一种高电压锂离子电池的化成方法、制备方法及电池.pdf

上传人:e1 文档编号:1688350 上传时间:2018-07-04 格式:PDF 页数:12 大小:667.79KB
返回 下载 相关 举报
摘要
申请专利号:

CN201310488211.X

申请日:

2013.10.17

公开号:

CN104577202A

公开日:

2015.04.29

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效IPC(主分类):H01M 10/058申请日:20131017|||公开

IPC分类号:

H01M10/058(2010.01)I; H01M10/44

主分类号:

H01M10/058

申请人:

奇瑞汽车股份有限公司

发明人:

刘三兵; 卢磊; 朱广燕

地址:

241006安徽省芜湖市经济技术开发区长春路8号

优先权:

专利代理机构:

北京天昊联合知识产权代理有限公司11112

代理人:

罗建民; 邓伯英

PDF下载: PDF下载
内容摘要

本发明公开了一种高电压锂离子电池的化成方法、制备方法及电池,该化成方法包括(1)以0.015~0.05C恒流限压0.15~0.5V充电,搁置10分~3小时;(2)以I2(0.05~0.15C)恒流限压0.1~0.4V充电,以比中值电压高0.1~0.4V的恒压限流I2×0.1充电,搁置10分~3小时;(3)以0.05~0.2C恒流放电0.5小时~3小时,搁置10分~3小时;(4)以I5(0.2~1C)恒流限压U3(最高充电截止电压)充电,以U3恒压限流I5×0.1充电,搁置5分~30分,以I5恒流限压U4(最低放电截止电压)放电,搁置20分~3小时。该方法使电池材料活化完全,形成致密稳定的SEI膜。

权利要求书

权利要求书1.  一种高电压锂离子电池的化成方法,其特征在于,包括以下化成过程步骤:(1)以第一电流I1恒流对所述电池进行充电并以第一上限电压U1限压,再搁置10min~3h,其中,I1为0.015C~0.05C,U1比所述电池的中值电压低0.15V~0.5V,且U1不低于所述电池的最低放电截止电压;(2)以第二电流I2恒流对所述电池进行充电并以第二上限电压U2限压,再以第二上限电压U2恒压对所述电池进行充电并以第一上限电流I3限流,再搁置10min~3h,其中,I2为0.05C~0.15C,U2比所述电池的中值电压高0.1V~0.4V,且U2不高于所述电池的最高充电截止电压,I3=0.1I2;(3)以第三电流I4恒流对所述电池进行放电0.5h~3h并以所述第一上限电压U1限压,再搁置10min~3h,其中,I4为0.05C~0.2C;(4)以第四电流I5恒流对所述电池进行充电并以第三上限电压U3限压,再以第三上限电压U3恒压对所述电池进行充电并以第二上限电流I6限流,再搁置5min~30min,再以第四电流I5恒流对所述电池进行放电并以第一下限电压U4限压,再搁置20min~3h,其中,I5为0.2C~1C,U3为所述电池的最高充电截止电压,I6=0.1I5,U4为所述电池的最低放电截止电压。2.  根据权利要求1所述的高电压锂离子电池的化成方法,其特征在于,所述电池的最高充电截止电压为4.5V~5.5V。3.  根据权利要求1所述的高电压锂离子电池的化成方法,其特征在于,所述电池的最低放电截止电压为1.5V~3.5V。4.  根据权利要求1所述的高电压锂离子电池的化成方法,其特征在于,所述化成过程的温度为-10℃~25℃。5.  根据权利要求1所述的高电压锂离子电池的化成方法,其特征在于,所述的高电压锂离子电池的正极材料为最高充电截止电压不低于4.5V的正极材料。6.  根据权利要求1所述的高电压锂离子电池的化成方法,其特征在于,所述的高电压锂离子电池的负极材料包括石墨、硬碳、软碳、硅基材料、锡基材料、Ni/C合金材料,Al/Sb合金材料中的任意一种。7.  一种高电压锂离子电池的制备方法,其特征在于,包括权利要求1~6任意一项所述的高电压锂离子电池的化成方法。8.  一种高电压锂离子电池,其特征在于,其由权利要求7所述的方法得到。

说明书

说明书一种高电压锂离子电池的化成方法、制备方法及电池
技术领域
本发明属于锂离子电池技术领域,具体涉及一种高电压锂离子电池的化成方法、制备方法及电池。
背景技术
近年来,随着各种便携式电子设备、无线移动通讯设备和电动汽车的快速发展和广泛应用,人们对于高比能量、长寿命低成本的锂离子电池需求显得更加迫切,高电压正极材料也越来越受到研究者的关注。国家《节能与新能源汽车产业发展规划2012-2020年》指出,到2015年,动力电池模块比能量将达到150Wh/Kg以上。虽然应用高电压正极材料可以大大提高电池的比能量,但是电池的循环性能和安全性能比较差。为了提高高电压电池的性能,大多数研究者研究正极材料的改性、电解液添加剂等方面,通过对材料性能进行物理、化学方面的改进获得较好的循环性能,如清华大学的专利(申请号:CN201110258108.7)是采用在正极活性材料表面包覆磷酸铝层提高循环性能,但是包覆非活性材料磷酸铝,影响电池容量的发挥;而通过对电解液添加剂的使用可以减少充电过程中电解液与高电压正极材料表面的分解,在正负极表面形成稳定的SEI膜,从而提高电池的容量和循环稳定性,如南开大学的专利(申请号:CN201010561063.6)在电解液中添加二氟草酸锂,但是却增加了电解液成本。
锂离子电池化成是生产过程中的重要工序,化成时在负极表面形成一层钝化层,即固体电解质界面膜(SEI膜),SEI膜的好坏直接影响到电池的循环寿命、稳定性、自放电性、安全性等电化学性能。高电压锂离子电池(充电截止电压≥4.5V)由于其电压高,在充放电过程中存在着副反应较多、产气严重、容量衰减快、 电池循环性能差等问题,遏制了高电压锂离子电池的应用。化成工序对于提高高电压锂离子电池循环稳定性、储存性能等更为重要。目前,传统的化成工艺采用小电流、限制充电时间的化成方法有助于SEI膜的形成,从而改善锂离子电池的性能。但是这对于高电压锂离子电池并不适用,长时间小电流会导致过量的锂离子参与形成SEI膜的化学反应,导致SEI膜生长厚度增加,电池内阻增大,且长时间小电流高电压下电解液分解严重,电池生产周期长。
发明内容
本发明所要解决的技术问题是针对现有技术中存在的上述不足,提供了一种高电压锂离子电池的化成方法、制备方法及电池,该化成方法使电池材料活化完全,电池产气完全。
解决本发明技术问题所采用的技术方案是提供一种高电压锂离子电池的化成方法,包括以下化成过程步骤:
(1)以第一电流I1恒流对所述电池进行充电并以第一上限电压U1限压,再搁置10min~3h,
其中,I1为0.015C~0.05C,U1比所述电池的中值电压低0.15V~0.5V,且U1不低于所述电池的最低放电截止电压;
(2)以第二电流I2恒流对所述电池进行充电并以第二上限电压U2限压,再以第二上限电压U2恒压对所述电池进行充电并以第一上限电流I3限流,再搁置10min~3h,
其中,I2为0.05C~0.15C,U2比所述电池的中值电压高0.1V~0.4V,且U2不高于所述电池的最高充电截止电压,I3=0.1I2;
(3)以第三电流I4恒流对所述电池进行放电0.5h~3h并以所述第一上限电压U1限压,再搁置10min~3h,
其中,I4为0.05C~0.2C;
(4)以第四电流I5恒流对所述电池进行充电并以第三上限电压U3限压,再以第三上限电压U3恒压对所述电池进行充电并以第二上限电流I6限流,再搁置5min~30min,再以第四电流I5恒流 对所述电池进行放电并以第一下限电压U4限压,再搁置20min~3h,
其中,I5为0.2C~1C,U3为所述电池的最高充电截止电压,I6=0.1I5,U4为所述电池的最低放电截止电压。
优选的是,所述最高充电截止电压为4.5V~5.5V。
优选的是,所述电池的最低放电截止电压为1.5V~3.5V。
优选的是,所述化成过程的温度为-10℃~25℃。
优选的是,所述的高电压锂离子电池的正极材料为最高充电截止电压不低于4.5V的正极材料。
优选的是,所述的高电压锂离子电池的负极材料包括石墨、硬碳、软碳、硅基材料、锡基材料、Ni/C合金材料,Al/Sb合金材料中的任意一种。
更优选的是,所述石墨为人造石墨或天然石墨。
更优选的是,所述硅基材料为Si/C复合材料,SiOx/C复合材料,SiOx材料中的一种,其中,0<x<2。
更优选的是,所述锡基材料为Sn/C复合材料,SnOy/C复合材料,SnOy材料中的一种,其中,0<y<2。
本发明还提供一种高电压锂离子电池的制备方法,包括上述的高电压锂离子电池的化成方法。
本发明还提供一种高电压锂离子电池,其由上述的方法得到。
本发明中的高电压锂离子电池的化成方法中通过对电池化成过程中的电流、电压、搁置时间、温度的控制,各阶段充放电,使电池材料活化完全,提高电池的容量,同时运用了小电流充放电以及大电流充放电,从而使得电池产气完全,避免了成品电池在使用过程中再产气、气胀,形成了稳定的、致密的SEI膜,且降低SEI膜的阻抗,提高了高电压锂离子电池的循环性能、储存性能,延长高电压锂离子电池循环寿命,操作简单,易于工业化应用,提高了高电压锂离子电池的生产效率。
附图说明
图1是本发明实施例1中的高电压锂离子电池化成、分容后的放电循环性能曲线图。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明作进一步详细描述。
实施例1
本实施例以LiNi0.5Mn1.5O4为正极材料,将正极材料LiNi0.5Mn1.5O4、导电剂乙炔黑、粘接剂聚偏氟乙烯(PVDF)按照质量比93:2:5比例配料,制作正极片;以人造石墨为负极材料,将负极材料人造石墨、导电剂乙炔黑、水性粘接剂LA132按照质量比94.5:1:4.5比例配料,制作负极片;将上述正、负极片组装到同一个电池中,设计电池的容量为1Ah,其中值电压为4.5V,得到高电压锂离子电池,即尖晶石镍锰酸锂电池。
本实施例提供一种尖晶石镍锰酸锂电池化成方法,包括以下化成过程步骤:
(1)以0.02C恒流限压4.0V充电,搁置时间为30min;该步中放出电池内部大部分气体,例如:CO、CO2、CH4、C2H4等。
(2)以0.06C恒流限压4.7V充电,然后恒压4.7V限流0.006C充电,搁置时间为1h;该步中电池材料活化,并初步形成SEI膜。
(3)以0.1C恒流放电时间为1.5h限压4.0V,搁置时间2h;该步中SEI膜形成,但是还不稳定。
(4)以0.5C恒流限压4.9V充电,然后恒压4.9V限流0.05C充满电,搁置时间10min,最后以0.5C恒流限压3.5V放电,搁置时间0.5h。其中,最低放电截止电压为3.5V,最高充电截止电压为4.9V。该步中SEI膜完全稳定,电池内部产气完全。
本实施例中的化成过程中的温度为25℃。
本实施例还提供一种高电压锂离子电池的制备方法,包括上述的高电压锂离子电池的化成方法。
本实施例还提供一种高电压锂离子电池,其由上述的方法得到。
本实施例中的高电压锂离子电池的化成方法中通过对电池化成过程中的电流、电压、时间、搁置时间、温度的控制,各阶段充放电,使电池材料活化完全,提高电池的容量,同时运用了小电流充放电以及大电流充放电,从而使得电池产气完全,避免了成品电池在使用过程中再产气、气胀,形成了稳定的、致密的SEI膜,且降低SEI膜的阻抗,提高了高电压锂离子电池的循环性能、储存性能,延长高电压锂离子电池循环寿命,(效果实验数据见表1)操作简单,易于工业化应用,提高了高电压锂离子电池的生产效率。
对比例1
本对比例以LiNi0.5Mn1.5O4为正极材料,高电压锂离子电池的制作工艺同实施例1,得到了尖晶石镍锰酸锂电池。
本对比例提供一种尖晶石镍锰酸锂电池传统化成方法,包括以下步骤:
(1)以0.02C电流恒流对电池进行充电至上限电压4.2V终止,搁置时间3h;
(2)以0.02C电流恒流对电池进行充电至上限电压4.5V终止,搁置时间5h;
(3)以0.02C电流恒流对电池进行充电至上限电压4.65V终止,搁置时间1h。
将以上实施例1、对比例1化成结束后的电池均采用相同的分容工艺进行分容,测试电池内阻见表1。采用相同的电化学循环工艺(充放电截止电压为4.9V~3.5V,充放电电流为0.5C)对电池进行循环性能测试,且在进行循环性能测试前后测试电池厚度变化情况,相关数据见表1。通过对比数据可知,实施例1中的电池相对于对比例1中的数据,实施例1中的电池分容后的内阻低,首次放电比容量高,循环100次后容量保持率高,循环100后的 厚度变化率低。图1为实施例1中的高电压锂离子电池化成后的充放电循环性能曲线图,该电池循环100次后的容量保持率为96.1%,该电池的容量保持率高。
表1实施例1、对比例1中的电池性能测试数据

实施例2
本实施例以LiNi0.5Mn1.5O4为正极材料,将正极材料LiNi0.5Mn1.5O4、导电剂乙炔黑、粘接剂聚偏氟乙烯(PVDF)按照质量比95:2:3比例配料,制作正极片;以Si/C复合材料为负极材料,将负极材料Si/C复合材料、导电剂乙炔黑、水性粘接剂LA132按照质量比92:3:5比例配料,制作负极片;将上述正、负极片组装到同一个电池中,设计电池的容量为1Ah,其中值电压为4.4V,得到高电压锂离子电池,即尖晶石镍锰酸锂电池。
本实施例提供一种尖晶石镍锰酸锂电池化成方法,包括以下步骤:
(1)以0.015C恒流限压4.25V充电,搁置时间为10min;该步中放出电池内部大部分气体,例如:CO、CO2、CH4、C2H4等。
(2)以0.15C恒流限压4.8V充电,然后恒压4.8V限流0.015C充电,搁置时间为10min;该步中电池材料活化,并初步形成SEI膜。
(3)以0.05C恒流放电时间为3h限压4.25V,搁置时间3h;该步中SEI膜形成,但是还不稳定。
(4)以0.2C恒流限压4.9V充电,然后恒压4.9V限流0.02C充满电,搁置时间10min,最后以0.2C恒流限压3.5V放电,搁置时间20min。其中,最低放电截止电压为3.5V,最高充电截止电压为4.9V。该步中SEI膜完全稳定,电池内部产气完全。
本实施例中的化成过程中的温度为15℃。
本实施例还提供一种高电压锂离子电池的制备方法,包括上述的高电压锂离子电池的化成方法。
本实施例还提供一种高电压锂离子电池,其由上述的方法得到。
循环性能测试:充放电截止电压为4.9V~3.5V,充放电电流为1C,首次放电容量为1.05Ah,循环80次容量保持率大于95%,循环性能较好,循环80次厚度变化率为1.5%,几乎未气胀。
实施例3
本实施例以Li1.2Ni0.25Mn0.75O2.35为正极材料,将正极材料Li1.2Ni0.25Mn0.75O2.35、导电剂乙炔黑、粘接剂聚偏氟乙烯(PVDF)按照质量比93:1.5:5.5比例配料,制作正极片;以天然石墨为负极材料,将负极材料天然石墨、导电剂乙炔黑、水性粘接剂LA132按照质量比92:3:5比例配料,制作负极片;将上述正、负极片组装到同一个电池中,设计电池的容量为2Ah,其中值电压为3.3V,得到高电压锂离子电池,即尖晶石镍锰酸锂电池。
本实施例提供一种尖晶石镍锰酸锂电池化成方法,包括以下步骤:
(1)以0.05C恒流限压3.15V充电,搁置时间为2h;该步中放出电池内部大部分气体,例如:CO、CO2、CH4、C2H4等。
(2)以0.10C恒流限压3.5V充电,然后恒压3.5V限流0.01C充电,搁置时间为30min;该步中电池材料活化,并初步形成SEI膜。
(3)以0.10C恒流放电时间为0.5h限压3.15V,搁置时间1h;该步中SEI膜形成,但是还不稳定。
(4)以0.6C恒流限压4.6V充电,然后恒压4.6V限流0.06C充满电,搁置时间5min,最后以0.6C恒流限压2.5V放电,搁置时间1h。其中,最低放电截止电压为2.5V,最高充电截止电压为4.6V。该步中SEI膜完全稳定,电池内部产气完全。
本实施例中的化成过程中的温度为-5℃。
本实施例还提供一种高电压锂离子电池的制备方法,包括上述的高电压锂离子电池的化成方法。
本实施例还提供一种高电压锂离子电池,其由上述的方法得到。
循环性能测试:充放电截止电压为4.6V~2.5V,充放电电流为1C,首次放电容量为2.08Ah,循环80次容量保持率大于93%,循环性能较好,循环80次厚度变化率为1.1%,几乎未气胀。
实施例4
本实施例以LiCoPO4为正极材料,将正极材料LiCoPO4、导电剂乙炔黑、粘接剂聚偏氟乙烯(PVDF)按照质量比93:1.5:5.5比例配料,制作正极片;以SiO/C复合材料为负极材料(当然,本实施例中的化成方法适用于SiOx/C复合材料,其中,0<x<2),将负极材料SiO/C复合材料、导电剂乙炔黑、水性粘接剂LA132按照质量比92:3:5比例配料,制作负极片;将上述正、负极片组装到同一个电池中,设计电池的容量为2Ah,其中值电压为4.5V,得到高电压锂离子电池。
本实施例提供一种高电压锂离子电池化成方法,包括以下步骤:
(1)以0.02C恒流限压4.2V充电,搁置时间为3h;该步中放出电池内部大部分气体,例如:CO、CO2、CH4、C2H4等。
(2)以0.07C恒流限压4.8V充电,然后恒压4.8V限流0.007C充电,搁置时间为3h;该步中电池材料活化,并初步形成SEI膜。
(3)以0.15C恒流放电时间为0.5h限压4.2V,搁置时间10min;该步中SEI膜形成,但是还不稳定。
(4)以1C恒流限压5.1V充电,然后恒压5.1V限流0.1C充满电,搁置时间30min,最后以1.0C恒流限压3.0V放电,搁置时间3h。其中,最低放电截止电压为3.0V,最高充电截止电压为5.1V。该步中SEI膜完全稳定,电池内部产气完全。
本实施例中的化成过程中的温度为0℃。
本实施例还提供一种高电压锂离子电池的制备方法,包括上述的高电压锂离子电池的化成方法。
本实施例还提供一种高电压锂离子电池,其由上述的方法得到。
循环性能测试:充放电截止电压为5.1V~3.0V,充放电电流为1C,首次放电容量为2.09Ah,循环100次容量保持率大于89%,循环性能较好,循环100次厚度变化率为1.8%,几乎未气胀。
实施例5
本实施例以LiNiPO4为正极材料,将正极材料LiNiPO4、导电剂乙炔黑、粘接剂聚偏氟乙烯(PVDF)按照质量比93:1.5:5.5比例配料,制作正极片;以SiO0.5材料为负极材料(当然,本实施例中的化成方法适用于SiOx材料,其中,0<x<2),将负极材料SiO0.5材料、导电剂乙炔黑、水性粘接剂LA132按照质量比92:3:5比例配料,制作负极片;将上述正、负极片组装到同一个电池中,设计电池的容量为2Ah,其中值电压为4.8V,得到高电压锂离子电池。
本实施例提供一种高电压锂离子电池化成方法,包括以下步骤:
(1)以0.03C恒流限压4.3V充电,搁置时间为1h;该步中放出电池内部大部分气体,例如:CO、CO2、CH4、C2H4等。
(2)以0.08C恒流限压5.2V充电,然后恒压5.2V限流0.008C充电,搁置时间为1h;该步中电池材料活化,并初步形成SEI膜。
(3)以0.2C恒流放电时间为1h限压4.3V,搁置时间50min;该步中SEI膜形成,但是还不稳定。
(4)以0.5C恒流限压5.5V充电,然后恒压5.5V限流0.2C充满电,搁置时间20min,最后以0.5C恒流限压3.0V放电,搁置时间2h。其中,最低放电截止电压为3.0V,最高充电截止电压为5.5V。该步中SEI膜完全稳定,电池内部产气完全。
本实施例中的化成过程中的温度为12℃。
本实施例还提供一种高电压锂离子电池的制备方法,包括上述的高电压锂离子电池的化成方法。
本实施例还提供一种高电压锂离子电池,其由上述的方法得到。
循环性能测试:充放电截止电压为5.5V~3.0V,充放电电流为1C,首次放电容量为2.10Ah,循环80次容量保持率大于88.5%,循环性能较好,循环80次厚度变化率为1.9%,几乎未气胀。
实施例6
本实施例以Li2CoP2O7为正极材料,将正极材料Li2CoP2O7、导电剂乙炔黑、粘接剂聚偏氟乙烯(PVDF)按照质量比93:1.5:5.5比例配料,制作正极片;以SnO0.8/C复合材料为负极材料(当然,本实施例中的化成方法适用于SnO0.8/C复合材料,其中,0<y<2),将负极材料SnO0.8/C复合材料、导电剂乙炔黑、水性粘接剂LA132按照质量比92:3:5比例配料,制作负极片;将上述正、负极片组装到同一个电池中,设计电池的容量为2Ah,其中值电压为4.3V,得到高电压锂离子电池。
本实施例提供一种高电压锂离子电池化成方法,包括以下步骤:
(1)以0.04C恒流限压4.15V充电,搁置时间为2h;该步中放出电池内部大部分气体,例如:CO、CO2、CH4、C2H4等。
(2)以0.1C恒流限压4.7V充电,然后恒压4.7V限流0.01C充电,搁置时间为2h;该步中电池材料活化,并初步形成SEI膜。
(3)以0.18C恒流放电时间为1.2h限压4.15V,搁置时间2h;该步中SEI膜形成,但是还不稳定。
(4)以0.8C恒流限压5.5V充电,然后恒压5.5V限流0.08C充满电,搁置时间15min,最后以0.8C恒流限压2.0V放电,搁置时间1h。其中,最低放电截止电压为2.0V,最高充电截止电压为5.5V。该步中SEI膜完全稳定,电池内部产气完全。
本实施例中的化成过程中的温度为18℃。
本实施例还提供一种高电压锂离子电池的制备方法,包括上述的高电压锂离子电池的化成方法。
本实施例还提供一种高电压锂离子电池,其由上述的方法得到。
循环性能测试:充放电截止电压为5.5V~2.0V,充放电电流为1C,首次放电容量为2.02Ah,循环90次容量保持率大于88.2%,循环性能较好,循环90次厚度变化率为1.05%,几乎未气胀。
实施例7
本实施例以LiCr0.6Mn1.4O4为正极材料,将正极材料LiCr0.6Mn1.4O4、导电剂乙炔黑、粘接剂聚偏氟乙烯(PVDF)按照质量比93:1.5:5.5比例配料,制作正极片;以SnO1.2材料为负极材料(当然,本实施例中的化成方法适用于SnOy材料,其中,0<y<2),将负极材料SnO1.2材料、导电剂乙炔黑、水性粘接剂LA132按照质量比92:3:5比例配料,制作负极片;将上述正、负极片组装到同一个电池中,设计电池的容量为2Ah,其中值电压为4.35V,得到高电压锂离子电池。
本实施例提供一种高电压锂离子电池化成方法,包括以下步骤:
(1)以0.05C恒流限压3.9V充电,搁置时间为50min;该步中放出电池内部大部分气体,例如:CO、CO2、CH4、C2H4等。
(2)以0.12C恒流限压4.5V充电,然后恒压4.5V限流0.012C充电,搁置时间为3h;该步中电池材料活化,并初步形成SEI膜。
(3)以0.05C恒流放电时间为3h限压3.9V,搁置时间1h;该步中SEI膜形成,但是还不稳定。
(4)以0.4C恒流限压5.4V充电,然后恒压5.4V限流0.04C充满电,搁置时间10min,最后以0.4C恒流限压3.4V放电,搁置时间1.5h。其中,最低放电截止电压为3.4V,最高充电截止电压为5.4V。该步中SEI膜完全稳定,电池内部产气完全。
本实施例中的化成过程中的温度为22℃。
本实施例还提供一种高电压锂离子电池的制备方法,包括上述的高电压锂离子电池的化成方法。
本实施例还提供一种高电压锂离子电池,其由上述的方法得到。
循环性能测试:充放电截止电压为5.4V~3.4V,充放电电流为1C,首次放电容量为2.01Ah,循环80次容量保持率大于96%,循环性能较好,循环80次厚度变化率为0.8%,几乎未气胀。
实施例8
本实施例以0.2Li2MnO3·0.8LiCoO2为正极材料,将正极材料0.2Li2MnO3·0.8LiCoO2、导电剂乙炔黑、粘接剂聚偏氟乙烯(PVDF)按照质量比93:1.5:5.5比例配料,制作正极片;以Ni/C复合材料为负极材料,将负极材料Ni/C复合材料、导电剂乙炔黑、水性粘接剂LA132按照质量比92:3:5比例配料,制作负极片;将上述正、负极片组装到同一个电池中,设计电池的容量为2Ah,其中值电压为3.1V,得到高电压锂离子电池。
本实施例提供一种高电压锂离子电池化成方法,包括以下步骤:
(1)以0.015C恒流限压2.9V充电,搁置时间为1.5h;该步中放出电池内部大部分气体,例如:CO、CO2、CH4、C2H4等。
(2)以0.05C恒流限压3.5V充电,然后恒压3.5V限流0.005C充电,搁置时间为50min;该步中电池材料活化,并初步形成SEI膜。
(3)以0.2C恒流放电时间为0.8h限压2.9V,搁置时间3h;该步中SEI膜形成,但是还不稳定。
(4)以0.2C恒流限压4.8V充电,然后恒压4.8V限流0.02C充满电,搁置时间25min,最后以0.2C恒流限压2.0V放电,搁置时间20min。其中,最低放电截止电压为2.0V,最高充电截止电压为4.8V。该步中SEI膜完全稳定,电池内部产气完全。
本实施例中的化成过程中的温度为-5℃。
本实施例还提供一种高电压锂离子电池的制备方法,包括上述的高电压锂离子电池的化成方法。
本实施例还提供一种高电压锂离子电池,其由上述的方法得到。
循环性能测试:充放电截止电压为4.8V~2.0V,充放电电流为1C,首次放电容量为2.11Ah,循环100次容量保持率大于94%,循环性能较好,循环100次厚度变化率为1.7%,几乎未气胀。
实施例9
本实施例以0.5Li2MnO3·0.5LiMnO2为正极材料,将正极材料0.5Li2MnO3·0.5LiMnO2、导电剂乙炔黑、粘接剂聚偏氟乙烯(PVDF)按照质量比93:1.5:5.5比例配料,制作正极片;以Al/Sb复合材料为负极材料,将负极材料Al/Sb复合材料、导电剂乙炔黑、水性粘接剂LA132按照质量比92:3:5比例配料,制作负极片;将上述正、负极片组装到同一个电池中,设计电池的容量为2Ah,其中值电压为3.2V,得到高电压锂离子电池。
本实施例提供一种高电压锂离子电池化成方法,包括以下步骤:
(1)以0.03C恒流限压3.0V充电,搁置时间为10min;该步中放出电池内部大部分气体,例如:CO、CO2、CH4、C2H4等。
(2)以0.15C恒流限压3.3V充电,然后恒压3.3V限流0.015C充电,搁置时间为1h;该步中电池材料活化,并初步形成SEI膜。
(3)以0.12C恒流放电时间为2h限压3.0V,搁置时间1.5h;该步中SEI膜形成,但是还不稳定。
(4)以0.5C恒流限压4.8V充电,然后恒压4.8V限流0.05C充满电,搁置时间5min,最后以0.5C恒流限压2.0V放电,搁置时间50min。其中,最低放电截止电压为2.0V,最高充电截止电压为4.8V。该步中SEI膜完全稳定,电池内部产气完全。
本实施例中的化成过程中的温度为25℃。
本实施例还提供一种高电压锂离子电池的制备方法,包括上述的高电压锂离子电池的化成方法。
本实施例还提供一种高电压锂离子电池,其由上述的方法得到。
循环性能测试:充放电截止电压为4.8V~2.0V,充放电电流为1C,首次放电容量为2.02Ah,循环100次容量保持率大于92.5%,循环性能较好,循环100次厚度变化率为1.25%,几乎未气胀。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

一种高电压锂离子电池的化成方法、制备方法及电池.pdf_第1页
第1页 / 共12页
一种高电压锂离子电池的化成方法、制备方法及电池.pdf_第2页
第2页 / 共12页
一种高电压锂离子电池的化成方法、制备方法及电池.pdf_第3页
第3页 / 共12页
点击查看更多>>
资源描述

《一种高电压锂离子电池的化成方法、制备方法及电池.pdf》由会员分享,可在线阅读,更多相关《一种高电压锂离子电池的化成方法、制备方法及电池.pdf(12页珍藏版)》请在专利查询网上搜索。

本发明公开了一种高电压锂离子电池的化成方法、制备方法及电池,该化成方法包括(1)以0.0150.05C恒流限压0.150.5V充电,搁置10分3小时;(2)以I2(0.050.15C)恒流限压0.10.4V充电,以比中值电压高0.10.4V的恒压限流I20.1充电,搁置10分3小时;(3)以0.050.2C恒流放电0.5小时3小时,搁置10分3小时;(4)以I5(0.21C)恒流限压U3(最高充电。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 电学 > 基本电气元件


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1