含有聚乙醇酸的高强度可生物再吸收的制品 本发明涉及聚合物组合物和自其制造的制品。尤其是,本发明涉及具有高机械强度的聚合物及其制造适于植入体内的载荷医疗装置的应用。更具体地说,本发明涉及含有可生物再吸收的聚乙醇酸的聚合物及自其制造的可植入的医疗装置。
包含聚乙醇酸(PGA)的聚合物组合物具有关于医疗植入物的既定用途。还已经提出,通过挤出PGA熔体或者通过以塑性状态拉伸PGA,可以改善某些机械性能。各向同性PGA具有50~100MPa的拉伸强度和2~4GPa的拉伸模量。在PGA基材中包含PGA纤维的市售产品(SR-PGA)具有的挠曲强度和挠曲模量分别为200~250MPa和12~15GPa。文献也有报导,熔纺PGA的拉伸强度为约750MPa,而模量为15~20GPa。在美国专利4968317中,叙述了一个拉伸PGA实例,其具有约600MPa的拉伸强度。
虽然已知具有改善强度特性的多种PGA,但是没有一种已知材料具有达到惯用载荷植入医疗装置所用的金属的机械性能地机械性能。用于矫形植入装置的市售合金,称作Ti-6-4,包含具有6%铝和4%钒的钛,具有800~1000MPa的拉伸强度和约100GPa的模量。
现在PGA不能加工成达到所需的金属的强度的一个可能理由是,在通过普通方法加工PGA生产取向纤维(例如,在加热室或槽中以恒定速度拉伸所述材料)时,在加工期间发生聚合物附加结晶。在聚合物中的晶体起妨碍聚合物进一步取向的作用。聚合物的这种结晶限制了机械强度,如现有技术所示,通过拉伸PGA机械强度只能够达到约800MPa。
现已发现,可以加工包含PGA的聚合物组合物,使得所获组合物具有显著较大的强度,典型地约为1200MPa以上,而模量匹配增加,典型地超过22GPa。
按照本发明,提供了一种包含聚乙醇酸或其官能衍生物的聚合物组合物,其具有的拉伸强度为至少1200MPa。
聚合物组合物借助于一种新颖加工方法得到这样水平的拉伸强度,所述方法导致一种取向结构,例如,取向纤维。
本发明进一步提供一种包含下述聚合物组合物的制品,所述聚合物组合物含有聚乙醇酸或其官能衍生物,且具有至少1200MPa的拉伸强度。
聚合物组合物可以完全由PGA或其衍生物组成,或者可以包含与其它聚合物的含有PGA的共混物。优选聚合物组合物完全是PGA。
相似地,由本发明的聚合物组合物成形的制品可以完全由本发明的聚合物组合物组成,或者可以是仅部分地由本发明的聚合物组合物组成的复合材料。
合适地,所述制品含有10~80wt%(按体积计)本发明聚合物组合物,适宜地,所述制品含有最多60%(按体积计)本发明聚合物组合物,优选地,所述制品含有至少40%(按体积计)本发明聚合物组合物,以及典型地,所述制品含有约50%(按体积计)本发明聚合物组合物。
已经发现,为了得到由本发明组合物显示的高强度,必须使PGA成为无定形状态,然后立即拉伸形成高取向结构。
这能够通过以下方法实现,首先加工市售各向同性PGA颗粒形成纤维或长丝,然后使所得纤维通过骤冷浴形成无定形结构。然后通过拉伸骤冷了的无定形PGA,可以生产本发明的聚合物组合物。优选,这是一种最大地减少聚合物处于高温下的时间的拉伸工艺,因此该工艺最大地减少了聚合物进行结晶的时间。
按照本发明的另一个方面,提供一种制造以聚乙醇酸为基础的聚合物组合物的方法,其中包括通过在物料中局部位置进行拉伸使基本无定形的聚合物的聚合物链取向增加。
适宜地,所述方法包括的步骤有,通过诸如熔体挤出或溶液纺丝使聚乙醇酸或其官能衍生物形成纤维,然后骤冷所得纤维,再使骤冷了的纤维在拉紧的纤维的限定区域被拉伸的条件下经受张力。
适宜的是,可以通过溶液纺丝或者经横头熔融挤出聚合物来制备含有无定形PGA的聚合物的纤维,然后将所得的丝快速急冷以生产基本无定形的材料。典型的急冷方法包括:随着丝的生产向所生产的丝吹冷气,或者使所得的丝通过适宜的冷的液体浴,例如水、硅油。
适宜的拉伸方法是区域加热。在该方法中,局部加热器沿着处于恒定张力下的纤维长向运动。该方法应用在Fakirov所述的分段拉伸法中,参见“取向聚合物材料”,(Oriented Polymer Materials),S.Fakirov,由Hütlig & Wepf Verlag,Hüthig GmbH出版。为了实施这种分段加热,能够使纤维经过黄铜圆筒。圆筒内壁的小部分,与黄铜圆筒的其余部分比较,较靠近纤维,该小区域局部地加热纤维,使纤维的拉伸局限于该位置,参见图1。带状加热器能够置于黄铜圆筒周围,使其被加热在室温之上。该被加热的黄铜圆筒随后能够连接到拉伸试验机的运动十字头,而待拉伸纤维自与试验机顶端连接的横梁悬挂。为了拉伸纤维能将重物与纤维的下端,黄铜圆筒被加热至所需要的温度,十字头运动到纤维下端,参见图2。随着十字头沿纤维长度而上运动,在纤维最靠近黄铜圆筒之处聚合物被拉伸,则纤维长度可被拉伸。
适宜的是,能够使用小的应力拉紧纤维,典型地是在室温下材料的屈服点以下。然后,能够将纤维局部地加热至高于软化点(Tg)而低于熔点的温度,这样就发生聚合物的局部拉伸,通过纤维和加热区之一或两者的运动能够使整个纤维受到处理,如此纤维全长受到拉伸。聚合物的这种第一次拉伸可以产生改善分子排列的、因此改善强度和模量的聚合物。在该第一步骤中,选择条件使材料在加工过程中基本上不结晶,这就要求,或者聚合物的温度在发生结晶的温度Tc之下,或者如果聚合物处于高于Tc的温度,那末在该温度下加热区沿着纤维运动的速度就要足够快,以致于使聚合物在结晶之前冷却到Tc之下。通过以后进行处理,增加施加到纤维的应力或者增加区域温度,或者两者均进行,能够进行进一步改善。纤维强度和软化点两者随着分子排列程度的改善而增加。能重复该过程多次,直至达到所需的性能。能够进行最后热处理步骤,在该步骤中材料在工艺张力下进行结晶,这样能够进一步改善机械性能以及改善最终纤维的热稳定性。
在本发明的这方面的实施方案中,提供了一种包含按照本发明的聚乙醇酸的制品。例如,能够将聚乙醇酸纤维与其它组分混合成形为制品。这些其它组分可以是聚合物、可生物再吸收的聚合物、非聚合物材料或其组合。
适宜地,所述可生物再吸收的聚合物包括聚羟基酸、聚己内酯、聚缩醛、聚酐或其混合物;所述聚合物包括聚丙烯、聚乙烯、聚甲基丙烯酸甲酯、环氧树脂或其混合物,而非聚合物组分包括陶瓷、羟基磷灰石、磷酸三钙、生物活性因素或其组合。
适宜地,生物活性因素包括天然或工程蛋白质、核糖核酸、脱氧核糖核酸、生长因素、细胞分裂素类、血管形成(angiogenic)因素或抗体。
按照本发明的制品能够适宜地通过下述步骤制造,将适宜长度的增强PGA纤维置于模具中,加入其它组分,然后压塑。此外,能够将增强的纤维与其它组分预混合,然后压塑。
在另一加工方法中,按照本发明的制品能够通过下述方法制造,通过使所述聚合物组分的单体或其它前体就地固化,在增强纤维存在下形成聚合物组分。
优选地,在本方法中使用的单体在聚合时不释放出任何副产物,因为这些单体能够兼顾制品性能。
适宜地,在所述就地固化方法中使用的至少一种单体是开环形成聚羟基酸的开环单体。典型地,至少一种单体是丙交酯、乙交酯、己内酯、碳酸酯或其混合物。
本发明聚合物组合物用于生产医疗装置,尤其是需要或必须由身体再吸收植入物的可植入装置。因此,按照本发明的制品包括缝线,组织工程支架或植入用支架,矫形植入物,用于可再吸收的载荷矫形植入物的长纤维复合材料用的增强剂;复杂的具有某种形状的装置,例如通过将短长度的短纤维与聚乳酸混合形成的复合材料的注塑或挤塑而形成者;或者骨骼固定装置,例如从较大直径(如大于1mm)的本发明组合物形成者。
现通过如下实施例举例说明本发明。
实施例1
将各向同性PGA挤入水浴中生产直径约0.5mm的半透明纤维。然后垂直悬挂所得纤维并施加200g重物。热黄铜圆筒除了小截面具有2mm直径的孔之外,具有约15mm的孔,PGA纤维通过的该热黄铜圆筒被加热至70℃~100℃,并沿着纤维以300mm/min的速度运动。在该过程之后所得纤维仍是半透明的,只有采用调节到100℃的黄铜圆筒加工的纤维才是不透明的。将所得纤维装在22℃Zwick拉伸试验机进行检验,如此在夹紧装置之间的纤维长度为40mm。然后以10mm/min的速度拉所述样品。记录所得负荷-伸长曲线,采用所记录的最大负荷计算纤维的最大强度,采用起始斜率计算样品模量。结果示于图3。
实施例2
将各向同性PGA挤入水浴中生产直径约0.5mm的半透明纤维。然后垂直悬挂所得纤维并施加200g重物。热黄铜圆筒除了小截面具有2mm直径的孔之外,具有约15mm的孔,PGA纤维通过的该热黄铜圆筒被加热至90℃,并沿着纤维以500mm/min的速度运动。在该过程之后所得纤维仍是半透明的。对所生产的纤维按如下所述进行检验,测得其强度为1780MPa,模量为26.7GPa。
实施例3
如实施例2那样生产PGA纤维,然后将拉伸过的PGA纤维采用对于区而言,温度90℃、速度500mm/min进行再拉伸,并向纤维施加500g重物。所生产的纤维是不透明的,说明在该工艺步骤中发生了聚合物结晶。经检验测得纤维强度为2400MPa,模量为40.8GPa。
实施例4
将PTFE块机械加工成用于固定板的两件模,参见图4。通过在干燥氮气氛围中称量100g DL-丙交酯于小玻璃瓶中来制备反应混合物并用隔膜密封。然后用25μl注射器将10μl的SnCl2·H2O(1.00g)的二甘醇(2.91g)溶液注入单体小玻璃瓶中。然后在150℃烘箱中加热该小玻璃瓶,一旦单体完全熔融,就振荡玻璃瓶使内容物混合。先将如实施例2制造的、编辫的拉伸PGA纤维装到模腔中(相当于模具体积的45%),再将模具置于150℃烘箱中。一旦模具处于所达到的温度,就将熔融反应混合物和模具均置于干燥氮气氛围中,并将反应混合物倒入模具中,然后充分冷却两者使单体结晶。密封填充过的模具,然后送回到150℃烘箱中,用注射器针头刺穿盖排气。为了从模具中的纤维除去空气泡,将热模具移到150℃真空烘箱中。使真空达到1mbar,然后再用干燥氮气将烘箱加压;再重复一次。然后从烘箱中取出模具,除去注射器针头排气口。然后将模具置于150℃传统烘箱中6天,使聚合物固化。
在固化之后,从烘箱中取出模具,使其冷却至室温。然后分离模具。从模具中取出所得装置。DL-丙交酯聚合形成半透明的围绕着纤维的固体相。
实施例5
采用与实施例4相同的模具,用L-丙交酯作基材的单体母体制造固定板。催化剂、引发剂和固化条件均与实施例4所用的相同。在将板从模具除去的时候,能够看到L-丙交酯已经聚合形成围绕纤维的不透明固体。
实施例6
将PTFE块机加工成用于RCI螺旋的两件模,参见图5。所用催化剂、引发剂和固化条件均与实施例4相同,但是用于形成基材的材料是DL-丙交酯和乙交酯的、比例为85∶15的混合物。将如实施例2制造的拉伸PGA短纤维(约2mm长)装在模具中(相当于模具体积的30%)。一旦完全固化,就将模具冷却并取出所得装置。单体固化形成围绕纤维的固体半透明相。