超低膨胀制动橡胶软管及其制造方法 【技术领域】
本发明涉及用于汽车制动装置的制动橡胶软管,具体地说,涉及初始压力时的膨胀量极小的超低膨胀制动橡胶软管及其制造方法。背景技术
汽车的液压制动装置中,由主缸把制动踏板的踏力变换为液压,通过制动橡胶软管传递给各轮缸。已往的制动橡胶软管由橡胶管和编织的加强层构成。图3是将制动橡胶软管局部剖切的立体图。制动橡胶软管由内橡胶管1、第1加强层2、中间橡胶层3、第2加强层4和外橡胶管5构成。内橡胶管1由耐制动液的乙烯·丙烯·二烯橡胶(EPDM)、苯乙烯-丁二烯橡胶(SBR)等构成。第1加强层2是将作为加强线的维尼纶线编织而成的。中间橡胶层3由天然橡胶(NR)、EPDM、丁基橡胶(IIR)等构成。第2加强层4是将维尼纶线编织而成的。外橡胶管5由EPDM、氯丁橡胶(CR)构成。
上述制动橡胶软管的制造方法如下。先在预先准备好的长条状树脂心轴的外周挤压成形内橡胶管1,在内橡胶管1的外表面编织第1加强层2。接着,在第1加强层2的外周面上用挤压机挤压成形中间橡胶层3、或者卷绕长条状橡胶带形成中间橡胶层3。卷绕长条状橡胶带时,一边卷绕橡胶带一边在其上面编织第2加强层4。然后,在第2加强层4的外周上挤压成形外橡胶管5。将这些橡胶软管与长条状心轴一起硫化,硫化后,利用水压拔出长条状心轴,然后,将长条状橡胶软管切断成预定长度使用。
近年来,随着发动机技术地进步以及道路环境的改善,车辆高速化,对制动性能的要求更高、更严格。尤其是对制动能力和制动感有更高的要求。作用于制动橡胶软管的压力范围之中,与制动感有关的是0~2.94MPa的低压范围。即使是在该低压下,造成软管内容积膨胀的原因,在软管构造中,不是因纤维加强层的纤维本身的弹性伸长,而是编织的加强纤维之间相互打滑、或者编织的松弛有较大的影响。
支配内容积膨胀的因素,是第1加强层2。为此,已往为了抑制编织纤维间的打滑,用粘接剂把编织在内橡胶管1外周面上的加强纤维(维尼纶)粘接固定。
但是,用粘接剂把加强纤维粘接固定在内橡胶管外周面上的方法,存在以下问题。即,作为粘接剂,通常是采用橡胶系溶液型硫化粘接剂。在橡胶系溶液型硫化粘接剂中,由于含有溶剂,所以,涂敷到内橡胶管1上后,必须要需要一定时间干燥,因此,在内橡胶管1上涂敷了橡胶系溶液型硫化粘接剂后,不能立即编织第1加强层2,所以,不能连续地进行制造工序。
另外,该方法中,虽然内橡胶管与加强纤维粘接着,但是加强纤维之间不一定被粘接。因此,第1加强层2的加强纤维在与内橡胶管1粘接着的状态下与内橡胶管一起错动,完全不能抑制第1加强层2的加强纤维之间的相互打滑。所以,仅将第1加强层2的加强纤维粘接在内橡胶管上,得不到膨胀量小的制动橡胶软管。
发明目的
本发明是鉴于上述问题而作出的,其目的在于提供一种能完全抑制第1加强层的加强纤维之间相互打滑的制动橡胶软管及其制造方法。
本发明的另一目的是,通过完全抑制第1加强层的加强纤维间的相互打滑,提供超低膨胀制动橡胶软管及其制造方法。发明内容概要
技术方案
为了实现上述目的,采用以下解决方案。
本发明的超低膨胀制动橡胶软管,其特征在于,由内橡胶管、第1加强层、第2加强层、外橡胶管构成,形成第1加强层的加强纤维,采用浸透了在硫化温度下硬化的热硬化性树脂的加强纤维,通过硫化使其硬化,将第1加强层形成为一体的硬化层。
上述内橡胶管,可采用不容易透过制动液的EPDM,外橡胶管也同样地可采用EPDM。形成第1加强层和第2加强层的加强纤维可采用维尼纶丝。将加强纤维浸透的热硬化性树脂,可采用密胺树脂或酚醛树脂。
上述超低膨胀制动橡胶软管的制造方法,其特征在于,连续地进行下述第1至第4工序;
在第1工序,在内橡胶管上编织第1加强层;
在第2工序,浸渍到可浸透形成上述第1加强层的加强纤维的低粘度热硬化性树脂液中,使热硬化性树脂液浸透于加强纤维中;
在第3工序,编织第2加强层;
在第4工序,在第2加强层的外面上挤压成形外橡胶管。
在上述浸透热硬化性树脂液的工序中,设置可浸透于加强纤维中的低粘度热硬化性树脂液槽,通过强制地浸渍在上述树脂液槽内,可使热硬化性树脂液浸透于加强纤维。
另外,最好是接着在挤压成形外橡胶管的工序,连续进行通过硫化使内橡胶管、热硬化性树脂、外橡胶管硬化的工序。
本发明中,由于使内侧的第1加强层的加强纤维浸透热硬化性树脂而成为一体的硬化层,所以,可完全防止支配内容积膨胀的第1加强层的加压时的、加强纤维间的相互打滑,可将膨胀量抑制得很低。因此,可得到制动感、耐久性好的制动橡胶软管。已往,在内橡胶管上编织上第1加强层后,用热硬化性树脂覆盖第1加强层表面并固定,不仅不能完全浸透到内橡胶管与第1加强层之间,而且覆盖的树脂层的厚度也有限,不能使加强纤维完全硬化。因此,加强纤维相互间打滑,不能防止加压时加强纤维间的错动。而本发明中使树脂液浸透到加强纤维内部,所以能使第1加强层成为硬化层。
另外,被热硬化性树脂硬化的第1加强层的外面具有高度的耐磨耗性,不需要防止第1加强层与第2加强层间磨损的中间橡胶层。另外,由于不使用含有溶剂的橡胶系溶液型硫化粘接剂,所以,可采用连续地进行内橡胶管的挤压成形与第1加强层的编织的制造工序,同时,也没有因溶剂的蒸发而污染环境的问题。附图简单说明
图1是本发明制动橡胶软管的分解立体图。
图2是表示制造工序的说明图。
图3是现有技术中的制动橡胶软管的分解立体图。实施发明的最佳形态
下面,参照附图说明本发明的实施形态。图中,10是内橡胶管,由不容易透过制动液的EPDM构成。11是用维尼纶线编织在内橡胶管10外周面上的第1加强层。13是用维尼纶线编织在第1加强层11外周面的第2加强层。15是由EPDM覆着构成的外橡胶管。形成上述第1加强层11的加强纤维被在硫化温度下硬化的热硬化性树脂即密胺树脂或酚醛树脂浸透而固化成一体。
即,上述热硬化性树脂不仅覆盖加强纤维的表面,而且浸透到加强纤维本身的内部,将加强纤维本身固化。因此,形成第1加强层11的各加强纤维被浸透的热硬化性树脂硬化,纤维间也一体化,整体形成为硬化层。制动橡胶软管的耐压由第1加强层11承担,第2加强层13只起到辅助的作用,所以,加强纤维的硬化只对第1加强层11进行就足够了。
上述构造的制动橡胶软管的制造方法,如图2所示,在长条状心轴20上用挤压机21挤压成形内橡胶管10,在该内橡胶管10的外面上用编带机23编织第1加强层11。接着,把编织了第1加强层11的内橡胶管浸渍到热硬化性树脂液25中,使热硬化性树脂液25浸透于加强纤维中。上述热硬化性树脂液25被调节成为可浸透于加强纤维中的低粘度,用配设在树脂液槽27内的推压辊28、30强制地浸渍,一边涂敷到第1加强层11上一边使其浸透。
把热硬化性树脂液涂敷、浸透到第1加强层11上后,用编带机31编织第2加强层13,接着,用挤压机32被覆成形外橡胶管15。然后,与已往同样地,通过硫化使浸透第1加强层的热硬化性树脂与内橡胶管10、外橡胶管15一起硬化。
上述制造方法中,设置第1加强层和第2加强层,最后挤压成形外橡胶管,这一点与已往的制造方法是相同的。与已往的制造方法不同点是,在第1加强层11的编织工序后,没有已往所进行的中间橡胶层的挤压成形,而是设置涂敷、浸渍热硬化性树脂液的工序,省略了中间橡胶层的挤压工序。实施例
下面,说明本发明具体的实施例。
实施例中,内橡胶管10是采用EPDM,形成为内径3.4mm、外径5.0mm。第1加强层11是采用1200丹尼尔的维尼纶线,用2根×20导纬器(carrier)编织。然后,使其浸透密胺树脂,通过硫化,使浸透了的密胺树脂与橡胶一起硬化。第2加强层13是采用1200丹尼尔的维尼纶线,用3根×24导纬器编织。外橡胶管15是采用EPDM,形成为内径8.0mm、外径10.4mm。
比较例中,内橡胶管、第1加强层、第2加强层、外橡胶管的构造与实施例相同,但是,在第1加强层与第2加强层之间与已往同样地设置了0.25mm厚的由天然橡胶构成的中间橡胶层,并且,将第1加强层粘接在内橡胶管的外面。
实施例与比较例的试验结果如下。
对上述实施例和比较例的橡胶软管作了膨胀量和耐久性的试验。试验条件是按照JIS D2601进行的。对耐久性进行了拉曳试验。试验结果如表1所示。
表1 实施例 比较例 软管 膨胀量 (cc/m) 压力0.98Mpa 0.04 0.10 压力1.96Mpa 0.09 0.13 压力2.94Mpa 0.11 0.16 拉曳试验 200小时以上200小时以上
从表1可知,实施例的橡胶软管与比较例的相比,膨胀量小,耐久性也不逊色。工业实用性
如上所述,本发明的超低膨胀制动橡胶软管及其制造方法,适用于由主缸把制动踏板的脚踏力变换为液压的汽车液压制动装置。