自升式平台锁定设备 发明领域和背景
本发明涉及用于海上碳氢化合物(石油和天然气)的勘探和生产以及其它用途的那类自升式平台或自升式钻机的支腿锁定和支承系统的领域。大陆架范围内的油气工业已将海上工程平台广泛地用于油气的钻井、生产、施工、管道泵站、职工膳宿和各种服务以及大修作业。
预定设立在海上某一位置的海上固定平台,传统的作法是先在岸上建造,然后由驳船运输到海上的一预定位置,随后下水并转到一竖立位置,最后永久地固定于海底。已开发了能满足海上工业对设施的需要的各种移动式海洋工程船舶,从这类船舶上可以进行钻井、生产或油井大修作业,这类船舶通常只在进行作业时保持在一个确定位置,而在作业之后,就移到另一个地方。也已开发了多种可移动式海洋工程船舶来满足海上工业的需要,包括用于深水作业的半潜式平台和浮式钻井船、用于内陆水域或河口海湾地桩脚驳船以及用于浅到中等水深的自升式平台。
通常的自升式海上钻机或钻井平台包括一驳船船体和能够通过操作将船体举升到水面以上的支承腿。在将支承腿穿过船体提升起来的情况下可将驳船船体作为一浮船从一个地方牵引到另一地点。当到达预定地点后,用升降系统使支承腿穿过驳船船体向下伸,直到接触海底,持续向下顶支腿,使它们穿入海底中,直到其底脚稳固地立于海底而形成稳固的基础,此后,继续进行的顶升将使船体升离海面,可将船体升高到比在作业过程中能预见到的最大波浪高度还高的高度。
自升式钻机的升降系统通常有三条或更多条支腿,每一支腿由一根或更多根桁杆组成,但大多数通常是三根桁杆。一根或多根的齿条沿每一支腿的桁杆的长度纵向延伸并固定于其上,并由连接于船体的小齿轮驱动,这些小齿轮由液压、电气或机装置以本领域的熟练人员熟知的方式提供动力。这些小齿轮可设置成其轮齿面对由多根桁杆构成的桁架支腿的中心,或可将这些小齿轮设置成相互对置,以安装在支腿或支腿桁杆每一侧上的齿条啮合各相互面对的小齿轮。往往用多个小齿轮垂向堆叠,以提供足够的力来举升预定的载荷。
这种自升式钻机会受到由暴风雨产生的大的环境载荷,暴风雨会将风力施加在平台上以及将风力和波浪力施加在平台的支腿上。这些力与平台的重力结合在一起使平台与支腿之间有一大的相互作用力,这种力必定作用在支腿与船体的界面或连接处。为了加强支腿与船体的界面的强度和刚性,自升式钻机一般设置有支腿锁定系统,当平台被举升到其预定位置之后,或在某些情况下,预见会有暴风雨时,就将这些支腿锁定系统啮合起来。已有技术的支腿锁定系统一般包括表面形状做成与细长支腿齿条上的齿相适配的细长楔子。这种楔子垂向设置,以便能与齿相啮合,然后借助液压缸、螺旋千斤顶、电动机等作水平移动,直到它们稳固地啮合于每一支腿的每一桁杆上的多个齿。随后可用多种类型的机械和液压装置将楔子锁定在啮合位置上,于是它们把支腿锁定在位,同时增强升高了的结构的刚性,以及把小齿轮与暴风雨波浪和类似情况引起的应力载荷隔离开来。
这种已有技术结构中的主要问题是,在使楔子啮合之前需将有齿的楔子与支腿桁杆上的齿条的齿恰当地垂向对准。小齿轮能使支腿垂向定位。但是,由于支腿较大,在三个支腿的最高点处的各个齿条的齿在相对于船体表面的垂向关系上由于制造允差、施加的载荷和类似因素而彼此略有不同。对于在一固定位置的支腿,同一支腿的一个最高点处齿条的齿,与同一支腿的另一最高点处的齿相对于船体而言,在垂向上的错位,在一个典型齿的12英寸垂向尺寸范围内,达正/负1至3英寸,这种情况是不少见的。因此,需要为楔子与支腿齿条齿的配对配合提供一种能相对于平台主体对各个楔子进行有限垂向调整的装置,以便能在楔子的齿与齿条的齿配对啮合之前使每一楔子的齿与每一支腿齿条的齿对准。多种已有技术的支腿锁定系统通过设置能相对于安装在钻机船体上的楔子支承壳体或结构垂向调整楔子的装置而具有这种功能,调整之后,在楔子齿与齿条齿进入水平啮合状态之前,将楔子锁定在其垂向位置上。对于这样的系统,如果楔子的垂向调整做得不精确,就会导致楔子齿与支腿齿条齿之间在方向上略微错位,这就会在部分啮合齿之间产生应力集中,这样会大大降低楔子的效用。
已有技术支腿锁定装置的另一问题是它们不能容纳支腿齿条齿的制造允差。大多数自升式钻机支腿齿条的齿是用重型钢板通过一仿形模板或计算机控制引导火焰切割而成。切割热处理后的热处理会引起齿条翘曲,造成各齿尺寸不一,典型的12英寸的齿的尺寸差异可达1/8英寸之多。由于在支腿锁定系统中,希望有齿楔子与每一支腿齿条上的至少四个齿啮合,四个齿长上的累积制造允差足以使部分齿不能恰当匹配,这又会引起应力集中,而达不到所希望的载荷力在各啮合的齿上平均分布。
大多数已有技术支腿锁定装置的再一问题是这种装置暴露于暴风雨载荷之后可能会变得卡住了,当要释放支腿锁定系统时很难使啮合的齿脱离。
另外,某些已有技术系统依靠液压力来保持楔子与支腿齿条的配对啮合,这在平台上的动力万一全部消失的情况下会有使啮合的齿脱离的危险。
发明目的
因此,本发明的一个主要目的是提供一种改进的自升式平台锁定设备,它能克服或降低已有技术的固有缺陷。
本发明的另一目的是提供一种改进的自升式平台锁定设备,它能使自升式平台安全可靠地与支腿啮合,一旦啮合,就能不依赖支腿顶升机构而起作用,而且操作简单可靠,不会在平台失去动力的情况下失效。
本发明的再一个目的是提供这样一种自升式平台锁定设备,它能以比已有技术的系统简单、坚实且更可靠的方式相对于齿条的齿垂向调整楔子。
本发明的再一个目的是提供这样一种系统,在这种系统中,每一楔子部件中有多个相对短的垂向对齐的楔子段,每个楔子段与对应支腿齿条的啮合最好不超过两个连续齿,使支腿齿条的火焰切割齿的允差变化的影响降到最小。
本发明的再一个目的是提供这样一种系统,它利用液压驱动的支承楔块来水平和垂向地定位和支承与齿条齿配对啮合的楔子段。它还利用自锁式水平螺杆机构来机械地将支承楔块和楔子段锁定在啮合位置,从而使得维持系统在锁定位置对液压的依赖降到最小或可以取消。
本发明的最后一个目的是提供这样一种系统,在这种系统中,支承楔块和楔子段能快而容易地脱离,而不存在已有技术系统中固有的发生咬死的危险。
附图
通过结合所附的附图对本发明一较佳实施例进行详细的说明,本发明的这些和其它目的以及优点将变得清晰,附图中:
图1是采用本发明之支腿锁定系统的一自升式钻机的平面图,它示出了三个三角形截面的顶升支腿和用于使支腿相对于钻机本体上升和下降的支腿齿条与小齿轮升降系统的布置;
图2是图1的自升式钻机之一支腿的一根桁杆的局部正视图,它示出了本发明的支腿桁杆上的细长齿条、自升式小齿轮与支腿锁定装置的相对位置;
图3是一侧视图,它示出了与平台之一支腿的一根桁杆上的齿条齿啮合的本发明的支腿锁定系统的一个装置的一半;
图4是图3之装置的局部剖开的侧视图,它示出了带齿的楔子段和用于垂向和水平定位和支承楔子段的支承楔块,其中所示的楔子段处于不与支腿齿条啮合的收放位置;
图5是一沿图4的线5-5截取的放大的详细剖面图,它示出了用于互连上和下有齿楔子段的导向装置的细节;
图6是一类似于图4的视图,但它示出了伸出到啮合于支腿齿条齿的有齿楔子;
图7是一总的沿图3的线7-7截取的部分剖开的局部视图,它示出了用于将系统的中心支承楔块锁定到啮合位置的锁定楔块和导向滑座结构的细节;
图8是一总的沿图3的线8-8截取的部分剖开的局部视图,它示出了用于将系统的一个支承楔块定位和锁定到伸出(工作)位置的液压和机械系统的细节;
图9是一沿图3的线9-9截取的部分剖开的局部视图,它示出了用于定位系统的一个有齿楔子段的液压系统的细节;
图10是一沿图6的线10-10截取的部分剖开的正视图,它示出了图8、9的有螺纹的楔块保持装置的其它细节;
图11是一沿图4的线11-11截取的局部视图,它示出了用于图8-10的有螺纹的楔块保持装置的齿轮结构的细节;
图12是一类似于图6的正视图,但它示出了假如支腿齿条上的齿和楔子段上的齿有初始垂向错位时系统的各部件的情况,图中支腿齿条的齿初始时比对应的楔子的齿高大约3英寸;
图13是一类似于图12的视图,但它示出了假如支腿齿条上的齿初始时比对应的楔子段上的齿低大约3英寸时系统的各部件的情况;
图14是一分解的简化视图,它示出了用于把系统的上和下有齿楔子段和中间支承楔块互连起来的另一导向装置;
图15是一类似于图6的视图,但它示出了设置有补强锁定楔块的上下有齿楔子段以及中间支承楔块;
图16是一类似于图6的视图,但它示出了中间支承楔块的另一种结构,其中省却了图3-6中所示的防转导向装置。
发明概要
本发明的支腿锁定系统使用多个垂直对齐的有齿楔子段,它们纵向设置于每一条支腿齿条。每一楔子段的纵向尺寸相当短,最好是其与支腿齿条的啮合不超过齿条的两个齿。有齿楔子段有与支承楔子段的楔块一致地接触的上和下倾斜支承表面。支承楔块允许对楔子段进行水平和垂向调整,以与要和楔子啮合的对应齿条齿的水平和垂直位置相一致。为将齿条楔子段和它们的支承楔块移动到与对应的齿条齿对准和配对啮合,设置了双作用液压缸。为了在不用液压压力的情况下将已啮合的系统锁定在位,设置了具有自锁螺纹的机械式螺纹装置。
采用多个短的可独立调整的齿条楔子段,每一齿条楔子段的啮合最好不超过支腿齿条的两个齿,这样就可以做到由对准的若干齿条楔子段啮合支腿齿条的四个或更多的齿,同时还可限制各别齿条齿的尺寸变化的影响。采用可水平和垂向调整并支承齿条楔子段的楔块可减少各零件因在使用系统的过程中所承受的载荷而发生咬死和锁死的危险,并且可减小当需要释放钻机支腿时使系统解锁和使各零件返回到收放位置所需的力。
本发明的详细说明
图1以平面图示出了一可有利地采用本发明之支腿锁定机构的一般类型的海上自升式平台。平台10包括一可自行推进或被拖到一预定地点的浮动驳船船体。船体用于支承和运输多个平台支腿14,在所示的实施例中,平台支腿14包括三条三角形的平台支腿。平台的甲板16配备有成套的海上钻井和/或生产设备,诸如井架、绞车、管架、泥浆处理装置、钻采队的住所、直升飞机场、起重机等等。平台的三个角的每一个角上安装有一穿过船体的竖井,竖井是用来导向地容纳一条平台支腿14。每条平台支腿包括三根垂向延伸的桁杆18,它们在结构上系连在一起,并通过适当结构形状的横向撑条20结合成一整体。
在平台从一个地点移到另一地点时,支腿处在升起位置并被带着走。支腿可以是分段的,各支腿段放在甲板上,当需要加长支腿时,可将各支腿段依次对齐并连接到下面的支腿段上。
平台到达其预定的作业位置后,将支腿段向下顶出,直到它们到达海底,就可使船体上升到水面以上。一旦每个支腿底部上的支承件穿透到足以支承载荷的地层中,支腿装置的继续推顶将使水面以上的平台上升到船体不会受能预见到的最大暴风雨波浪影响的所需作业高度。
本发明尤其适用于一种叫做齿条小齿轮升降系统的常用支腿升降机构。在这种系统中,每一支腿的每一桁杆包括一具有多个火焰切割齿24的纵向延伸的双侧齿齿条22。相对布置的各小齿轮26适合啮合于每一支腿齿条的每一侧,与齿条齿配对啮合。装在平台上的液压或电气驱动机构27向小齿轮提供动力,使它们以预定方向旋转,从而,使平台支腿相对于平台船体上升或下降。
一旦平台到达其预定的水面以上高度,小齿轮的运行就被停止。小齿轮驱动系统是自锁定结构的,所以它们能将平台保持在预定的上升位置上。本发明中的多个支腿锁定装置28也是由平台携带。每一装置包括两个垂向对齐的齿轮楔子段,每一段有两个形状与纵向支腿齿条的齿一致的齿。当有齿楔子段如下文所述那样与支腿齿条配对并刚性地啮合时,它们就锁定支腿而使其不能相对于平台船体纵向移动,同时保护小齿轮免遭由暴风雨期间的极端条件引起的过分的载荷、咬死、变形等等。
现在参阅图4,图中以部分剖开的正视图形式示出了与一纵向支腿齿条22的一侧相对的单个支腿锁定装置28。每一纵向支腿齿条的每一侧上设置至少一个这样的支腿锁定装置。因此,一个具有三条三角形支腿的自升式平台将有十八个这样的装置。图中示出了假定它们处于收放位置(图4)和工作的锁定位置(图6)的相对位置。
每一支腿锁定装置包括一装在船体上的用于适当支承和引导锁定装置的运动部件的刚性壳体36。上和下水平支承表面37、39和后壁41以及相对的侧壁部分(未示出)构成了一在壳体36内的中心开口,锁定系统的各可动部件处于这一开口内。
这些部件包括一具有两个齿34的第一或称上楔子段30和一具有两个齿34的第二或称下楔子段32。上和下楔子段被一在中间的三角形支承楔块38所隔开。支承楔块38作为一双面楔,既啮合于楔子段30上的形状一致的下倾斜表面40又啮合于楔子段32上的上倾斜表面42。上和下楔子段30、32和中间支承楔块38都是由适当厚度的高强度钢板制成,因此它们能承受由平台10的支腿施加在锁定系统上的重的机械载荷。楔子段上的倾斜表面40、42与双支承楔块38之间的较佳斜度要取为使楔块和楔子在无载荷条件下能基本自锁。
为了能可滑动地把上、下楔子段30、32互相连接起来,可设置防转导向装置。如图4和5所示,这些装置包括一对细长导向件43,在上下楔子段30、32的每一侧设置一个,并横跨中心楔块38。每一导向件43的肩部44具有上和下倾斜导向表面,这些表面与楔子段上的形状一致的倾斜导向槽45啮合,并由它们所引导。尽管未示出,但导向件43通过与楔子装置壳体的一部分的滑动啮合被保持住而不会从导向槽45向外移动。导向件43起到在槽45中的惰轮的作用,所以,当楔子段30、32彼此垂向相向或相离移动时,导向件43将根据适应楔子段的这种垂向移动的需要而水平移动。其肩部44上的引导表面与导向槽45的啮合为楔子段提供了附加的力矩锁定,以防止楔子段相对于另一楔子段的任何明显的转动,为整个结构提供了附加的刚度和强度。
用插在楔子段与装置壳体之间的附加的支承楔块为楔子段30、32提供了上下支承。上楔子段30的顶面由一朝下倾斜的表面46所形成。它与一第一或称上支承楔块48的形状一致的下表面相啮合,该支承楔块48介于楔子段30的上表面和形成壳体开口的顶面的上水平支承表面37之间。下楔子段32底面上的一朝上倾斜的表面50与介于楔子段32的底面和壳体36的下水平支承表面39之间的一第二或称下支承楔块52相啮合。再强调一下,尽管可采用任何所需的斜度,但楔子与上下支承楔块之间的斜度最好是各部件能在无载情况下基本自锁。
本领域的熟练人员可以想见,三个支承楔块38、48和52可以允许进行对楔子段30、32垂向、水平调整和支承。具有相反倾斜表面的楔子段30、32也可起到介于支承楔块38、48和52上的相反楔块表面之间的楔块的作用。如下文将更全面描述的那样,这种结构使得楔子段30、32在系统尺寸参数之内的水平和垂向调整基本上是无限制的,从而可保证楔子段的齿与支腿齿条22的对应齿之间的精确配合。但是,一旦楔子段的齿与支腿齿条的齿啮合(图6),以及楔块38、48、52与楔子段上它们各自配对的表面接触,并被保持住而抵制纵向离开支腿齿条22的方向的移动,那么,在楔块38、48和52被释放之前,整个系统被刚性而可靠地锁定在位,支腿齿条22不能相对于楔子装置垂向移动。
为了在装置壳体36内在收放位置和伸出(工作)位置之间水平地移动上和下楔子段30、32和支承楔块48、52,设置了定位装置。在这一较佳实施例中,定位装置包括两个双动式液压缸53、54,每一个缸具有连接于一个楔子段的活塞端和连接于构成装置壳体之一部分的箱形梁57的缸体端(图3、9)。使上和下支承楔块48、52在壳体内水平移动的定位装置包括一第二对双作用液压缸55、56,每一个缸具有连接于装置壳体的缸体端和分别连接于上下楔块48、52之一的活塞端(图3、8)。双作用液压缸53、54、55、56最好是可滑动地或可枢转地安装成这样,在不束缚缸体的情况下楔子段和支承楔块至少能相对于楔子装置壳体垂向上下调整三英寸。液压管路58将加压的液压流体供应到双作用液压缸的任一端,同时将液压流体从缸体的另一端排出,从而使缸体中的活塞(未示出)能使所连接的楔子段或楔块朝向或远离支腿齿条22水平移动。一传统的液压动力装置60具有用于可有选择地将加压液压流体供应到每一缸体的任一侧的传统的控制装置(未示出),以实现所需的楔子段或楔块的水平移动。为了图示简单,所有的液压管路均标号“58”,并仅示出了一单个液压动力源60。但是,应能理解,需要有分别的液压管路供应每一个双作用液压缸的每一侧,并且,为了分别地对每一锁定装置28提供动力和进行控制或根据需要同时控制两个或更多的装置,可能需要设置一个或多个液压动力源和相关的控制装置。当然,螺纹的、电气的、气压的等等定位装置都可替代这里揭示的液压装置。
为了一旦在伸出而进入啮合状态之后有选择地固定住三个支承楔块,防止其发生脱开支腿齿条22的水平移动,设置了保持装置。如图4和6所示,两个细长管状隔套60分别连接于上和下楔块48、52,并与之一起水平移动。就上楔块48而言,与之相关的隔套60处在楔块背面与一螺纹母板62之间,螺纹母板62与可旋转地安装在楔子装置壳体36中的三个细长螺杆64螺纹啮合。一可逆转液压马达66驱动一中心齿轮68(图11),它又驱动三个较大的齿轮70,每一螺杆64的顶部各有一个齿轮70(图11),以使三个螺杆能向任一方向同步旋转。由于螺母板62是与三个杆64螺纹啮合,这些杆64在一个方向上的旋转将使母板62、隔套60和上楔块48朝着支腿齿条22水平移动,而螺杆的反向旋转将使螺母板62水平移动远离支腿齿条22,因而通过双作用液压缸55可使隔套60和楔块48水平移动远离齿条。设置了合适的装置,用于有选择地将加压液压流体供应到可逆转液压马达66,从而使螺杆64有选择地沿任一方向旋转。虽然未示出,但这种装置可包括在可逆转液压马达66和液压动力装置60之间延伸的液压流体管路和在液压动力装置中的控制装置(未示出),可根据需要有选择地将加压液压流体供应到可逆转液压马达66的任一侧。
对下楔块52设置了同样的水平保持装置。
双作用中心支承楔块38的保持装置包括一第五双作用液压缸72(图7),它向连接于其活塞杆的锁定楔块74提供动力。锁定楔块74接触固定于装置壳体36的一导向滑座76。导向滑座76有一与楔块74上的倾斜表面80配合作用的倾斜表面78,而楔块74上的相对的平表面82接触中心支承楔块38的后边缘84,以将楔块38保持在其工作伸出或称锁定位置。导向滑座76和楔块74上的各个倾斜要足够小,以使楔块表面基本上能自锁。这意味着,当系统在其伸出的锁定状态时,即使需要的话,也只需由液压缸72提供极小的力就能将楔块74保持在位。对于这种楔块,也可采用一种合适的机械锁定机构。对于保持装置,也可采用另外的设计,所需的功能是把三个支承楔块支承和锁定在它们的工作位置。
图15示出了本发明之支腿锁定装置的另一个实施例,在该实施例中,上和下楔子段30、32也设置有补强锁定楔块。如图所示,上锁定楔块86是设置在上楔子段30的背面和装在装置壳体上的导向滑座88之间,而下锁定楔块90是设置在下楔子段32的背面和装置壳体中的导向块滑座92之间。每一附加锁定楔块86、90由一和前文结合中心锁定楔块74所述(图7)的液压缸一样的缸(未示出)来驱动。锁定楔块86、90的工作方式也与对中心锁定楔块74所述的相同。如果对每一上、下楔子段和中心支承楔块38都设置补强锁定楔块,那么,一般可以不采用为楔子段提供的附加防旋转导向装置,诸如细长导向件43,所以,其在图15中未示出。
参阅图14,图中示出了用于上、下楔子段30、32的防转导向装置的另一可替代的实施例。如分解图所示,一横截面形状最好是矩形的垂向导杆94可滑动地容纳在垂向地穿过中间支承楔块38的主体而形成的形状一致的导动通道内。导杆94的上下两端都可滑动地容纳在分别形成在上楔子段30和下楔子段32的本体内、形状一致的、基本为垂向的凹穴98、100中。滑动配合的各零件之间的间隙最好允许上、下楔子段30、32和中心支承楔块38彼此之间以及相对于支腿齿条22的齿进行适当的独立调整,以使楔子段的齿能够完全与支腿齿条上的对应齿配对啮合,同时能容纳齿条齿的制造允差。但是,导杆94可确保中间支承楔块38随上、下楔子段30、32一起水平移动,并附加地起到力矩锁定的作用、防止楔子段彼此间产生任何有影响的相对转动。
参阅图16,图中示出了上、下楔子段30、32和中心支承楔块38的另一可替代的结构形状。变化包括在双楔块38上和在每一上、下楔子段30、32上设置了相对的肩部106和108。这些相对的肩部能够阻止双楔块朝楔子段后面移动,使得两个楔子段和双楔块总体上作为一个部件移动。但是,双楔块38最好是比两个楔子段之间的空间略微小些,这样,双楔块和楔子段彼此之间能够有进行有限的相对横向和垂向移动的自由。这使系统能够容纳与上楔子段30啮合的两个齿条齿和与下楔子段32啮合的两个齿条齿之间的小的尺寸差异,从而使支腿齿条与楔子之间的力的分配比较均等。在图16所示的实施例中,图3至6的细长导向件43、图14的中心垂直导向杆94以及图15的附加补强锁定楔块都不存在。当然,如果需要,图16的结构可采用任何这种附加的防转装置。
当系统处在其收放位置(图4)时,楔子段30、32位于壳体36开口的中心。在该位置,上壳体表面37与楔子段30顶部之间最好有至少约3英寸的间隙,下壳体表面39与楔子段32底部之间最好有至少约3英寸的间隙。如下文将更详述的那样,这将可以对楔子段进行总量约6英寸的垂向调整(从中心位置加减约3英寸),以便容纳楔子齿34与支腿齿条齿24之间的未对准。楔子段30、32和楔块38、48、52的纵向中心线最好基本上与支腿齿条22的纵向中心线对齐。液压缸53、54、55、56沿一个方向加压,以将部件保持在它们的退回收放位置,或为楔子段设置机械锁定机构,诸如固定销(未示出),以使楔子段的齿不能与支腿齿条齿啮合。当部件处在它们的收放位置时,如果关闭了液压系统,最好设置能将液压缸维持在某一压力的装置。这种装置可以包括在液压动力装置60中的能将液压缸与它们的相应液压管路隔离开来的控制装置(未示出)以使液压缸的对应侧的压力维持在一适当水平,以便安全地将这些部件维持在它们的退回收放位置。也可为了该用途而在液压系统中设置一蓄压器(未示出)。液压缸72和其相关的楔块74被缩回而处在暂停不用状态。螺纹母板62在它们的螺杆64上退回,使上下支承楔块48、52和它们的相关隔套60都退回。
当需要锁定系统啮合,例如,当预见会有暴风雨时,每条支腿上的三根桁杆最好一次“楔住”一个。选择首先要楔住的桁杆,通过操作小齿轮26,使支腿齿条22上用于配对啮合的齿与楔子段上对应楔子装置的齿基本对准,来使那根桁杆的支腿齿条与楔子系统的垂向位置对准。这可以手工完成,或最好借助安装在平台船体上的垂向对准传感器102来完成。可为平台的每一条支腿设置一个这样的传感器,而且传感器最好是位于首先要楔住的那条支腿的桁杆上或附近。可用传统结构的传感器把平台相对于支腿的升高停止在一预选的高点上,在该点上,支腿桁杆的支腿齿条上的齿应基本上与那根支腿桁杆的两楔子装置的在中心收放位置的楔子段上的齿基本对准而可配对啮合。虽然任何所需类型的垂向对准装置或传感器都可使用,但较佳的类型是接近传感器,其中安装在船体上的接近探测仪能在齿顶通过其近旁时感受每一齿顶的接近,从而能计算和累积齿顶数,由此允许平台自动升高到支腿上的预选垂向位置。然后在一齿顶基本上直接面对接近探测仪的一点上可停止操作小齿轮,从而确保另外的齿条齿与楔子装置的在中心位置的楔子齿基本垂向对准。尽管希望基本对准,但楔子装置将能容纳达系统中的设计极限的错位,在所示的这一较佳实施例中,允许极限错位是加或减约3英寸。
一旦已将支腿合适地定位,就沿一个方向向液压缸53和54供给加压流体,使两个楔子段30、32朝支腿齿条移动,直到楔子段的齿与支腿齿条的齿相啮合。双支承楔块38将与楔子段30、32一起前进。
当楔子段30、32朝齿条齿前进时,它们将响应下楔子段32与下支承楔块52之间的斜面而略微朝下移动。一旦楔子齿接触齿条齿,迫使楔子段朝着齿条运动的液压缸53、54的继续加力会使楔子齿在齿条齿24的斜面上向上向内滑动,直到支腿齿条齿24与楔子段齿34之间达到一近乎完好的配合。两个楔子段30、32彼此之间能在互连导向装置的允差范围内有某一程度的独立移动这一特点,如果用的话,与具有四个齿的单个楔子段所能达到的情况相比,可以使楔子齿与支腿齿条齿达到更完好的配合。因此可将火焰切割的齿条齿的制造尺寸误差的影响限制于一个两齿的范围,而不是累积在四个齿条齿的整个垂向距离上。
在由液压缸53、54继续保持楔子段与齿条齿紧密配对啮合的情况下,沿一个方向对液压缸55、56供应加压流体,使两个支承楔块48、52移动到与楔子段稳固地支承啮合。这样就完成了基本的对准/啮合过程。
在各部件处在其啮合位置的情况下,沿一个方向使液压缸72加压,迫使中间锁定楔块74抵靠在导向滑座76的倾斜面上,将中间支承楔块38稳定地锁定在位。如果要用的话,使上、下锁定楔块86、90类似地啮合。然后用液压马达66使螺杆64上的螺母板62与空心隔套60接触,这样就把上、下支承楔块48、52稳固地锁定在位,从而防止楔子段30、32脱离支腿齿条齿。螺母板62与螺杆64之间的自锁螺纹在马达66以相反方向旋转螺杆之前能防止脱离。然后可释放液压缸53、54、55和56中的压力,因为此时它们已不再执行任何保持功能。尽管不是绝对必要,但是希望液压缸72内以及上、下锁定楔块86和90的油缸内保持一定压力,如果用的话,其有助于将锁定楔块保持在位。由于只需极小的压力,这可以通过调整液压动力装置60中的控制装置(未示出)而将加压流体锁在油缸内来实现。或者,可设置被动式蓄能器装置来保持锁定楔块的液压缸的压力,这样,即使来自液压动力装置60的所有动力都中断,也不会发生脱离。或者,为这一同样的用途采用一种机械锁定装置。
应依序对每一平台支腿的每一桁杆上的每一楔子装置执行以上描述的步骤,以将平台各支腿安全地锁定在位。
即使在垂向对准传感器的控制下第一根桁杆的楔子齿和齿条齿基本对准了,在该支腿的其他桁杆上的楔子齿和齿条齿由于制造公差、应力变形等原因可能还是有某些错位。但是,由于每一楔子装置能不受其它楔子装置的影响容纳其楔子段的齿和对应的支腿齿条齿之间的垂向错位,所以可确保每一楔子装置上的楔子齿与齿条齿之间达到可靠而接近完好的配合,只要各支腿桁杆的总错位量不超过装置的垂向设计调整范围即可。参阅图11和12,图中示出了当朝上偏移(图11)和朝下偏移(图12)不超过3英寸以便能与支腿齿条22的齿恰当对准时楔子段和楔块所呈现的相对位置。
较佳实施例的上述揭示和描述仅仅是图示和说明性的,在所附权利要求书的范围之内,在不脱离本发明的基本精神的情况下,可对所述装置之结构的尺寸、形状、材料和其它细节以及操作方法进行多种改变。