具有可调整的性能的假脚.pdf

上传人:111****112 文档编号:157334 上传时间:2018-01-30 格式:PDF 页数:41 大小:1.99MB
返回 下载 相关 举报
摘要
申请专利号:

CN02811066.8

申请日:

2002.03.29

公开号:

CN1514703A

公开日:

2004.07.21

当前法律状态:

终止

有效性:

无权

法律详情:

未缴年费专利权终止IPC(主分类):A61F 2/66申请日:20020329授权公告日:20090805终止日期:20100329|||授权|||实质审查的生效|||公开

IPC分类号:

A61F2/80

主分类号:

A61F2/80

申请人:

巴里W·汤森; 拜伦K·克劳丁诺

发明人:

巴里W·汤森; 拜伦K·克劳丁诺

地址:

美国加利福尼亚州

优先权:

2001.03.30 US 09/820,895

专利代理机构:

中国专利代理(香港)有限公司

代理人:

崔幼平;杨松龄

PDF下载: PDF下载
内容摘要

一种假脚(70),包括脚龙骨(71)和与脚龙骨连接的小腿胫(72),以便形成所述假脚的踝关节部位。所述脚龙骨具有脚前段部分和脚后段部分,以及一个向上拱起的、在脚前段部分和脚中段部分之间延伸的脚中段部分。所述小腿胫包括向下突出的弯曲下端,该下端在其一部分处通过可释放的紧固结构可调整地连接在所述脚龙骨上。小腿胫的上端在使用假脚期间可以响应于小腿胫的加力和卸力而在脚龙骨的纵向上移动。连接在小腿胫的各端之间的装置(71)限制小腿胫的上端相对于下端和脚龙骨的运动范围。小腿胫的上端上可以包括一个对齐连接装置(92),该装置具有可调整的滑动机构,以便相对于使用假脚的人的腿上的支承结构来调整小腿胫的内侧/外侧和前部/后部的位置。

权利要求书

1: 一种假脚,包括: 一个纵向延伸的脚龙骨,其具有脚前段部分、脚中段部分和脚后段 部分; 一个弹性的、直立的小腿胫,其下端与脚龙骨连接,并且其上端与 截肢者的腿上的支承结构连接,在使用假脚期间,该上端可以响应于小 腿胫的加力和卸力而在脚龙骨的纵向上移动;以及 一个用于限制小腿胫上端的运动范围的装置。
2: 如权利要求1所述的假脚,其中,该装置限制小腿胫上端的向前 运动。
3: 如权利要求2所述的假脚,其中,该装置还限制小腿胫上端的向 后运动。
4: 如权利要求1所述的假脚,其中,该装置包括含有至少一种加压 流体的活塞缸。
5: 如权利要求1所述的假脚,其中,该装置包括微处理器控制的液 压单元。
6: 如权利要求1所述的假脚,其中,该装置包括允许有限的弹性延 伸的柔性带子,带子在小腿胫的相应端部之间延伸并且连接在相应端部 上。
7: 如权利要求1所述的假脚,其中,小腿胫包括位于小腿胫的各端 中间的纵向延伸的膨胀槽。
8: 如权利要求7所述的假脚,其中,小腿胫还包括位于膨胀槽的每 一端处的膨胀关节孔。
9: 如权利要求1所述的假脚,其中,脚龙骨和小腿胫中的至少一个 由层压复合材料形成,该层压复合材料包括与聚合物基质材料层压的加 强纤维。
10: 如权利要求9所述的假脚,其中,聚合物基质材料是热塑性材料。
11: 如权利要求9所述的假脚,其中,层压复合材料是热成形的。
12: 如权利要求1所述的假脚,其中,小腿胫的下端是向下突出弯曲 的。
13: 如权利要求12所述的假脚,其中,小腿胫的突出弯曲的下端所 具有的曲率半径随着小腿胫从它的弯曲下端向上延伸而增加。
14: 如权利要求1所述的假脚,其还包括连接到小腿胫的上端的对齐 连接装置,该装置具有与截肢者的腿上的支承结构连接的配装件以及可 调整的滑动机构,以便相对于配装件及其所连接的支承结构调整脚的内 侧/外侧和前部/后部的位置。
15: 如权利要求14所述的假脚,其还包括将对齐连接装置与小腿胫 的上端连接的适配器。
16: 如权利要求1所述的假脚,其中,脚龙骨的脚后段部分具有背侧 凹陷,该背侧凹陷的纵向轴线相对于正面偏斜,使得凹陷的外侧比内侧 更靠前。
17: 如权利要求1所述的假脚,其中,脚龙骨的脚中段部分的足底面 具有纵向弓形凹陷,该凹陷的内侧部分的半径大于外侧部分的半径。
18: 如权利要求1所述的假脚,其还包括可调整的紧固结构,该紧固 结构将所述小腿胫的下端连接到脚龙骨上以便形成踝关节部位,紧固结 构可以调整所述小腿胫和脚龙骨相对彼此沿脚的纵向的对齐,从而调整 假脚的性能。
19: 如权利要求18所述的假脚,其中,可调整的紧固结构包括至少 一个可释放的紧固件以及位于小腿胫和脚龙骨之间的连接部件。
20: 一种用于假脚的小腿胫,其包括: 细长的、半刚性的弹性部件,所述部件的一端与假脚的纵向延伸的 脚龙骨连接,所述部件的相对端与截肢者的腿上的支承结构连接,所述 部件这样构制,使得在一端连接到脚龙骨上时,在使用假脚期间,该部 件可以响应于小腿胫的加力和卸力而进行弯曲,使得该部件的相对端相 对于脚龙骨纵向移动;以及 一个用于限制部件相对端的运动范围的该部件上的装置。
21: 如权利要求20所述的小腿胫,其中,该装置限制部件相对端的 向前运动。
22: 如权利要求21所述的小腿胫,其中,该装置还限制小腿胫的相 对端的向后运动。
23: 如权利要求20所述的小腿胫,其中,该装置包括含有至少一种 加压流体的活塞缸。
24: 如权利要求20所述的小腿胫,其还包括连接到小腿胫的上端的 对齐连接装置,该装置具有与截肢者的腿上的支承结构连接的配装件以 及可调整的滑动机构,以便相对于配装件及其所连接的支承结构调整脚 的内侧/外侧和前部/后部的位置。
25: 如权利要求24所述的小腿胫,其还包括将对齐连接装置与小腿 胫的上端连接的适配器。
26: 如权利要求20所述的小腿胫,其中,该装置包括允许有限的弹 性延伸的柔性带子,带子在该部件的相应端部之间延伸并且连接在相应 端部上。
27: 如权利要求20所述的小腿胫,其中,该部件包括位于它的各端 中间的纵向延伸的膨胀槽。
28: 如权利要求27所述的小腿胫,其中,该部件还包括位于膨胀槽 的每一端处的膨胀关节孔。
29: 如权利要求20所述的小腿胫,其中,该弹性部件由层压复合材 料形成,该层压复合材料包括与聚合物基质材料层压的加强纤维。
30: 如权利要求29所述的小腿胫,其中,聚合物基质材料是热塑性 材料。
31: 如权利要求29所述的小腿胫,其中,聚合物基质材料是热固性 材料。
32: 如权利要求29所述的小腿胫,其中,层压复合材料是热成形的。
33: 如权利要求20所述的小腿胫,其中,该部件的一端是向外突出 弯曲。
34: 如权利要求33所述的小腿胫,其中,该弹性部件的向外突出弯 曲的一端大致为抛物线形状,所述抛物线的最小曲率半径位于这一端处, 并且从这一端延伸。
35: 如权利要求20所述的小腿胫,其中,该部件的一端包括用于使 一端相对于脚龙骨的纵向可调整地定位的装置,小腿胫将连接在该脚龙 骨上。
36: 一种假脚,包括: 一个纵向延伸的脚龙骨,其具有脚前段部分、脚中段部分和脚后段 部分; 一个弹性的、直立的小腿胫,其下端与脚龙骨连接,并且其上端与 截肢者的腿上的支承结构连接,该下端是向下突出弯曲的,该下端的曲 率半径随着小腿胫从它的弯曲下端向上延伸而增加;以及 其中,小腿胫包括位于小腿胫的各端中间的纵向延伸的膨胀槽。
37: 如权利要求36所述的假脚,其中,小腿胫还包括位于膨胀槽的 每一端处的膨胀关节孔。
38: 如权利要求36所述的假脚,其中,小腿胫的下端通过连接部件 连接到脚龙骨上。
39: 一种假脚,包括: 一个纵向延伸的脚龙骨,其具有脚前段部分、脚中段部分和脚后段 部分; 一个弹性的、直立的小腿胫,其具有与脚龙骨连接的下端和上端; 以及 连接到小腿胫的上端的对齐连接装置,该装置具有与截肢者的腿上 的支承结构连接的配装件以及可调整的滑动机构,以便相对于配装件及 其所连接的支承结构调整脚的内侧/外侧和前部/后部的位置。
40: 如权利要求39所述的假脚,其还包括将对齐连接装置与小腿胫 的上端连接的适配器。
41: 一种假脚,包括: 一个纵向延伸的脚龙骨,其具有脚前段部分、脚中段部分和脚后段 部分; 一个弹性的、直立的小腿胫,其向下突出弯曲的下端与脚龙骨连接, 并且其上端与截肢者的腿上的支承结构连接; 其中,小腿胫的向下突出弯曲的下端大致为抛物线形状,所述抛物 线的最小曲率半径位于下端处,并且从该下端延伸。
42: 如权利要求41所述的假脚,其中,该小腿胫的下端包括用于使 下端相对于脚龙骨的纵向可调整地定位的装置。
43: 一种假脚,包括: 一个纵向延伸的脚龙骨,其具有脚前段部分、脚中段部分和脚后段 部分; 一个弹性的、直立的小腿胫,其下端与脚龙骨连接,并且其上端与 截肢者的腿上的支承结构连接; 其中,脚龙骨的脚后段部分具有背侧凹陷,该背侧凹陷的纵向轴线 相对于正面偏斜,使得凹陷的外侧比内侧更靠前。
44: 如权利要求43所述的假脚,其中,脚龙骨的末端脚跟部位平行 于正面。
45: 一种用于假脚的小腿胫,其包括: 细长的、半刚性的弹性部件,所述部件的一端与假脚的纵向延伸的 脚龙骨连接,所述部件的相对端与截肢者的腿上的支承结构连接,该部 件的一端是突出弯曲的,其曲率半径随着该部件从一端延伸而增加; 其中,该部件包括位于它的各端中间的纵向延伸的膨胀槽。
46: 如权利要求45所述的小腿胫,其中,该部件还包括位于膨胀槽 的每一端处的膨胀关节孔。
47: 一种用于假脚的小腿胫,其包括: 细长的、半刚性的弹性部件,所述部件具有与假脚的纵向延伸的脚 龙骨连接的一端和相对端;以及 连接到小腿胫的相对端的对齐连接装置,该装置具有与截肢者的腿 上的支承结构连接的配装件以及可调整的滑动机构,以便相对于配装件 及其所连接的支承结构调整脚的内侧/外侧和前部/后部的位置。
48: 如权利要求47所述的小腿胫,其还包括将对齐连接装置与小腿 胫的相对端连接的适配器。
49: 一种用于假脚的小腿胫,其包括: 细长的、半刚性的弹性部件,所述部件的一端是向外突出弯曲的以 便与假脚的纵向延伸的脚龙骨连接,所述部件的相对端与截肢者的腿上 的支承结构连接; 其中,该弹性部件的向外突出弯曲的一端大致为抛物线形状,所述 抛物线的最小曲率半径位于这一端处,并且从这一端延伸。
50: 如权利要求49所述的小腿胫,其中,该部件的一端包括用于使 一端相对于脚龙骨的纵向可调整地定位的装置,小腿胫将连接在该脚龙 骨上。

说明书


具有可调整的性能的假脚

    【技术领域】

    本发明涉及提供改善的动态响应能力的高性能假脚,这些能力与施力机制相关。

    背景技术

    Martin等在美国专利5897594中披露了一种用于假腿上的无关节假脚。与以前的方案不同,其中,所述假脚具有一种带有关节的刚性结构,以便模拟踝关节的功能,Martin等地无关节假脚采用了弹性脚插入部件,该部件被安装在脚模型内部。该插入部件沿纵剖面具有大体上为C形的设计,其开口向后,并且用其上部C-肢体支承假肢负荷,通过其下部C-肢体将所述负荷转移到与之连接的板簧。从下面看,所述板簧具有凸出的设计,并且大体上平行于其底部延伸,向前超过所述脚插入部件,进入脚尖区。Martin等的发明是基于改善无关节假脚的目的,兼顾到缓冲脚后跟的冲击,弹性,脚后跟-至-脚趾行走,和侧向稳定性,以便因此带着它以自然的方式行走,其目的是让使用者既能正常行走,又能进行体育锻炼和从事运动。不过,这种已知假脚的动态响应特征是有限的。需要一种具有改良了的应用机械设计的高性能假脚,它能够改善截肢者的运动能力,例如包括诸如跑、跳、快跑、启动、停止和跨越之类的活动。

    Van L-Phillips提出了另一种假脚,据说这种假脚使截肢者具有从事多种活动的灵活性和运动性,这些活动因为受到了现有假肢的结构限制和相应的性能的限制,在过去是无法进行的。据称,现有假脚可以从事的跑、跳和其他活动,据报导可以由使用者以与正常脚相同的方式使用。例如,参见美国专利6071313;5993488;5899944;5800569;5800568;5728177;5728176;5824112;5593457;5514185;5181932;和4822363。

    【发明内容】

    为了使截肢运动员获得较高水平的性能,需要一种具有改善了的应用机构的高性能假脚,这种脚可能优于人体的脚,并且可能优于现有的假脚。截肢运动员感兴趣的是拥有高性能的假脚,这种假脚具有改善了的应用机构,高低动态响应,以及对齐可调整性,并且可能进行微调,以便改善运动的水平和垂直分量,这本身可能是一种特殊任务。

    本发明的假脚满足了上述要求。根据本文所披露的一种实施例,本发明的假脚包括一个纵向延伸的脚龙骨,在一端具有一个脚前段部分,在相反一端具有脚后段部分,以及在脚前段和脚后段部分之间延伸并且向上拱起的较长的脚中段部分。还提供了包括一个向下凸出的弯曲下端的小腿胫。用一种可调整的紧固结构将所述小腿胫的弯曲下端连接在所述脚龙骨的向上拱起的脚中段部分,以便形成该假脚的踝关节部位。

    所述可调整的紧固结构能够沿脚龙骨的纵方向调整小腿胫和脚龙骨相对彼此的对齐,以便调整所述假脚的性能。通过调整相反的向上拱起的脚龙骨脚中段部分和小腿胫的向下凸出的弯曲下端相对彼此沿脚龙骨纵向的对齐,改变了所述脚的动态响应特征和运动输出,以便满足需要的/理想的水平和垂直线性运动的特殊需要。披露了一种多用途假脚,它具有高的和低的动态响应能力,以及双平面运动特征,它改善了从事运动和/或娱乐活动的截肢者的功能结果。还披露了一种特别适合快跑的假脚。

    假脚还可以包括一个用于在使用假脚期间响应于小腿胫的加力和卸力而限制小腿胫上端的运动范围的装置。在一个实施例中,该装置是活塞缸单元,该单元连接在小腿胫的上端和下端之间,并且包含至少一种加压流体以便限制运动范围,并且还使小腿胫压缩和膨胀期间储存或释放的能量衰减。

    在对所披露的本发明的实施方案和附图进行详细说明之后,可以更好地理解本发明的这些和其他目的、特征和优点。

    【附图说明】

    图1是表示本发明的假脚的脚龙骨和小腿胫的一个挨着一个的两个相邻的曲率半径R1和R2的示意图,它在沿箭头B的方向的步态中产生了脚的动态响应能力和运动输出,所述箭头方向垂直于连接两个半径的切线A。

    图2是类似于图1的示意图,不过它表示的以上两个半径的对齐在本发明的假脚中已经改变,以便提高该脚在步态中的动态响应能力和运动输出的水平分量,并且降低垂直分量,以便垂直于切线A1的箭头B1比在图1所示状态下更趋于水平。

    图3是本发明一种实施例的假脚的侧视图,它具有暂用假肢适配器和与它连接的暂用假肢,用于将脚固定在截肢者的腿下端。

    图4是具有图3所示暂用假肢适配器和暂用假肢的假脚的正视图。

    图5是图3和4所示实施方案的俯视图。

    图6是特别适合快跑的本发明的另一种脚龙骨的侧视图,它可用于本发明的假脚中。

    图7是图6所示脚龙骨的俯视图。

    图8是图3所示假脚的脚龙骨的仰视图,它提供了高低动态响应特征,以及双平面运动能力。

    图9是用于特别适合截肢者快跑的假脚的本发明其他脚龙骨的侧视图,所述截肢者具有脚的Symes截肢。

    图10是图9所示脚龙骨的俯视图。

    图11是用于Symes截肢者的本发明假脚的脚龙骨的另一种变化形式,该脚龙骨使所述假脚具有高低动态响应特征,以及双平面运动能力。

    图12是图11所示脚龙骨的俯视图。

    图13是本发明脚龙骨的侧视图,其中,龙骨渐缩部分的厚度从龙骨的脚中段部分到脚后段部分是逐渐缩小的。

    图14是另一种形式的脚龙骨的侧视图,其中,所述厚度从脚龙骨的脚中段部分同时向脚前段部分和脚后段部分缩小。

    图15是本发明假脚的从略微靠上的部分到抛物线形状的小腿胫前面的侧视图,所述小腿胫的厚度向其上端缩小。

    图16是类似于图15的侧视图,不过,它表示的是从中间同时向上端和下端缩小的另一种小腿胫。

    图17是用于所述假脚的C-形小腿胫的侧视图,该小腿胫的厚度从其中间部分同时向上端和下端变细。

    图18是用于所述假脚的C-形小腿胫的另一种例子的侧视图,所述小腿胫的厚度是从其中间部分向其上端逐渐缩小的。

    图19是用于所述假脚的S-形小腿胫的侧视图,其厚度是从中间部分向两端逐渐缩小的。

    图20是S形小腿胫的另一种例子,其厚度仅在其上端缩小。

    图21是用于本发明假脚的J形小腿胫的侧视图,它在每一端都变细。

    图22是类似于图21的示意图,不过,它表示的是其厚度仅在朝向其上端的方向逐渐缩小的J形小腿胫。

    图23是在本发明的可调整紧固结构中使用的用来将小腿胫连接在图3所示脚龙骨上的合金或塑料连接部件的略微靠上的侧视图。

    图24是用在图3-5所示假脚上的,也有用于图28和29的脚的,用于将脚连接在暂用假肢上以便连接在截肢者的腿上的暂用假肢适配器的侧面和略微偏向正面的示意图。

    图25是类似于图3的本发明的另一种假脚的侧视图,不过表示的是使用具有两个可释放紧固件的连接部件,所述紧固件纵向间隔地将所述部件分别连接在小腿胫和脚龙骨上。

    图26是图25所示连接部件的放大侧视图。

    图27是图25所示假脚的小腿胫的放大侧视图。

    图28是类似于图3和25中的那些的假脚的另一个实施例的侧视图,其中运动限制阻尼装置连接在小腿胫的相应端部之间,以便在使用假脚期间响应于小腿胫的加力和卸力而限制小腿胫上端的运动范围。

    图29是从图28所示的假脚的左侧所见的假脚正视图,表示了脚的小腿胫中的纵向槽。

    图30是从图28所示的假脚的右侧所见的假脚后视图。

    图31是图28的假脚的仰视图。

    图32是图28的假脚的小腿胫和脚龙骨的侧视图,表示了在使用假脚期间由小腿胫的加力和卸力产生的小腿胫上端的运动的实例。

    图33是类似于图28-32中的那些的假脚的又一个实施例的侧视图,所不同的是,使用了柔性带子来仅仅限制小腿胫上端的膨胀运动范围。

    图34是假脚的又一个实施例的侧视图,对齐连接装置位于连接到小腿胫上端的适配器上以便将脚固定到连接于截肢者的腿的假窝上,对齐连接装置可以相对于假窝进行脚的内侧-外侧和前部-后部的滑动调整。

    图35是从图34所示的脚的左侧所见的图34的假脚的正视图。

    图36是从图34所示的脚的右侧所见的图34的假脚的后视图。

    图37是本发明的假右脚的另一种脚龙骨的顶视图,其中脚的后端平行于正面,例如垂直于脚的纵向轴线A-A,并且近端脚后段部分的凹陷的纵向轴线F-F也垂直于纵向轴线A-A。

    图38是从脚龙骨的外侧的方向所见的图37的脚龙骨的侧视图。

    图39是类似于图37和38中的那些的本发明的附加脚龙骨的顶视图,其近端脚后段部分的凹陷的纵向轴线F’-F’与纵向轴线A-A成钝角△’,这使得脚后段部分的外侧支柱比内侧支柱实际上更长和柔性更大,以便在步态中有助于脚跟接触时的脚的翻转。

    图40是从脚龙骨的外侧所见的图39的脚龙骨的侧视图。

    【具体实施方式】

    参见附图,在图3-5所示实施方案中的假脚1包括纵向延伸的脚龙骨2,在其一端具有一个脚前段部分3,在其相反一端具有脚后段部分4,以及延伸于脚前段部分和脚后段部分之间的向上拱起的脚中段部分5。在实施例中,脚中段部分5在脚前段部分和脚后段部分之间的整个纵向范围上是向上凸出弯曲的。

    通过可释放的紧固件8和连接部件11,将脚1的直立的小腿胫6在其向下凸出的弯曲下端7的部分连接在所述龙骨脚中段部分5的接近的后部表面上。在本实施例中,紧固件8只是一个具有螺母和垫圈的螺栓,不过,也可以是可释放的夹子或其他紧固件,用于在紧固该紧固件时将小腿胫可靠地定位和保持在脚龙骨上。

    参见图8,在龙骨的脚中段部分5的接近的后表面上形成了一个纵向延伸的孔9。例如,如图15所示,在小腿胫6的弯曲的下端7上同样形成了一个纵向延伸的孔10。可释放的紧固件8延伸通过孔9和10,它们可以在图5所示的A-A的纵方向上调整小腿胫和脚龙骨相对彼此的对齐,此时,紧固件8是松开的或者释放的,以便将所述假脚的性能调整到适应特定的任务。因此,紧固件8、连接部件11和纵向延伸的孔9和10构成了一种可调整的紧固结构,用于将小腿胫连接在脚龙骨上,以便形成假脚的踝关节部位。

    从图1和2中可以看出调整小腿胫6和脚龙骨2的对齐的效果,其中,一个挨着一个的两个半径R1和R2表示脚龙骨中间部分5和小腿胫6的相邻的、相向的、拱起的或凸出的弯曲表面。当这样两个半径被认为是一个挨着另一个时,在图1中存在垂直于切线A的运动能力,在图2中存在垂直于切线A1的运动能力,所述切线是在以上两个半径之间画出的。这两个半径之间的相互关系决定了运动输出的方向。结果,脚1的动态响应力应用取决于该关系。凹陷的半径越大,动态响应能力越高。不过,半径越小,其反应越快。

    本发明的假脚上的小腿胫和脚龙骨的对齐能力使得所述半径能转移,以便影响所述脚在运动活动中的水平或垂直线性速度。例如,为了改善假脚1的水平线性速度能力,可以进行对齐的改变,以便影响小腿胫半径和脚龙骨半径的关系。就是说,为了改善水平线性速度特征,与图1相比,在图2中使得脚龙骨的底部半径R2比其起始位置更远。由此改变了动态响应特征,并且使得脚1的运动输出更趋向于水平方向,其结果是,可以通过施加相同的力获得更大的水平线性速度。

    截肢者通过锻炼可以找到满足他/她的需要的每一种活动的设定值,因为这些需要与水平和垂直线性速度相关。例如,跳高运动员和篮球运动员比短跑选手需要更高的垂直起跳高度。连接部件11是一个塑料或金属合金的对齐连接部件(参见图3,4和23),夹在连接的脚龙骨2和小腿胫6之间。可释放的紧固部件8延伸通过连接部件中的孔12。所述连接部件沿着小腿胫和所述龙骨脚中段部分5的接近的、后表面的连接部分延伸。

    小腿胫6的弯曲的下端7是抛物线形状的,该抛物线的最小曲率半径位于其下端,并且最初在所述抛物线形状上向前,而后向上延伸。如图3所示,通过小腿胫的弯曲形成一个面向后的凹陷。所述抛物线形状的优点是,它具有较高的动态响应特征,它能产生与较大的半径近端相关的改善的水平线性速度,同时在其下端具有较小的曲率半径,以便具有较快的反应特征。如图1和2所解释,所述抛物线形状在其上端的较大的曲率半径使得切线A随着对齐的改变更多地保持垂直,这能产生改善了的水平线性速度。

    抛物线形的小腿胫通过在其自身上压缩或者盘绕而对应于人的步态中的初始接触地面力。这使得抛物线曲线的半径更小,结果,对压缩的阻力减小了。与此相反,当抛物线形的小腿胫通过膨胀而对应于人的步态中的脚跟离开的地面反作用力(GRF)时,这使得抛物线曲线的半径更大,结果,其阻力比前述压缩阻力大的多。这些阻力与人的步态中的人的前部和后部小腿肌肉功能相关联。与人的脚平面初始接触时,较小的前部小腿肌肉群通过偏心收缩而对应于GRF,以便将脚放低到地面上并且产生了背屈运动。从脚平放到脚跟离开时,较大的后部小腿肌肉群通过偏心收缩而对应于GRF并且产生了较大的足底弯曲运动。这种运动的大小与小腿前部和后部肌肉群的尺寸差异有关。结果,在步态中后部小腿胫对背屈和足底弯曲运动的阻力被模仿了并且实现了正常的步态。抛物线曲线的可变阻力能力模仿了人的步态和奔跑及跳跃活动中的人的小腿肌肉功能,结果实现了假肢的效率。

    人类行走的速度大约是每小时3英里。4:00分钟一英里跑的运动员奔跑的速度是每小时12英里,并且10秒、100米短跑的运动员快跑的速度是每小时21英里。这是1∶4∶7的比例。当活动速度增大时,每项任务的水平分量更大。结果,假脚小腿胫的半径的大小可以预先确定。行走者比一英里跑的运动员和短跑运动员需要更小半径的抛物线形弯曲的小腿胫。短跑运动员需要7倍大的抛物线形弯曲的小腿胫。这种关系表示出了怎样对于行走者、跑步者和短跑运动员来确定抛物线半径。这是重要的,因为短跑运动员有更大的运动范围要求,并且他们的小腿胫必须更强以便承受与这种活动相关的增大的载荷。更宽或更大的抛物线小腿胫将是更平坦的曲线,它相当于更大的结构强度和更大运动范围。

    通过紧固件14将暂用假肢适配器13连接在小腿胫6的上端。再通过紧固件16将适配器13固定在暂用假肢15的下端。通过连接在腿的残肢上的支承结构(未示出)将暂用假肢15固定在截肢者的下肢上。

    在本实施例中,脚龙骨2的脚前段、脚中段和脚后段部分是由一片弹性材料构成的。例如,可以采用塑料性质的固体材料,它在地面反作用力的作用下偏转时,具有保持形状的特征。更具体地讲,所述脚龙骨以及小腿胫可以由具有与聚合物基质材料层压在一起的强化纤维的叠层复合材料制成。具体地讲,可以将与热固性环氧树脂层叠的高强度石墨或以Delran为商标使用的挤压塑料或脱气的聚氨酯共聚物用于生产脚龙骨以及生产小腿胫。与所述材料相关的功能质量提供了高强度以及轻质和最小蠕变。所述热固性环氧树脂是在真空条件下采用假肢行业标准层压的。可以将聚氨酯共聚物注入凹模中,并且可以对挤出的塑料制品进行机加工。所使用的每一种材料都具有它的优点和缺点。已经发现,用于脚龙骨和小腿胫的层压复合材料,也可优选是通过工业标准用具有优良机械膨胀质量的强化纤维和热塑性聚合物基质材料生产的热成型(预浸处理)层压的复合材料。这种类型的合适的市售复合材料是由马里兰州的Cytec Fiberite Inc.of Havre de Grace生产的CYLON。

    所述弹性材料与硬度、弹性和强度相关的物理特征都是由该材料的厚度决定的。对于相同密度的材料来说,较薄的材料比较厚的材料更容易偏转。所使用的材料,及其物理特征与假脚龙骨和小腿胫的柔性特征的硬度相关。在图3-5的实施例中,脚龙骨和小腿胫的厚度是均匀的或对称的,不过,如下文所述,沿所述部件长度方向的厚度可以改变,如通过使脚后段部位和脚前段部位变得更薄,并且对脚中段部位的偏转更敏感。

    为了提供具有高低动态响应能力的假脚1,将脚中段部分5制成具有纵向的弧形,以便该纵向弧形的内侧部分比所述纵向弧形的外侧部分具有更高的动态响应能力。为此,在所述实施例中,所述纵向弧形凹陷的内侧部分的半径比其外侧的半径大。

    脚中段部分5的纵向弓形凹陷的内侧与外侧半径尺寸之间的相互关系还被限定为脚龙骨2的前后足底面承重表面部位。图8中的5的前部上的线T1-T2代表着前部足底面承重部位。线P1-P2代表着5的后部足底承重表面。脚的外侧上的足底承重表面可以由T1-P1之间的距离代表。脚2的内侧上的足底承重表面可以由P2-T2之间的距离代表。T1-P1和P2-T2代表的距离确定了半径尺寸,结果,高低动态响应的相互关系被确定了并且可以通过聚合及分开这两条线T1-T2和P1-P2而受到影响。结果,在结构设计中可以确定高低动态响应。

    脚后段部分4的后端17是向上弯曲的弧形形状的,它能在后跟受到吸收冲击的压缩力引起的撞击期间,对地面的反作用力作出反应。由脚后段部分4形成的脚后跟具有一个后部外侧拐角18,它比内侧拐角19更靠后和更靠外侧,以便在步态的起始接触期促进脚后段外翻。脚前段部分3的前端20的形状是向上弯曲的弧形,以便模拟人的脚趾在步态的后站立期的后跟抬起脚趾离开的位置的背屈状态。在脚前段和脚后段的下面提供橡胶或泡沫垫53和54作为缓冲材料。

    由延伸通过其背面和足底面之间的脚前段部分3的内侧和外侧膨胀关节孔21和22产生了所述假脚的改善的双平面运动能力。膨胀关节23和24从相应一个孔向前延伸到所述脚前段部分的前部边缘,以便形成内侧的、中部的和外侧的膨胀支柱25-27,这些支柱产生了脚龙骨的脚前段部分的改善了的双平面运动能力。膨胀关节孔21和22在横向平面中是沿着图5中的线B-B定位的,它是与脚龙骨的纵轴线A-A呈35度的α角延伸的,内侧膨胀关节孔21比外侧膨胀关节孔22更靠前一些。

    图5中线B-B与纵向轴线A-A所成的角度α可以与15度一样小,并且仍然可以得出高低动态响应。当这个角度α改变时,图8的线T1-T2的角度Z也这样做。投影到矢状面上的膨胀关节孔21和22是以45度的角相对所述横向平面倾斜的,使所述孔的背面比足底面更靠前一些。通过这种结构,从可释放的紧固部件8到外侧膨胀关节孔22的距离比从可释放的紧固部件到内侧膨胀关节孔21的距离短,这样假脚1的外侧部分比内侧部分具有较短的脚趾杠杆,以便使脚中段部分具有高低动态响应能力。另外,从可释放的紧固件8到外侧足底承重表面的距离表示为T1线,它短于表示为线T2的从可释放的紧固件到内侧足底面承重表面的距离,使得假脚1的外侧部分比内侧部分具有更短的脚趾杆,以便能够得到脚中段部分的高低动态响应。

    脚龙骨2的脚后段部分4的前部还包括一个通过其背面和足底面之间的脚后段部分4延伸的膨胀关节孔28。膨胀关节29从孔28向后延伸到脚后段部分的后边缘,以便形成膨胀支柱30和31。由此产生了所述假脚的脚后段部分的改善了的双平面运动能力。

    如图3所示,脚龙骨2的脚中段部分5和脚前段部分3的背面形成了向上的凹陷32,这样它就模拟了人脚的第五个运动轴线(ray axis ofmotion)的功能。就是说,凹陷32具有一个纵轴线C-C,它与脚龙骨的纵轴线A-A呈15-35度的β角,其内侧部分比外侧更靠前一些,以便促进步态中的第五轴线运动,正如人脚的第二到第五跖部的倾斜的低速转动轴线(low gear axis of rotation)。

    当截肢者在不平坦的地方行走或者当运动员踏在脚的内侧或外侧时,就可以理解双平面运动能力的重要性。地面力矢量的方向从矢状的方向改变成具有向前的平面分量。地面会沿着与向外侧推所述脚相反的方向向内侧推所述脚。其结果是,小腿胫向内侧倾斜,并且其重量施加在所述脚龙骨的内侧结构上。针对这种压力,脚龙骨2的内侧膨胀关节支柱25和31发生背屈(向上偏转)并且翻转,而外侧膨胀关节支柱27和30向足底弯曲(向下偏转)并且翻转。这种运动试图将足底板的足底面放在地上(足底面等级)。

    参见图6和7,本发明的另一种脚龙骨33,特别是用于快跑的脚龙骨可以用在本发明的假脚上。在快跑时人体的重心变得只能是矢状面取向的。所述假脚不必具有低的动态响应特征。结果,不需要脚龙骨2的脚前段、脚中段凹陷部分的纵轴线具有15-35度的向外旋转方向。相反,所述凹陷的纵向轴线D-D方向会变得平行于正平面,如图6和7所示。这使得快跑的脚只能沿矢状的方向作出反应。另外,膨胀关节孔34和35在脚前段和脚中段部分沿线E-E的方向平行于正平面,即外侧孔35是向前运动的,并且与内侧孔34成一线且平行于所述正平面。脚龙骨33的前端36也是平行于所述正平面的。所述脚龙骨的后端脚跟部分37也是平行于所述正平面的。这种改变对所述假脚的多用途能力产生了负面影响。不过,其性能特征变得更能适合特殊任务。短跑脚龙骨33的另一种改变在所述脚的脚前段部分的脚趾轴线区,其中,脚龙骨2上的15度的背屈增加到脚龙骨33的25-40度的背屈。

    图9和10表示用于假脚的本发明的另一种脚龙骨38,这种假脚特别适用于经过脚的Symes截肢的截肢者快跑使用。为此,脚龙骨38的脚中段部分包括一个后部的向上的凹陷39,其中,所述小腿胫的弯曲的下端通过可释放的紧固件与所述脚龙骨连接。这种脚龙骨可以由所有下肢截肢者使用。脚龙骨38适应于Symes级截肢者相关的较长的残留肢体上。其性能特征是,在动态响应能力方面明显更快。其使用并非是这种级别的截肢所特有的。它可以用在所有胫骨和股骨截肢上。图11和12的实施例中的脚龙骨40还具有用于Symes截肢者的凹陷41,所述脚龙骨使所述假脚具有高低动态响应特征,以及双平面运动能力,类似于图3-5和8中的实施例。

    假脚1的若干种脚龙骨的功能特征与其形状和设计特征相关,因为它们与凹陷、突出、半径大小、膨胀、压缩和材料的物理特征相关,所有这些特征与在行走、跑和跳跃活动时对地面力的反作用相关。

    图13中的脚龙骨42类似于图3-5和8中的实施例,所不同的是,脚龙骨的厚度从脚中段部分到脚后段的后部是变小的。图14中的脚龙骨43的厚度,在其前端和后端是逐渐降低或缩小的。在图15中的小腿胫44和图16中的小腿胫45中示出了类似的厚度变化,所述小腿胫可用在假脚1上。脚龙骨和小腿胫的每一种设计,产生了不同的功能结果,因为这些功能结果与水平和垂直线性速度相关,它们是改善与各种运动相关的任务中的性能所特有的。多种小腿胫设计的能力和脚龙骨与小腿胫之间的设定的调整,产生了一种假脚小腿胫关系,它使得截肢者和/或假肢师具有调节假脚以便获得在多种运动和娱乐活动中的特定一项的最佳性能的能力。

    在图17-22中示出了用于假脚1的其他小腿胫,并且包括C形小腿胫46和47,S形小腿胫48和49,和J形小腿胫50和51。小腿胫的上端还可以具有垂直的末端,在该近端连接了一个锥形连接板。可以将一个阳锥体螺栓连接在小腿胫的垂直端并且穿过该垂直端。还可以在小腿胫的近端和远端的长形孔中提供塑料或铝填料,以便接收所述近端阳锥体和远端脚龙骨。本发明的假脚是一种模块系统,优选由标准化单元或尺寸制成,以便具有灵活性和多种用途。

    所有与跑道相关的奔跑活动都是沿逆时针方向进行的。本发明的另一种选择性特征,考虑到了作用在沿这种弯曲路径运动的脚上的力。当物体沿弯曲路径运动时,向心加速作用朝向旋转中心。牛顿第三定律适用于这种能量作用。这是一种相等并且相反的作用。因此,对于每一种“向心”力来说,存在一个“离心”力。向心力的作用朝向旋转中心,而它的反作用力,离心力的作用远离旋转中心。如果运动员绕跑道上的曲线奔跑的话,向心力将运动员拉向所述曲线中心,同时离心力将其拉向远离所述曲线中心。为了抵消倾向于使跑步者向外倾斜的离心力,跑步者身体向内倾斜。如果跑步者在跑道上的转动方向一直是逆时针方向的话,其左侧就是跑道的内侧。其结果是,根据本发明的特征,可以将左、右侧假脚小腿胫的左侧做的比右侧薄一些,并且可以改善截肢运动员的弯道表现。

    在若干种实施方案中,脚龙骨2,33,38,42,43都是29厘米长,在图3,4和5,以及在若干不同小腿胫和脚龙骨的示意图中与鞋1成比例。不过,技术人员可以理解的是,假脚的特定尺寸可以根据装有该脚的截肢者的体形、体重和其他特征而改变。

    下面将讨论在步态循环的行走和跑动站立期假脚1的操作。与惯性定律、加速度和作用力-反作用力定律相关的牛顿的三条运动定律,是脚2的运动动力学的基础。根据牛顿第三定律,即作用力-反作用力定律,可知地面推所述脚的推力与脚推地面的推力相等并且方向相反。这种力被称为地面反作用力。已经对人行走、奔跑和跳跃活动进行了多种科学研究。测力板研究告诉我们,在步态中出现了牛顿第三定律。通过上述研究,我们了解了地面推脚的方向。

    行走/奔跑活动的站立期,可以进一步划分成减速和加速期。当假脚触及地面时,脚向前推地面,而地面相等地沿相反的方向往回推脚,就是说地面向后推假脚。这种力使得所述假脚运动。行走和奔跑活动的站立期分析,始于图5和图18中的后部外侧拐角18的接触点,该拐角比脚的内侧部分更偏后和外侧一些。这种在开始接触时的偏移导致脚翻转,并且使小腿胫发生足底弯曲。小腿胫一直在寻找一种位置,以便通过其胫转移体重,例如,它倾向于使它长的垂直部件处在与地面力相反的位置。这正是向后移动足底弯曲以便与地面反作用力相反的原因,所述地面反作用力向后推所述脚。

    地面力使得小腿胫44、45、46、47、50和51利用移动后部的近端进行压缩。对于小腿胫48、49,小腿胫的远端1/2部分将根据远端凹陷定向进行压缩。如果远端凹陷响应于GRF而压缩,那么近端凹陷将会膨胀,并且整个小腿胫单元会向后移动。所述地面力导致小腿胫压缩,使其近端向后运动。小腿胫下部的紧凑半径压缩,模拟人踝关节足底弯曲,并且通过压缩将脚前段降低到地面上。与此同时,由脚后段部分4代表的龙骨的后部通过压缩向上压,表示为17。这两种压缩力都起着冲击吸收器的作用。一旦小腿胫停止移动到足底弯曲状态,并且由地面向后推脚,通过偏置的后部外侧后跟18进一步加强了这种冲击吸收,它能导致脚翻转,它同样起着冲击吸收器的作用。

    脚龙骨和小腿胫的压缩部件随后开始卸载,就是说寻找其原始形状,并且释放储存的能量——这会导致小腿胫的近端以加速的方式向前运动。当小腿胫接近其垂直起始状态时,地面力从向后推脚改变成垂直向上推脚。由于假脚具有后部和前部足底面重量承载区,并且这些区是通过非承重的长的弧形中间部分连接的,来自假肢的垂直方向的力会导致通过膨胀而对长的弧形中间部分加载。后部和前部承重表面是分开的。所述垂直方向的力保存在所述脚的长的弧形中间部分,此时地面力从垂直方向转移到向前方向。小腿胫膨胀,类似踝关节背屈。这会导致假脚旋转偏离前面的足底承重表面。重量卸载发生时,脚中段的长的弧形从膨胀改变,并寻找其初始形状,这产生了模拟的足底弯曲肌肉群的突然动作。这样将储存的垂直压缩力能量释放成改善了的膨胀能力。

    脚龙骨和小腿胫的长的弧形能抵抗其相应结构的膨胀。结果,限制了小腿胫向前推进,并且脚开始旋转偏离前部足底面的承重部位。所述脚龙骨的脚中段部分的膨胀具有与图3-5和8,图11和12,图13和14所示实施例的脚龙骨一样的高低响应能力。由于所述脚龙骨的脚中段脚前段过渡部分,相对脚的长轴线向外偏离15-35度,内侧长的弧形比外侧长的弧形更长。这一点是重要的,因为在正常脚上,在加速或减速期间,使用的是脚的内侧部分。

    所述假脚的较长的内侧弧形比外侧具有更高的动态响应特征。当以较慢的速度行走或跑动时,用上了外侧较短的脚趾杆。身体的重心通过正弦曲线的空间运动。它移动内侧、外侧、近端和远端。当以较慢的速度行走或跑动时,身体的重心移动的程度比快速行走或跑动时更趋向于内侧和外侧。另外,动量或惯性更低,并且克服较高动态响应能力的能力较低。本发明的假脚适合以应用机械的方式采用所述原理。

    另外,在人的步态循环的站立中期,身体的重心尽可能远地靠外侧。从站立中期到脚趾离开,身体的重心(BCG)从外侧向内侧移动。结果,身体的重心在脚龙骨2的外侧上方前进。首先(低速),当BCG向前前进时,它在脚龙骨2上向内侧移动(高速)。结果,假脚脚龙骨2具有自动传动的效果。也就是说,它开始时处于低速,截肢者每走一步它就向高速移动。

    当地面的力向前推假脚时,该假脚向后推地面,当脚后跟开始抬起时,脚中段部分的长的弧形的前部的轮廓将该向后方向的力垂直施加在其足底面上。这是施加这种力的最有效和最有用的方式。假脚的脚后段部分的后部会出现同样情况。其形状还使得在开始接触时向后的地面力与垂直于施加力的方向的脚龙骨的足底面相反。

    在脚后跟抬起的晚期,脚趾离开行走和奔跑运动,脚前段部分的轴线区背屈15-35度。这种向上延伸的弧度使得向前的地面力压迫脚的这一部位。对这种压缩力的阻力小于对发生在假脚步态和跑动的摆动期的膨胀和平滑过渡的阻力。在步态站立期的晚期,膨胀的小腿胫和膨胀的脚中段长的弧形释放其保存的能量,加强对截肢者身体重心的推力。

    人的步态中的主要推进机制中的一个被称为主动推进阶段。当脚跟抬起时,身体重量就位于支承肢体的前方,并且重心下降。当身体重量降到脚前段部分的弧形弯脚(rocker)上方时,图5,线C-C,有一个向下的加速度,这导致了身体接受的最高的垂直力。与脚跟抬起相关联的踝关节前面的腿的加速导致了相对地面的后部剪切作用。当压力中心向前移动到跖部头转动轴线时,效果是不断增大的背屈转矩。这产生了完全向前的降落状态,该状态产生了用于行走中的主要的前进力。在主动推进期间的有效踝关节功能的迹象是脚跟抬起、最小的连接运动以及几乎中性的踝关节位置。对于脚跟抬起的正常顺序来说,稳定的脚中段部分是必要的。

    在前面提到过的几个实施方案中,脚龙骨的脚后段和脚前段部分的后部结合了膨胀关节孔和膨胀关节支柱。所述膨胀关节孔的方向起着斜接铰链的作用,并且改善了双平面运动能力,以便改善在不平坦的地方行走时脚的足底面的总体接触特征。

    图9-12所示的Symes脚龙骨的动态响应能力明显不同,因为这种能力与行走、奔跑和跳跃活动相关。所述脚龙骨在4个不同方面有所差别。其中包括在脚中段部分的临近的后部存在一个凹陷,以便能比平面更好地适应Symes远端残肢形状。该凹陷还将脚龙骨的高度降低,这适应于与Symes级截肢者相关的较长残肢。所述对齐凹陷需要弧形脚龙骨中间部分的相应的前部和后部半径更深入并且尺寸更小。结果,所有脚中段长弧半径和脚后段半径更紧凑并且更小。这明显影响了动态响应特征。较小的半径产生了较低的动态响应潜力。不过,所述假脚对上述所有行走、奔跑和跳跃的地面力做出更快速的反应。结果得到具有较低动态响应的更快的脚。

    使用本发明的假脚,通过对齐改变可以获得改善了的任务专一性运动性能,因为所述对齐改变可以影响每项运动的垂直和水平分量。所述人脚是多功能单元,它能行走、奔跑和跳跃。另一方面,人的胫骨腓骨小腿胫结构不是多功能单位。它是一种简单的杠杆,它在行走、奔跑和跳跃活动中平行于它的纵向近端-远端方向施加它的力。它是一种不可压缩的结构,并且不具有保存能量的潜力。另一方面,本发明的假脚具有动态响应能力,因为这种动态响应能力与运动行走、奔跑和跳跃活动的水平和垂直线性速度分量相关,并且优于人类胫骨和腓骨。结果,存在改善截肢者运动表现的可能性。为此,根据本发明,松开了紧固件8,并且沿脚龙骨的纵方向调整了小腿胫和脚龙骨相对彼此的对齐。这种变化如图1和2所示。然后用紧固件8将小腿胫固定在脚龙骨的调整位置上。在此调节期间,紧固部件8的螺栓分别相对脚龙骨和小腿胫上的相对的、较长的、纵向延伸的孔9和10中的一个或两个滑动。

    能改善跑步者脚中段冲击时使脚平面开始接触地面时的性能特征的对齐改变例如是这样一种改变,其中,脚龙骨相对小腿胫向前滑动,并且足底在所述小腿胫上弯曲。这种新的关系改善了奔跑的水平分量。就是说,小腿胫足底向脚弯曲,并且脚以脚平放状态与地面接触,与开始的脚后跟接触相反,地面马上向后推脚,而脚是向前推地面的。由此导致小腿胫快速向前(通过膨胀)和向下运动。通过膨胀产生动态响应力,该力阻碍小腿胫最初运动的方向。结果,脚在跖部足底表面承重部位上方转动。这导致所述脚龙骨的脚中段部分膨胀,它比压缩的阻力更大。小腿胫膨胀和脚中段部分膨胀的净效果是小腿胫的进一步的向前推进受到阻止,这会使得用户身体的膝盖膨胀器和臀部膨胀器以更有效的方式向前和向近端移动身体重心(即提高水平速度)。在这种情况下,比脚后跟脚趾跑步者的情况下更向前更向上,该脚后跟脚趾跑步者的小腿胫向前推进受到开始时比脚平底跑步者具有更大的背屈(垂直)的小腿胫的阻力更小。

    为了研究短跑脚的功能,对小腿胫和脚龙骨的对齐加以改变。所述脚龙骨的优点是其所有凹陷的纵轴线取向都是平行于正平面的。小腿胫是足底弯曲的,并且在脚龙骨上向后滑动。与平脚跑步者相比,这进一步降低了远端圆弧,例如,具有类似于图3-5和8所示的多用途脚龙骨。结果,在其改进的水平能力方面具有更大的水平运动势能和动态响应。

    短跑运动员具有较大的运动、力和动量(惯性)范围,动量是原动力。由于其站立期的减速时间短于加速时间,获得了较高的水平线性速度。这意味着在开始接触时,当脚趾接触地面,地面向后推脚,而脚向前推地面。与起始接触的脚平底跑步选手来比较,具有较大力和动量的小腿胫被强制产生更大的弯曲并向下运动。所述力的结果是,通过膨胀对脚的长的弧形凹陷加载,并且通过膨胀对小腿胫加载。所述膨胀力受到抵抗的程度大于所有其他以前提到过的与奔跑相关的力。结果,所述脚的动态响应能力与所施加的力成正比。人胫骨腓骨小腿胫反应只与能量力势能相关,它是一种直的结构,并且不能够储存能量。在短跑时,本发明假脚上的膨胀力大于所有其他以前提到过的与步行和奔跑相关的力。结果,与人类身体功能相比,所述脚的动态响应能力与所施加的力成正比,并且可以加强截肢运动者的运动性能。

    图25所示的假脚53类似于图3所示的假脚,所不同的是小腿胫和脚龙骨之间的可调整的紧固结构,以及用于与暂用假肢下端连接的小腿胫的上端的结构。在本实施例中,脚龙骨54通过塑料或合金连接部件56可调整地与小腿胫55连接。所述连接部件通过相应的可释放紧固件57和58与脚龙骨和小腿胫连接,所述紧固件在所述连接部件上在沿脚龙骨的纵向方向的方向上是彼此分离的。将连接部件连接在小腿胫上的紧固件58比连接脚龙骨和所述连接部件的紧固件57更靠后一些。通过以这种方式增加小腿胫的有效长度,可以提高小腿胫的动态响应能力。与其他实施例相同,与小腿胫和脚龙骨上纵向延伸的孔相配合进行了对齐改变。

    在小腿胫55上端设置一个长孔59,用于容纳暂用假肢15。一旦纳入所述孔中之后,就可以通过拧紧螺栓60和61将暂用假肢固定夹在小腿胫上,沿所述孔将小腿胫的自由的侧缘62和63拉在一起。通过松开所述螺栓可以方便地调整该暂用假肢连接,将暂用假肢相对小腿胫伸缩到需要的位置,并且通过张紧所述螺栓,重新将所述暂用假肢夹紧到所述调整状态。

    图28-32中表示的假脚70类似于图3-5、8、23和24以及图25-27中所表示的那些,但是它还包括脚上的小腿胫运动范围限制器和阻尼装置71,以便在截肢者使用脚的期间,利用小腿胫的加力和卸力,限制小腿胫上端的运动范围。在具有相对较长的小腿胫的假脚中,这一特征是特别有用的,其中穿戴者从事例如奔跑和跳跃的活动,这些活动在小腿颈中产生的力是穿戴者的体重的很多倍,例如,奔跑时是体重的5-7倍,而跳跃时是体重的11-13倍。相反,行走中产生的力只是体重的1-1 1/2倍。

    本实施例中的装置71是双向作用的活塞缸单元,其中加压的流体、气体例如空气或者液压液体通过相应的配装件73和74来提供。该装置具有两个可变控制器,一个用于压缩,一个用于膨胀,它们可以调整在加力和卸力时小腿胫压缩和膨胀中的小腿胫上端的允许运动范围。装置71还使小腿胫压缩和膨胀期间储存或释放的能量衰减。活塞缸装置71的相对端部连接到小腿胫的上端和脚的下部,并且优选在本实施例中,在枢转连接件75和76处连接到小腿胫的相应端部,该枢转连接件75和76优选是球接头。

    小腿胫压缩和膨胀时脚70的小腿胫72的上端的运动描述在图32中。小腿胫的大致抛物线形状使得在小腿胫加力和卸力时,通过小腿胫的压缩和膨胀,小腿胫上端可以相对于脚龙骨77和连接在其上的小腿胫的下端纵向移动,例如沿着图5和32中的方向A-A。因此,在图28-32的实施例中,得到了假脚的改善的动态响应能力。

    装置71不限于所述的活塞缸单元,而可以是另一种速度控制和/或运动限制装置。例如,可以想到,假脚的小腿胫上应用的运动限制阻尼装置71的后部范围可以是带有压缩和膨胀阶段控制的微处理器控制的液压单元,例如,现在用于控制人造膝关节的运动的那些。在这种情况下,提供了自带的传感器来读取和适应各人的运动。通过使用特殊的软件和PC,可以进行微调以使微处理器控制的液压单元适合于截肢者。每秒可以测量运动达到50次,保证了动态的步态尽可能与自然行走相类似。由于液压单元的响应性,它适合于广谱的下肢截肢者。载入单元内的锂离子电池提供了足够的能量以便操作液压单元达一整天。压缩阻力得以调整而与膨胀调整无关。多种集成的传感器使步态分析数据流向自带的微处理器,该微处理器每秒50次地自动调整单元的姿态和摆动阶段特征。

    装置71的这个微处理器控制的液压单元比机械式液压单元更具有响应性。电控压缩(足底弯曲)阀每秒调整50次。单元中的压缩阀在预摆动期间自动地完全打开。结果,在限定的区域内,以及在类似的条件下,该单元极易于以低速压弯。响应于每秒发送50次的微处理器命令,单元的伺服马达的速度使其能够非常快速地关闭压缩(足底弯曲)和膨胀背屈阀。当该阀几乎关闭时,单元的阻尼力就变得非常高,使得可以快速行走,甚至是奔跑。独特的假肢师可调的动态因素使得液压单元可以对于从慢速到快速的所有步态形式、快的步态速度和运动进行最优化。将微处理器控制的液压单元“调整”到个人的独特步态形式的这种能力使得可在假脚中得到很宽范围的步调,具有高的步态效率和舒适性。也就是说,使用微处理器液压单元作为装置71增强了活泼的截肢者使用假脚时所需的可变步调。

    图28-32中的假脚70的纵向延伸的脚龙骨77具有脚前段部分、脚中段部分和脚后段部分,像图3和25中一样。脚的小腿胫72通过带有两个可释放的紧固件79和80的连接部件78连接到脚龙骨上,这两个可释放的紧固件79和80纵向间隔开,分别将连接部件连接到小腿胫和脚龙骨上,如图25-27的实施例中一样。小腿胫72包括位于小腿胫各端中间的纵向延伸的膨胀槽81。膨胀关节孔82和83位于膨胀槽的端部处。脚龙骨的脚前段部分和脚后段部分也形成有相应的膨胀槽,如图29、30和31中所见。

    连接到截肢者的小腿残肢的假窝通过适配器85连接在小腿胫72的上端,该适配器85通过紧固件86和87固定在小腿胫的上端,如图中所示。适配器具有连接到连接板上的倒锥形的连接配装件88,该连接板连接到适配器的上表面。锥形配装件由从属的假窝上形状互补的窝形配装件所接纳,以便将假脚和假窝连接起来。这种形式的连接示于图34-36的实施例中。

    尽管图28-32的实施例中的运动限制阻尼装置71限制了小腿胫压缩和膨胀时小腿胫上端的运动范围,但是也可使用类似的装置,该类似装置只限制压缩和膨胀之一中的小腿胫上端的运动范围。图33的实施例中示出了运动限制阻尼装置84,它只利用强制加载和卸载来限制小腿胫上端的膨胀。这里的装置84是柔性带,它允许带的有限的弹性延伸以及小腿胫的膨胀,而不会限制小腿胫上端在小腿胫的压缩载荷下的运动。

    图34-36表示了本发明的另一个小腿胫90,它可以与图28-32的假脚的脚龙骨77一起使用,或者与本文所述的其他的脚龙骨之一一起使用。小腿胫90具有大致抛物线的形状,其最小曲率半径位于下端处且向上延伸,并且最初向前延伸,在其近末端延伸成为相对较大的半径。面向后的凹陷由图34中所示的小腿胫的的弯曲形成。小腿胫的远端具有纵向延伸的孔91,在紧固件79或80松开或释放时,该孔与连接部件78、可释放的紧固件79和80以及脚龙骨上的纵向延伸的孔一起可以调整小腿胫和脚龙骨相对彼此沿纵向的对齐,从而调整假脚对于特定任务的性能。

    小腿胫90的远端更加急剧地弯曲,例如,比图28-32中的小腿胫72具有更小的曲率半径,并且在较短的纵向距离上向上和向前延伸。这种小腿胫形状对装饰更加有利。也就是说,其远端位于踝关节部位中更多,其中假脚的人脚形外罩的内侧和外侧的平衡棒可以正常地定位。小腿胫更好地隐藏在假脚外罩中。其功能特征是,尽管它比带有较宽抛物线例如上述较长的曲率半径的小腿胫具有更低的动态响应能力,但是它对初始接触的地面反作用力响应更快。因此,那些利用假脚奔跑和跳跃的活跃的人将通过使用较宽抛物线或提供较大水平速度的曲率半径而获得利益。

    图34-36的小腿胫90还包括位于塑料或者金属适配器93和固定到使用者的腿残肢上的假窝96的下端中间的对齐连接装置92,该适配器93通过紧固件94和95连接到小腿胫的上端。例如,使用者可以是膝上或者膝下的截肢者。对齐连接装置包括一对滑动件97和98,这对滑动件彼此成直角布置并且处于平行于地面的平面中。每个滑动件的部件的相对位置可以通过松开带螺纹的紧固件99以便调整相应的滑动件97和98来调整,从而改变假窝相对于假脚的小腿胫和脚龙骨的相对方位。在假脚的步态的站立阶段中,支承着装置92的适配器93的顶部优选平行于地面。

    装置92的上部滑动件98的顶部具有固定在其上的倒锥形的配装件101,该配装件101通过带螺纹的紧固件103可调整地夹在假窝96上相对应的配装件102中。配装件101和102之间的这种连接可以进行假窝和脚之间的角度变化的弯曲/延伸以及外展/内收。装置92的滑动件可以进行内侧-外侧以及前部-后部的线性滑动调整。因此,装置92是对齐固定件,它允许假窝沿所有的方向移动,这影响了地面反作用力怎样与小腿胫和脚龙骨的机械结构产生响应。

    图37和38中的脚龙骨110以及图39和40的脚龙骨120是可以用于本发明的假脚中的脚龙骨的其他的实施例。这些脚龙骨用于右脚并且除了脚后段部分以外具有相类似的结构。两个脚龙骨的内侧和外侧是相同的形状。脚龙骨110在脚后段部分中成矢状切开,相同的外侧和内侧膨胀支柱111和112通过纵向延伸的膨胀关节或槽113分开。脚龙骨110的后端脚跟部位114平行于正面,例如,垂直于脚龙骨的纵向轴线A-A。类似地,脚龙骨的脚后段部分的背侧凹陷115的纵向轴线F-F平行于正面,例如,与纵向轴线A-A成直角,即,角△是90°。

    与脚龙骨110相比,脚龙骨120没有在脚后段部位中作矢状切割,而是这样切割其脚后段部分的背侧凹陷,使得凹陷的纵向轴线F’-F’偏斜地横截于正面,例如,使得其与纵向轴线A-A所成的钝角△’优选为110-125°,外侧比内侧更靠前。背侧凹陷的这种定向使得外侧膨胀支柱122在较大的长度上薄于内侧膨胀支柱123,由此实际上比支柱123更长且柔性更大。柔性的这种增大使得脚后段部分倾向于通过翻转而对初始接触的地面反作用力起响应,这是吸收震动的机理。在步态中,这有助于通过脚龙骨的脚后段部分有效地传递身体重心的力,从而获得更正常的步态形式。

    对实施例的说明到此结束。尽管本发明已经结合多种说明性实施例进行了说明,应当理解的是,本领域技术人员可以构思出多种其他的改进和实施方案,这些改进和实施方案属于本发明原理的构思和范围。例如,本发明假脚上的小腿胫的下端,不局限于抛物线形的或大体上为抛物线形的,而可以是其他向下突出的、曲线形状的,以便当它与脚龙骨连接形成所述脚的踝关节部位时,产生脚的需要的运动输出。若干种实施例的相应一种的各种特征可以在其他实施例中使用。更具体地讲,在不超出本发明构思的前提下,在上述说明、附图、和所附权利要求书的范围内的对本发明组合结构的组成部件和/或布置的合理的改变和改进是可行的。除了对组成部件和/或布置的改变和改进之外,其他用途对本领域技术人员来说也是显而易见的。

具有可调整的性能的假脚.pdf_第1页
第1页 / 共41页
具有可调整的性能的假脚.pdf_第2页
第2页 / 共41页
具有可调整的性能的假脚.pdf_第3页
第3页 / 共41页
点击查看更多>>
资源描述

《具有可调整的性能的假脚.pdf》由会员分享,可在线阅读,更多相关《具有可调整的性能的假脚.pdf(41页珍藏版)》请在专利查询网上搜索。

一种假脚(70),包括脚龙骨(71)和与脚龙骨连接的小腿胫(72),以便形成所述假脚的踝关节部位。所述脚龙骨具有脚前段部分和脚后段部分,以及一个向上拱起的、在脚前段部分和脚中段部分之间延伸的脚中段部分。所述小腿胫包括向下突出的弯曲下端,该下端在其一部分处通过可释放的紧固结构可调整地连接在所述脚龙骨上。小腿胫的上端在使用假脚期间可以响应于小腿胫的加力和卸力而在脚龙骨的纵向上移动。连接在小腿胫的各端之。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人类生活必需 > 医学或兽医学;卫生学


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1