把23.9g(0.1摩尔)氯化乙酰基L-肉毒碱溶解于100mL蒸馏水中,然后往该溶液中加入21g(0.1摩尔)L-精氨酸盐酸盐。
完全溶解后,在25mm/Hg压力下,用水泵,在40℃温度下,用旋转蒸发仪真空浓缩整个混合物,加入异丁醇,然后进行共沸蒸馏。用溶剂例如丙酮或乙酸乙酯溶解浓缩后得到的残余物,把得到的混合物机械搅拌过夜。用4号古氏滤器过滤所得到的混合物。在30℃的恒温干燥箱中把得到的固体真空干燥过夜。
得到41g标题化合物。其为白色结晶非吸湿性固体,产率95%。熔点:194℃(分解)。
进行如下分析:
NMR;M.P.;R.P.;E.A.;pH;K.F.K.F.= 0.8%[α]D20= -6.1(c=1%H2O)pH: 3.6(c=1%H2O)元素分析 C% H% N% Cl%计算值 39.74 8.00 15.45 15.64测定值 39.52 8.11 15.71 15.47NMR D2O δ=5.5-5.4(1H,m,-CH-);3.8-3.5(2H,m,N-CH2);3.1(9H,s,N-(CH3)3);3.1-3(1H,t,CH-NH2);3-2.9(2H,q,CH2-CH2-CH2);2.7-2.5(2H,m,-CH2-COOH);2(3H,s,CO-CH3);1.5-1.4(4H,m,CH2-CH2-CH2)HPLC:柱 Hypersi APS-2(5μm)250×4.6温度 =30℃流动相 CH3CN/H2O+KH2PO4/CH3CN 0.05M(65-35v/v)pH: 4.7(用H3PO4)流速: 1毫升/分钟L-肉毒碱: Rt=7.9L-精氨酸: Rt=15.9
实施例6
乙酰基L-肉毒碱L-谷氨酸盐酸盐(BS/205)
乙酰基L-肉毒碱内盐,分子量:203,熔点:145℃(分解)。
L-谷氨酸酸盐,分子量:183.59,熔点:205℃。
应用L(+)谷氨酸酸盐重复实施例5的方法,得到下列非吸湿性化合物。
C14H26N2O8Cl,分子量:385.8产率:96%。熔点:185℃(分解)K.F. =0.5%[α]D20=-6.6(c=1%H2O)pH: 3.7(c=0,5%H2O)元素分析 C% H% N% Cl%计算值 43.58 6.8 7.25 9.2测定值 43.2 7.02 7.11 8.98NMR D2Oδ=5.5-5.4(1H,m,-CH-);3.8-3.5(2H,m,N-CH2);3.7-3.6(1H,t,CH-NH2);3.1(9H,s,N-(CH3)3);2.7-2.5(2H,m,-CH2-COOH);2.5-2.4(2H,t,-CH2-CH2-COOH);2(3H,s,CO-CH3);2-1.9(2H,q,CH-CH2-CH2)HPLC:柱 Hypersi APS-2(5μm)250×4.6温度 =30℃流动相 CH3CN/H2O+KH2PO4/CH3CN 0.05M(65-35v/v)pH: 4.7(用H3PO4)流速: 1毫升/分钟乙酰基L-肉毒碱: Rt=7.9L-谷氨酸: Rt=10.5
实施例7
乙酰基L-肉毒碱L-谷氨酰胺盐酸盐(BS/185)
氯化乙酰基L-肉毒碱,分子量:239,熔点:135℃。
L-谷氨酰胺,分子量:140.15,熔点:185-186℃。
应用L-谷氨酰胺重复实施例1的方法,得到下列非吸湿性化合物,其为白色结晶固体。产率95%。
C14H28N3O7Cl,分子量:385.83熔点:189℃(分解)K.F. =0.5%[α]D20=-6.1(c=1%H2O)pH: 3.2(c=1%H2O)元素分析 C% H% N% Cl%计算值 44.58 7.28 10.9 9.18测定值 44.49 7.19 11.08 9.07NMR D2O δ=5.5-5.4(1H,m,-CH-);3.8-3.5(2H,m,N-CH2);3.7-3.6(1H,t,CH-NH2);3.1(9H,s,N-(CH3)3);2.7-2.5(2H,m,-CH2-COOH);2.5-2.4(2H,CH2CONH2);2.1-2(2H,CH2-CH);2(3H,s,COCH3)
实施例8
乙酰基L-肉毒碱L-天冬氨酸盐酸盐(BS/193)氯化乙酰基L-肉毒碱,分子量:239,熔点:135℃(分解)。L-天冬氨酸,分子量:133.1,熔点:270℃(分解)。应用L-天冬氨酸重复实施例1的方法,得到下列非吸湿性化合物。产率96%。
C13H26N2O8Cl,分子量:373.79熔点:196℃(分解)K.F.= 0.4%[α]D20=-5.6(c=1%H2O)pH: 3.6(c=1%H2O)元素分析 C% H% N% Cl%计算值 41.77 7.01 7.5 9.48测定值 41.55 6.89 7.69 9.37NMR D2O δ=5.5-5.4(1H,m,-CH-);3.8-3.5(2H,m,N-CH2);3.4-3(1H,t,CH-NH2);3.1(9H,s,N-(CH3)3);2.7-2.5(2H,m,-CH2-COOH);2.5-2(2H,m,-CH2CH);2(3H,s,COCH3)HPLC:柱 Hypersi APS-2(5μm)250×4.6温度 =30℃流动相 CH3CN/H2O+KH2PO4/CH3CN 0.05M(65-35v/v)pH: 4.7(用H3PO4)流速: 1毫升/分钟乙酰基L-肉毒碱: Rt=7.9L-天冬氨酸: Rt=9.1
实施例9
乙酰基L-肉毒碱L-天冬酰胺盐酸盐(BS/194)氯化乙酰基L-肉毒碱,分子量:239,熔点:135℃(分解)。
L-天冬酰胺,分子量:150.14,熔点:234-235℃。
应用L(+)-天冬酰胺,重复实施例1的方法,得到下列化合物,其为非吸湿性的白色结晶固体。产率96%。
C13H27N3O7Cl,分子量:372.82熔点:180℃(分解)K.F.= 0.4%[α]D20=-3.9(c=1%H2O)pH: 3.7(c=0.5%H2O)元素分析 C% H% N% Cl%计算值 41.88 7.3 11.27 9.5测定值 41.71 7.28 12.39 9.37NMR D2O δ=5.5-5.4(1H,m,-CH-);3.8-3.5(2H,m,N-CH2);3.3-3.2(1H,t,CH-NH2);3.1(9H,s,N-(CH3)3);2.7-2.5(2H,m,-CH2-COOH);2.5-2.1(2H,m,-CH-CH2);2(3H,s,COCH3)实施例10-19
按照实施例1描述的方法,应用下列表1中“氨基酸”栏所列出的氨基酸以等摩尔量代替实施例1中的L-异亮氨酸,制备得到下表1中的化合物,这些化合物最相关的理化特性也显示于下表1中。
表1
实施例16-19化合物的理化特性_
表1(续)
在25℃下置于70±5%相对湿度环境下24小时后,与L-肉毒碱内盐、乙酰基L-肉毒碱内盐、氯化乙酰基L-肉毒碱和氯化丙酰基L-肉毒碱相比,本发明的一些化合物的重量增加和外观结果如下表2所示。
表2
化合物 重量增加(%) 外观
L-肉毒碱内盐 23 潮解
乙酰基-L-肉毒碱内盐 19 潮解
氯化乙酰基-L-肉毒碱 8 结块
氯化丙酰基-L-肉毒碱 15 潮解
实施例1(BS/208) 0.2 无变化
实施例2(BS/209) 0.25 无变化
实施例3(BS/204) 0.1 无变化
实施例4(BS/197) 0.6 无变化
实施例5(BS/207) 0.45 无变化
实施例6(BS/205) 0.4 无变化
实施例7(BS/185) 0.6 无变化
实施例8(BS/193) 0.7 无变化
实施例9(BS/194) 0.3 无变化
除了由稳定性和不吸湿性所带来的技术性质优点外,本发明的式(I)盐还具有的优点是:使用者容易摄取正常剂量的活性成分,从而容易进行调节以适合具体个体的身体需要。因此无论是在治疗领域还是饮食领域,例如训练饮食、衰弱者和紧张个体的饮食领域以及素食者饮食领域,使用者的顺从性被大大地增强。
例如,合理地延长应用含有本发明有效量盐的食品添加剂可以达到下列有利的效果:
(a)节省肌肉蛋白特别是骨骼肌中的支链氨基酸;
(b)刺激肝和骨骼肌中的蛋白合成;
(c)提供氨基用于合成丙氨酸和谷氨酰胺,它们均对糖原异生作用起重要作用;
(d)增强从丙酮酸代谢转变成丙氨酸,而不转变成乳酸
(e)通过谷氨酸转变成谷氨酰胺来增强骨骼肌中的氢离子流出,从而使肌肉内pH保持在最佳值;和
(f)增强需氧运动活动的耐力和最佳发挥。