用于处理表面的调整及温度控制的方法及设备 一、[发明所属的技术领域]
本发明大体上涉及半导体晶片上的结构制造,尤有关于化学机械平坦化的方法与设备、以及化学机械平坦化设备的处理表面。
二、[现有技术]
在半导体装置的制造中,半导体晶片上的集成电路的定义、乃其具有藉由形成彼此覆盖的多个叠层而产生的多层架构。由于不同的叠层系彼此沉积而覆盖,晶片的表面形貌可能变得不规则,且此未经修正地不规则性将随着其后的叠层而增加。化学机械平坦化(CMP)已发展成一种用于晶片表面的平坦化的制造、并用以实行包括研磨、抛光、晶片清洗、与蚀刻处理等附加制造。
一般而言,CMP制造乃涉及在一受控压力下、对一处理表面进行晶片的支撑与旋转。典型的CMP设备包括了线性研磨带处理系统,其中具有一处理表面的研磨带系支撑于两个以上的支轮或滚筒之间、后者系经由一旋转路径来推动研磨带、以展露出一平坦的处理表面、藉以铺放晶片。典型的晶片系由一晶片载具加以支撑与旋转,而在自身的环形轨道中前进的研磨带下侧则配置有一研磨机台。该机台提供一个使研磨带于其上前进的稳定表面,且晶片系铺放在机台所提供的稳定表面的研磨带处理表面上。
其他的CMP设备则包括了具有用于处理表面的环形研磨片配置的旋转式CMP处理机具,一类似于环形CMP处理工具有轨道式CMP处理工具、一次穿孔CMP处理工具、以及其他提供多个设备与配置、且一般来说系利用摩擦力来对用以制造集成电路或其他结构的半导体晶片的表面进行平坦化、研磨、抛光、清洗、或别种不同处理的CMP处理系统。
CMP处理系可包括使用不同程度的研磨料、化学物品、液体等等来达到摩擦力的最有效利用、以作为晶片表面的准备,且亦包括提供晶片的就地冲洗、以减少或移除CMP处理的残余物,以及在处理期间提供处理表面的清洗与调整、以维持处理过程的可控制性与稳定状态的几种设备。
为了达成并维持处理过程的可控制性与稳定状态,举例来说,例如温度、压力、与清洁状态(例如微粒的生成与过滤)等环境条件皆受到严格地监视与操纵、以达到最佳的处理状态。其他的制造变数、例如处理表面的旋转或其他种移动的速度、支撑晶片的载具的旋转速度、用以将晶片铺放于处理表面的压力数、及处理时间等等,亦受到相同的监视与操纵。在应用摩擦力的处理环境、例如CMP中,处理温度系显著地影响了晶片表面的移除速率,亦因此影响到达到精准程度的材料移除的处理时间。举例来说,无法于准确的材料移除时间点终止处理作业将可能导致过度研磨、刮痕、凹碟现象、以及其他此类晶片表面与结构制造的缺陷。
处理表面上的温度差异系依照处理程序及设备而大有不同。举例来说,线性研磨带CMP工具的处理表面便藉由处理过程的摩擦力、及藉由用以调整并启动研磨带的调整研磨片与圆盘的摩擦力来加热。冷却的要素系包括处理用剂、冲洗剂、以及当研磨带环绕着滚筒移动时、其处理环境的周遭温度。温度变化通常会影响半导体晶片的处理过程,且在处理期间当某些区域较其他区域传递较多温度变化时,亦对该半导体晶片的不同区域有不同的影响。
一些尝试维持处理表面的温度的公知技术系包含引入水蒸气以将处理表面加热至符合期望的处理温度,但是除了其他缺点以外,水蒸气亦无法对付跨越整个处理表面的温度变化。线性研磨带系统的调整方法的公知技术则系包含一移动于整个处理表面的扫动调整研磨片,但是扫动调整研磨器并无法补偿研磨带系统中的波动现象,且会引起额外的温度变化。
故所需者系为CMP工具中用以操纵及控制处理表面温度的方法、制造、与设备,藉以使半导体晶片的整个表面维持最佳及可控制的处理状态。
三、[发明内容]
大体而言,本发明系藉由提供方法、制造、与设备以达成、维持、并操纵用于CMP处理作业的处理表面的温度、来满足这些需求。本旭有可利用很多种方式加以实现,包括例如一种制造、一种设备、一种系统、一种装置、以及一种方法。本发明的几个实施例将叙述如下。
在一个实施例中,系揭示了一种CMP系统内、具有一第一滚筒、一第二滚筒、及环绕着第一与第二滚筒的线性研磨带的温度控制器。CMP系统的线性研磨带系横跨于第一边缘及第二边缘之间。温度控制器系包括一热能元件的阵列。阵列中的每个热能元件皆受到独立的控制。该热能元件的阵列系位于第一滚筒与第二滚筒之间、且系配置成与线性研磨带的背面表面接触。且该热能元件的阵列系延伸于线性研磨带的宽度的第一边缘与第二边缘之间。
在另一个实施例中,系揭示了一种CMP系统内、用以控制线性研磨带的温度的方法。CMP系统系包括一第一滚筒、第二滚筒、及环绕着第一与第二滚筒的线性研磨带。该线性研磨带系具有横跨第一边缘及第二边缘之间的宽度,且更具有一外部处理表面及一内部处理表面。用以控制线性研磨带的温度的方法、系包括将热能施加于线性研磨带的内部表面的一排线性阵列的位置上。该线性阵列的位置系由线性研磨带的第一边缘横跨至其第二边缘。该方法且更包括在各线性阵列的位置上、控制其所施加的热能的程度。
在又一个实施例中,系揭示了一种准备表面调整器。准备表面调整器系在一CMP系统中,后者乃包括了一第一滚筒、一第二滚筒、及环绕着第一与第二滚筒的线性研磨带。该线性研磨带系具有横跨第一边缘及第二边缘之间的宽度,且具有与第一及第二滚筒与一准备表面接触的一内部表面。该准备表面调整器系包括一调整圆盘的阵列、用以调整线性研磨带的外部准备表面。每个调整圆盘皆受到独立的控制。该调整圆盘的阵列系延伸于线性研磨带宽度的第一边缘与第二边缘之间。
在又另一个实施例中,系揭示了一种用以调整线性研磨带的外部处理表面的方法。线性研磨带的外部处理表面系在一CMP系统中,后者系具有一第一滚筒及一第二滚筒。该线性研磨带系环绕第一及第二滚筒,且具有横跨第一边缘及第二边缘之间的宽度。且该线性研磨带亦包括一内部表面。用以调整线性研磨带的外部处理表面的方法、乃包括将多个独立的调整元件沿着延伸于线性研磨带的第一边缘与第二边缘的一线性路径而散布。该方法更包括将各多个独立的调整元件沿着该线性路径而铺放在外部处理表面上。
本发明具有许多优点。一个本发明中值得注意的益处及优点、系为晶片的临界边缘区域将可藉由在整个处理表面上维持较精准的处理表面温度的控制及操纵、而使所遭受的缺陷问题及处理的不规则性变少。
另一个益处系为可藉由降低处理工具的热机时间、及降低或消除当晶片裸片(wafer blank)欲进入线上处理阶段所需的预热动作、而获得较佳的制造效率,并因而使晶片处理制造拥有更大的生产能力。
另一个额外的益处系为较准确的处理作业控制将有助于较复杂的结构的制造、以及由一晶片至另一晶片或一批晶片至另一批晶片的一贯化制造。
再另一个优点则系为个别的处理工具可拥有较长的处理时间,且处理工具的消耗品、例如处理研磨带亦可拥有较长的寿命。本发明的经过改良的处理表面调整系统乃可维持较公知技术的时间周期为长的处理表面,并使被调整及启动的处理表面在维修保养之间维持较长的处理时间。
本发明的其他优点将可藉由以下的详细叙述、连同附图及对本发明的理念范例的说明、而更加清楚。
四、[实施方式]
此处所揭示者系为用于处理表面的温度控制与调整的发明。在较佳的实施例中,处理表面的温度控制系包括横跨于处理表面的个别加热元件、用以控制、操纵、及维持符合期望的处理表面的温度曲线。处理表面的调整则由一调整圆盘的阵列及其相关的冲洗与蓟头刷(thistle brush)单元所提供、以使处理表面达到有效的、可控制的、以及完整的调整与维持。在以下的叙述中,提出了许多具体详述、以提供对本发明的彻底了解。然而,熟悉本技术的人士当可了解,本发明可在未使用这些详述的部分或全部的情况下实施。在其他例子中,为不使本发明受到不必要的混淆、将不对已熟知的制造作业进行详细描述。
图1系显示典型CMP处理系统的一线性研磨带处理表面10。处理研磨带12系包括以方向14环绕着滚筒(未图示)而移动的刚性及挠性处理研磨带12。一晶片16通常系以一压力而铺放在处理研磨带12的中央区域上、且举例来说系以方向18作旋转。在图1中,所示之处理研磨带12乃被分割成跨越整个处理研磨带12的表面的10个区段20a至20j,而所示的晶片16则被分割成由晶片16的边缘区域22a至晶片16的中心区域22d的4个区域22a至22d。处理区段20a至20j以及晶片区域22a至22d及仅供示范,并且在使用其他的制造配置、处理设备、及半导体晶片尺寸等等之时,可藉由较多或较少的区段及区域来表示。
当晶片16以方向18作旋转时,晶片区域22a至22d的旋转将穿过多个处理研磨带区段20a至20j。由图1可察知,边缘区域22a相较于中心区域22d而言、其移动将较穿过更多的处理研磨带区段20a至20j。当中心区域移经处理研磨带区段20e与20f时,边缘区域22a的移动已穿过处理研磨带区段20b、20c、20d、20e、20f、20g、20h、与20i。中间部分的处理研磨带区段20e与20f接触到晶片表面区域的次数将比处理研磨带区段20b与20i大上三倍。再者,跨越处理研磨带区段20a至20j的温度变化、其对移经较多处理研磨带区段20b至20i的晶片边缘区域22a的影响、比起仅移经处理研磨带区段20e与20f的晶片中心区域22d来得更为显著。
本发明的一个实施例提出了至少两种处理表面的温度控制的实施态样,在处理工具的热机阶段,一相当冰冷的处理表面将被旋转或者作其他方式的移动,且相当冰冷的处理用研浆、化学物品、或其他的处理液体将被引入处理的环境中。当最初欲处理的晶片被铺放于处理表面上时,摩擦力的接触会开始暖化处理表面。由图1可察知,由于中央处理区段20e与20f与晶片16之间发生摩擦力接触的表面区域较大、其暖化的速度将比外部的处理区段20a至20d与20g至20j更快。因此,温度变化在最初处理时便已开始,且在处理工具的运作期间、温度变化仍持续发生于处理研磨带21的整个表面上。由于边缘区域22a在处理研磨带区段20b与20c内与处理研磨带12有最小的接触表面区域、故其所产生的温度增加量亦为最小,且边缘区域22a穿越了最多区段、故其移动过程将经过为数最多的温度变化。
图2A显示了温度32对晶片数34的圆表30、其系代表在处理工具最初的热机作业时、处理表面的平均温度。图表30示系说明平均处理表面温度36的范例,且其沿未反映出跨越整个已识别的处理区段(见图1)的温度变化。在图2A中,平均处理温度36在第一片晶片40期间系显示出稳定、非线性的上升,并维持提升至所期望的处理温度38,而且大约在第五片晶片42时达到所期望的处理温度38。之后平均处理温度36将大致维持在所期望的处理温度38。
最初的温度上升乃为非线性,且如同图2A所示,即使达到了所期望的处理温度38、平均处理温度36仍会持续波动。将例如研浆或其他制造用化学物品等要素引入将降低初始的平均处理温度,并且在达到所期望的处理温度38之后、将反映在温度波动中。图2B系为一更详细的图表50、显示了在最初的晶片处理期间内所发生的非线性温度上升现象。
图表50系如同图2A一般、描绘了温度52对晶片数54间的关系。所示的平均处理温度56在第一片晶片60期间系为上升阶段,之后于第二片晶片62期间的再度上升的前下降。同样地,之后平均处理温度56又再度于第三片晶片64之前下降,并在第三片晶片56期间稳定地上升,在接下来的晶片之前下降,并继续着这种上升与下降的线图、直至达到所期望的处理温度58。
典型的处理作业导致平均处理温度56在最初的晶片处理期间的上升与下降,以及达到所期望的处理温度58之后的持续波动现象。在处理完成时,晶片乃由处理表面取出,并移除了由摩擦力所产生的热量。当下一片晶片铺放于处理表面上时,由摩擦力所产生的热量系反映于相对应的温度上升。另外,在某些制造的配置中,系在晶片表面上实施制造后的就地冲洗,且冲洗的液体乃用以冷却处理表面。通常,因为在处理工具最初的热机作业期间内、其温度波动十分剧烈,故基本上不可能达到一致且精准的晶片处理,也因此直到更多可接受的处理条件达到以前、前几片晶片的处理皆使用晶片裸片(wafer blank)、或又称为虚设晶片。然而如说明所述,亦仅达到平均处理温度,而温度变化则仍持续存在于整个处理表面的多个处理区段(见图1)上。
图3A为一侧视图、其系根据本发明的一个实施例来说明一背面加热单元70。背面加热单元70系配置有一调整器支撑板72、一加热元件外箱76、以及包含于加热元件外箱76内的多个个别的可控制加热元件78。此处所使用的加热元件系为传授热能的单元、用以增加、减少、或维持一测量温度。在本发明的一个实施例中,背面加热单元70的位置乃沿着处理研磨带12(见图1)的背面、或又可称为底面、藉以在整个处理研磨带12(见图1)上设置个别的可控制加热元件78、后者系可用于如图1所示的多个处理区段20a至20j的温度控制与管理。
图3B为一俯视图、其系根据本发明的一个实施例来说明图3A所示的背面加热单元70。背面加热单元70系横跨处理研磨带12(见图1)上、由处理研磨带的第一边缘区域74a至处理研磨带的第二边缘区域74b的宽度、其中并有包含个别的可控制加热元件78a至78j的加热元件外箱76。在一个实施例中,调整器支撑板72系附着于加热元件外箱76。以下将参考图5B与6对调整器支撑板72作更详细的描述。
如图3A与3B所说明,本发明的一个实施例系包括嵌入于加热元件外箱76的个别的可控制加热元件78a至78j,后者系横跨于处理研磨带12(见图1)上。在一个实施例中,个别的可控制加热元件78a至78j系装设于加热元件外箱76内的环氧化物或类似媒介物中、以使个别的可控制加热元件78a至78j具备加热元件外箱76的表面的外露表面高度。背面加热单元70的位置系紧邻处理研磨带12(见图1)的底面、以便使处理研磨带12(见图1)的背面在个别的可控制加热元件78a至78j的外露表面上移动。之后由个别的可控制加热元件78a至78j至处理区段20a至20j的热能传输便藉由热传导加以完成。在所说明的实施例中,系显示了10个个别的可控制加热元件78a至78j、以分别对应图1所说明的10个处理区段20a至20j。在其他的实施例中,可根据特定的处理表面上经过测量与校准的处理区段20a至20j(见图1)、来配置较多或较少的个别的可控制加热元件78a至78j。所说明的实施例则系为多个处理区段的范例。另外,应可了解个别的可控制加热元件78a至78j乃可藉由设置一用于监视、管理、与控制每个个别的可控制加热元件78a至78j的系统控制器(未图示)来加以控制。
回到图3A与3B,所示的研磨带行进方向80(图3A与3B两者共用)系跨越调整器支撑板72与其中嵌入了个别的可控制加热元件78a至78j的加热元件外箱76而移动。在典型的处理工具中,处理研磨带12(见图1)系以每分钟50英尺至每分钟400英尺的范围内的研磨带速度而移动,且处理研磨带12(见图1)乃由各种材料包括钢、合金、与胺甲酸乙酯等所构成。在本发明的一个实施例中,个别的可控制加热元件78a至78j的校准、系根据使用于特定处理研磨带12(见图1)的材料、以及处理研磨带12(见图1)在处理期间的旋转速度。在一个实施例中,于例如20a至20j(见图1)等所有已标示的处理区段内、将处理表面提升至符合期望的处理温度、其所期望的时间为20秒,但实际的时间乃可根据所载明的制造变数来调整。且在一个实施例中,制造变数例如处理研磨带12(见图1)的组成成分、处理研磨带12(见图1)的旋转速度、与制造的种类(例如金属CMP、介电质CMP、阻障移除、研磨、抛光、及清洗等等)、以及其他变数等皆经过事先校准,以使用于个别的可控制加热元件78a至78j的系统控制器(未图示)能够操纵或者管理每个个别的可控制加热元件78a至78j的作用温度、来尽快达到整个处理表面所期望的处理温度、并于处理期间内维持该温度。
图4系根据本发明的一个实施例、而对整个处理研磨带12的处理区段20a至20j所描绘的温度图90。温度图90显示了每个处理区段20a至20j中所达到的温度92、其起因系为经由晶片处理的摩擦力94接触而产生的热能、以及经由个别的可控制加热元件78a至78j(见图3B)而施加的热能。如图4所说明,经由晶片处理的摩擦力94接触而产生的热能在外部的处理区段(例如20a、20b、20i与20j)中可被忽略,而在内部的处理区段(例如20e与20f)则有相当幅度的上升,并且与图1所述、关于晶片表面区域乃与处理研磨带12中央部分的处理表面有最大数量的摩擦力接触等事实相符。线条96系根据本发明的一个实施例、代表了由个别的可控制加热元件78a至78j(见图3B)所施加的热能。可了解的是,有较多数量的热能施加于外部的处理区段(例如20a、20b、20i与20j)而与较少数量的热能施加于内部的处理区段(例如20e与20f)。由此所产生的有效温度98系反映每个处理区段20a与20j的温度,而非整个处理表面的平均温度。
在本发明的一个实施例中,比由摩擦力接触所产生者较高或较低的温度、是符合特定制造作业的期望。根据特定的制造与处理材料、由摩擦力接触所产生的温度可由图4所示的94而获得了解。在一个实施例中,所期望的是较高的处理温度。线条102显示了理论上由每个个别的可控制加热元件78a至78j(见图3A)所施加、用以达成如线条100所示的有效处理温度的热能。同样地,可产生一张图(未显示)来说明用以达成较低的有效处理温度所需要施加的热能。在此实施例中,可藉由实现一较小的或类似的冷却元件来进行表面的冷却。
一般而言,处理温度的增加将使材料由一基板表面移除的速率增加,且在某些应用中,移除速率的增加是符合对生产能力增加的期望。然而,在某些应用中,移除的精准度是为最主要的考量,也因而整体处理温度的降低乃是所期望的目标。根据本发明的一个实施例,由摩擦力接触所产生的处理温度的增加,以及由摩擦力接触所产生的处理温度的降低,两者皆可藉由对每个个别的可控制加热元件78a至78j所施加热能的操纵与管理来加以建立并维持。此外,本发明的一个实施例亦在整个处理表面上提供实质上相同的热能分布,并且根本地消除了以上加图1所述的热能变化。在一个实施例中,根本地消除热能变化对于有效地使用整个用于结构制造的晶片表面而言特别有用,尤其是在关键的边缘区域内。相同的热能分布可增加整个晶片表面处理的一致性与可控制性,从而增加晶片处理的稳定度。
在本发明的一个实施例中,可对个别的可控制加热元件78a至78j(见图3B)的使用加以配置、以便在处理研浆或其他用剂的施加、或晶片冲洗等等期间内、对晶片之间进行表面冷却时所发生的此类变化加以补偿。举例来说,在铜的CMP作业中,典型的晶片后段处理作业是在晶片移除之前就地完成。研磨后的冲洗可有效地冷却处理表面,且在某些应用中可多至20%。本发明的一个实施例是根据特定处理作业的晶片处理周期加以校准与实现、以补偿处理表面在这种环境下的冷却。可了解的是,晶片之间在引入处理研浆或其他用剂的期间、制造后的清洗期间等、其处理表面的冷却补偿可相当程度地降低或消除处理温度的波动现象、以及以上如图2A与2B所描述及说明的温度上升与下降。这种温度变化的减少或消除,特别在处理工具的热机作业期间,可减少或消除用于工具热机的裸片晶片数、并增加制造效率与生产能力。
如上所述,跨越整个处理表面的温度变化的促成要素之一、是为研磨或研磨片调整器扫动过整个处理表面的摩擦力接触所产生的热能。在典型的公知技术的处理配置中,一调整圆盘是扫动过整个处理表面、以刮除多余的制造残余物、并提供某些处理表面的活化处理。图5A显示了研磨带调整的典型配置方式。依方向118移动的处理研磨带12是由面对处理表面、用以支撑晶片的晶片载具110下方通过。为解释得更清晰,将不过位于处理研磨带12对面一侧的晶片16与晶片载具110正下方的机台进行说明。
图5A亦显示了一附着于调整研磨片载具112的调整研磨片114。在典型的配置中,调整研磨片载具112是使调整研磨片114在晶片处理期间内扫动过整个处理研磨带12,一般而言是由处理研磨带12的一个边缘跨越该处理研磨带12而移动至处理研磨带12的另一个边缘,并再回到原处、以于晶片处理期间内形成连续的循环动作。除了提供有限的处理表面调整外,产生热能至处理表面的摩擦力接触,是由一个边缘扫动至另一边再回到原处、因而在处理表面上产生了移动的温度变化。另外,由于处理研磨带12上的波动效应,调整研磨片114的典型尺寸使其特别容易受到无效、或间歇性无效的影响。当处理研磨带12移动于滚筒(未图示)之间时,将有波动效应出现、藉以使研磨带的旋转动作产生跟着研磨带移动的下陷与隆起,类似波浪的动作。在图5A中,位置点116是说明一处理研磨带12中的的波浪动作。当一波浪靠近并接触到调整研磨片114时,处理表面可能粘结到靠近调整研磨片之处,然后完全地由调整研磨片的表面掉落,而产生无效的调整、以及不一致的摩擦力接触的热能施加。
在本发明的一个实施例中,为了更有效且更有效率的CMP处理、处理表面的调整作业是与处理表面的温度控制相结合。图5B为一侧视图、其是显示根据本发明的一个实施例的调整研磨片单元120。如图5B所说明,调整研磨片单元120包括了调整圆盘122、出口喷嘴与圆盘冲洗头124、以及蓟头刷出口126。在本发明的一个实施例中,调整研磨片单元120是由背面加热单元70以直接面对的方式装设于处理研磨带12的对面一侧。因此调整研磨片单元120的位置乃紧邻且倚靠着处理研磨带12的处理表面。
根据本发明的一个实施例,调整圆盘122的位置是在调整器支撑板72的对面。调整圆盘是配置成可在调整时对处理研磨带12施加压力,而调整器支撑板72的位置则提供可施加一致且可控制的力的支撑。为了使处理研磨带12上的波浪效应减到最小,并有效率地利用调整圆盘122的支撑硬体,调整研磨片单元120亦包括了出口喷嘴与圆盘冲洗头124,后者在一个实施例中的配置是为冲洗掉处理表面上任何由调整圆盘122松脱而产生的残余物、同时冲洗调整圆盘122以防止可能造成调整圆盘122无效的残余物的生成。另外,蓟头刷出口126则在调整与冲洗之后提供处理表面最后的刮除与活化处理。
图6显示了具有调整圆盘122的配置的线性研磨带处理系统132。所示的晶片16是在处理研磨带12上,而处理研磨带12是依方向130而移动。处理区段20a至20j的显示则是供参考用。在本发明的一个实施例中,调整研磨片单元120包括了多个配置成棋盘型态的调整圆盘122、以确保处理表面获得充分而完整的调整。在一个实施例中,该棋盘型态基本上是横跨处理研磨带12、而形成一调整圆盘122的线性阵列。所示的多个出口喷嘴与圆盘冲洗头单元124是紧随在多个调整圆盘122旁(依处理研磨带的行进方向130移动),而多个蓟头刷出口126则用以提供处理表面的最后刮除与表面活化处理。而在一个实施例中,个别的调整圆盘122所受的压力是经过控制而准确地实现、而其乃根据所使用的制造操作方式与处理用剂。在一个实施例中,每个调整圆盘122所受的压力是控制在大约0.1PSI至大约大于2.0PSI。应注意的是个别的压力控制乃为提供较好的处理表面调整、使其调节与改变可符合所期望者或处理条件的规定。可由图6了解的是,由于有较大的晶片12的表面区域与处理表面相接触、中央处理区段(例如20e与20f)可能需要较多或较少的压力以及/或者处理表面调整。外部处理区段(例如20a至20c、20h至20j)则较少或几乎没有与晶片12的表面区域接触,因此导致了不同的处理表面调整需求。在本发明的一个实施例中,经由处理区段20a至20j的不同的处理表面调整需求、乃可藉由具有跨越整个处理表面的棋盘型态的调整圆盘122所提供的完整覆盖范围、以及每个调整圆盘122的个别的可控制压力、而加以有效地管理。
在本发明的一个实施例中,出口喷嘴与圆盘冲洗头单元124是藉由清水或清洁剂供应器(未图示)加以供应,且所分配的喷嘴容量是可个别加以控制。在某些处理作业中,晶片12与中央处理区段(例如20e与20f)的接触所增加的表面区域将改变处理表面的调整与清洗需求、而改变相对应的出口喷嘴与圆盘冲洗头单元124的喷嘴容量将可提供最有效且稳定的晶片表面清洗。在本发明的一个实施例中,每个出口喷嘴与圆盘冲洗头单元124皆可经由所分配的容量与所分配的喷嘴压力而加以控制。
图7是根据本发明的几个实施例、显示了具有背面加热单元70与调整研磨片单元120的配置的CMP线性研磨带处理系统140。如图7所示,处理研磨带12是装设于滚筒142a与142b上并环绕之。处理研磨带12的旋转方向是以箭头144表示。背面加热单元70与调整研磨片单元120乃根据本发明的几个实施例而位于多个位置与配置之上。在图7中,是说明了两个位置的实施例。当研磨带以所示的方向144移动时,其中一个实施例的处理表面将在出口喷嘴与圆盘冲洗头单元124及蓟头刷出口126作横向移动之前、跨越整个调整圆盘122而移动。因此,背面加热单元70的位置乃使调整器支撑板72面对调整圆盘122、藉以提供所需要的支撑。调整研磨片单元120与背面加热单元70是位于图7所示的CMP线性研磨带处理系统140的底部区域内的两个不同位置上,并具有上述的配置情形。
在CMP线性研磨带处理系统140的上部区域内,背面加热单元70与调整研磨片单元120的个别零组件配置是根据本发明的另一个实施例。在所说明的实施例中,其中包含有多个个别的加热元件78的加热元件外箱76、其定位恰在CMP线性研磨带处理系统140的处理区域之前。温度的控制与操纵则恰好在此实施例的处理之前生效。调整器支撑板72与调整研磨片单元120是为于处理研磨带12的对面一侧,并紧随着CMP线性研磨带处理系统140的处理区域。在此方式中,是说明了所述的背面加热单元70与调整研磨片单元120的个别零组可根据制造的期望与条件来加以定位与实现。
图8为一流程图150、其是根据本发明的一个实施例来说明处理表面的温度控制方法的操作项目。该方法始于操作152、其是设置一用于晶片处理的处理表面。在一个实施例中,该处理表面是为晶片的CMP处理所使用的线性研磨带。
该方法继续进行操作154、其中是提供多个热能元件进行热能传导。在一个实施例中,多个热能元件是配置成一个横跨处理表面的阵列。而在一个实施例中,该处理表面则为晶片的CMP处理所使用的线性研磨带、且该热能单元的阵列是由研磨带的一个边缘至线性研磨带的另一个边缘而横跨于线性研磨带上。
接着,在操作156中,该方法是将多个传导热能的热能单元配置在用于晶片处理的表面上。在本发明的一个实施例中,多个热能单元是包含于一加热元件外箱中,而后者的配置方式、是为覆盖一横跨处理表面的阵列配置中的各多个热能元件。在一个实施例中,多个热能元件每一个皆装设于环氧化物或类似的媒介物中、以使每个热能元件的本体皆在加热元件外箱内部,而热能转换表面是露出且与加热元件外箱的表面等高。然后由每个热能元件传递的热能是转换至处理表面的背面、从而传递热能以加热或冷却处理表面。
该方法紧接着继续进行操作158、其中热能的引入是使用多个热能元件、以达到整个晶片的处理表面所期望的温度曲线。在一个实施例中,处理表面是分割成多个处理区段,且每个区段皆具有一可识别的温度曲线。热能的引入是使用热能元件、以在每个处理区段内准确地控制并维持所期望的温度、从而在整个晶片的处理表面达到所期望的温度曲线。在一个实施例中,是施加热能以提升处理区段的温度。在一个实施例中,则是对热能进行操纵、以降低处理区段的温度。而在一个实施例中,更对热能进行操纵或管理、藉以提升、降低、或以其某些组合的方式处理多个处理区段的温度。
该方法又包括操作160、于其中晶片是经过处理、而整个晶片处理表面所期望的温度曲线的维持、则藉由多个热能元件的使用来操纵所引入的热能。在一个实施例中,处理晶片的表面在各多个处理区段内皆受到监视,而热能的操纵则使用多个热能单元的每个热能单元、以提升或降低每个处理区段的温度、从而维持整个晶片处理表面所期望的温度曲线。在一个实施例中,是在处理工具的晶片处理期间内维持所期望的温度曲线,而整个方法便告完成。
虽然为了清楚了解的目的、上述发明是已针对许多细节进行叙述,但显而易见的是在随附的权利要求内将可进行某种程度的变更与修改。因此,本实施例应被视为举例性而非限制性者,且本发明不应受限于文中的细节描述,并可在随附的权利要求及其等效范围内进行修改。
【附图说明】
藉由以下连同附图的详细叙述、将对本发明有清楚的了解,其中同样的参考数字乃表示同样的结构元件。
图1显示了典型CMP处理系统的线性研磨带的处理表面;
图2A显示了一温度对晶片数的图表,代表在处理工具最初的热机作业时、处理表面的平均温度;
图2B为一更详细的图表、显示了在最初的晶片处理期间内所发生的非线性温度上升现象;
图3A为一侧视图、其是根据本发明的一个实施例来说明一背面加热单元;
图3B为一俯视图、其是根据本发明的一个实施例来说明图3A所示的背面加热单元;
图4是根据本发明的一个实施例而描绘的整个处理区段的温度图;
图5A显示了典型的研磨带调整的配置情形;
图5B为一侧视图、其是显示根据本发明的一个实施例的调整研磨片;
图6为一俯视图、显示了具有调整研磨片单元的配置的线性研磨带处理系统;
图7是根据本发明的几个实施例、显示了具有背面加热单元与调整研磨片单元的配置的CMP线性研磨带处理系统;
图8为一流程图、其是根据本发明的一个实施例来说明处理表面的温度控制方法的操作项目。
附图标记说明:
10~处理表面
12~处理研磨带
14~方向
16~晶片
18~方向
20a-20j~处理区段
22a-22d~边缘区域-中心区域
30~图表
32~温度
34~晶片数
36~平均处理温度
38~所期望的处理温度
40~第一片晶片
42~第五片晶片
50~图表
52~温度
54~晶片数
56~平均处理温度
58~所期望的处理温度
60~第一片晶片
62~第二片晶片
64~第三片晶片
70~背面加热单元
72~调整器支撑板
74a~处理研磨带的第一边缘区域
74b~处理研磨带的第二边缘区域
76~加热元件外箱
78a-78j~可控制加热元件
80~研磨带行进方向
90~温度图
92~温度
94~晶片处理的摩擦力
96~线条
98~有效温度
100~线条
102~线条
110~晶片载具
112~调整研磨片载具
114~调整研磨片
116~位置点
118~方向
120~调整研磨片单元
122~调整盘
124~出口喷嘴与圆盘冲洗头
126~蓟头刷
130~方向
132~线性研磨带处理系统
140~CMP线性研磨带处理系统
142a-142b~滚筒
144~方向
150~流程图
152~操作
154~操作
156~操作
158~操作
160~操作