对相关申请的交叉参考
本申请要求于2008年8月1日提交的美国临时申请61/085,462以及于2008年11月6日提交的61/111,791的优先权,将其全部内容通过引用的方式并入本申请。本发明使用美国政府支持在NIH基金NIH U24 92871、NIHR21 CA114111、NIH CA111982和DOD PC050825下完成。政府具有对本发明的一些权利。
技术领域
本发明大体上涉及放射性同位素标记的前列腺特异性膜抗原(PSMA)结合化合物、所述放射性同位素标记的PSMA结合化合物的化学前体以及使用放射性同位素标记的化合物成像的方法。
背景技术
前列腺癌(PCa)是导致男性癌症相关性死亡的第二致命原因(1)。诊断时,仅有一半的PCa肿瘤具有临床局灶性(clinically localized),其中一半表现为包膜外扩散(extracapsular spread)。所述扩散的定位以及PCa的全身负荷量的确定对治疗具有重要指导性,尤其是新的组合以及局灶疗法变为可用的时。同样临床上需要可提供肿瘤生物学读数(readout)的靶标药物,其具有预测哪种肿瘤将潜伏且哪种将发展为侵略性、转移性疾病的能力。目前用于定位癌症(包括PCa)的临床标准由解剖技术诸如计算机断层摄影术(CT)和磁共振(MR)成像转变为更具生理学相关的方法,其使用分子成像诸如MR波谱分析、单光子发射计算断层摄影术(SPECT)和正电子发射断层摄影术(PET)(2)。所述使用分子成像的较新的方法可提供对于理解肿瘤生理学、实现更精确的预后以及治疗监测必要的生物学读数。如果使用机制特异性药物时,分子成像可提供一种途径,其不仅可检测体内肿瘤,而且可提供关于损伤的生物学信息。例如,[18F]FDHT可用于研究肿瘤的雄激素受体状态(3)。
与许多其它肿瘤不同的是,PCa对于使用现有的分子成像示踪剂进行检测是特别困难的。对此有几种原因,包括相比于其它恶性肿瘤PCa具有相对缓慢的生长和代谢速率以及器官的小尺寸且接近膀胱,在其中大多数放射性药物最终被排泄。
由于PCa的相对低的代谢,已经证实具有[18F]氟脱氧葡萄糖(FDG-PET)的PET对于该疾病的诊断性影像学无效。其它对于PCa成像的有前景的、实验性放射性药物正在出现,包括胆碱系列药物(4)(5)(6)、放射标记的乙酸盐(7)、抗-1-氨基-3-[18F]氟环丁基-1-羧酸(抗[18F]F-FACBC)(8)(9)、1-(2-脱氧-2-[18F]氟-L-阿糖基呋喃糖基)-5-甲基尿嘧啶([18F]FMAU)(10)和[18F]氟二氢睾酮([18F]FDHT)(3)。其各自具有其益处和害处,其中在所有PCa表型中没有单一药物是理想的(即易于合成、极少代谢且具有肿瘤特异性摄取)。
在大多数实体瘤新血管系统(11)以及前列腺癌上过表达的前列腺特异性膜抗原(PSMA)正在变为针对癌症成像和治疗的有吸引力的靶标(12)(13)。基于PSMA的药物可在该标记物的存在下报告,其正在越来越多地被认为是在PCa中的一种重要预后决定子(14)。其也为针对各种新PCa治疗的靶标(15)。ProstaScintTM为一种抗PSMA的111In-标记的单克隆抗体,其在临床上针对PCa成像是可用的。ProstaScintTM和该抗体的放射标记的变化形式具有长的循环时间和与非靶标组织对比的弱靶向性,限制了这些药物的效用(16)(17)(18)。
发明内容
本发明满足了针对用于前列腺癌和血管发生成像的新的组织特异性化合物的长期存在且未满足的需要。特别地,本发明提供了与现有技术在修饰方面不同的成像剂,所述成像剂在之前未知晓或者未被建议。此外,本发明提供了在靶标组织和非靶标组织之间提供更好对比的成像剂。
本发明涉及具有如下显示的结构(I)的化合物。
其中Z为四唑基或者CO2Q;每个Q独立选自氢或者保护基团。
在式I的一些实施方案中,m为0、1、2、3、4、5或者6;R为具有下述结构的吡啶环
其中X为氟、碘、氟的放射性同位素、碘的放射性同位素、氯、溴、溴的放射性同位素、砹的放射性同位素、NO2、NH2、N+(R2)3、Sn(R2)3、Si(R2)3、Hg(R2)、B(OH)2、-NHNH2、-NHN=CHR3、-NHNH-CH2R3;n为1、2、3、4或者5;Y为O、S、N(R′)、C(O)、NR′C(O)、C(O)N(R′)、OC(O)、C(O)O、NR′C(O)NR′、NR′C(S)NR′、NR′S(O)2、S(CH2)p、NR′(CH2)p、O(CH2)p、OC(O)CHR8NHC(O)、NHC(O)CHR8NHC(O)或者共价键;其中p为1、2或者3,R′为H或者C1-C6烷基,且R8为烷基、芳基或者杂芳基,所述基团各自可被取代;R2为C1-C6烷基;且R3为烷基、烯基、炔基、芳基或者杂芳基,所述基团各自被氟、碘、氟的放射性同位素、碘的放射性同位素、溴、溴的放射性同位素、砹的放射性同位素、NO2、NH2、N+(R2)3、Sn(R2)3、Si(R2)3、Hg(R2)或者B(OH)2取代。
在式I的一些实施方案中,m为0、1、2、3、4、5或者6;Y为O、S、N(R′)、C(O)、NR′C(O)、C(O)N(R′)、OC(O)、C(O)O、NR′C(O)NR′、NR′C(S)NR′、NR′S(O)2、S(CH2)p、NR′(CH2)p、O(CH2)p、OC(O)CHR8NHC(O)、NHC(O)CHR8NHC(O)或者共价键;其中p为1、2或者3,R′为H或者C1-C6烷基,且R8为烷基、芳基或者杂芳基,所述基团各自可被取代;R为
其中X′选自NHNH2、-NHN=CHR3和-NHNH-CH2R3;其中R3为烷基、烯基、炔基、芳基或者杂芳基,所述基团各自被氟、碘、氟的放射性同位素、碘的放射性同位素、氯、溴、溴的放射性同位素或者砹的放射性同位素、NO2、NH2、N+(R2)3、Sn(R2)3、Si(R2)3、Hg(R2)或者B(OH)2取代;且n为1、2、3、4或者5。
在式I的其它实施方案中,m为4,Y为NR′,且R为
其中G为O、NR′或者共价键;R′为H或者C1-C6烷基;p为1、2、3或者4,且R7选自NH2、N=CHR3、NH-CH2R3,其中R3为烷基、烯基、炔基、芳基或者杂芳基,所述基团各自被氟、碘、氟的放射性同位素、碘的放射性同位素、氯、溴、溴的放射性同位素、砹的放射性同位素、NO2、NH2、N+(R2)3、Sn(R2)3、Si(R2)3、Hg(R2)或者B(OH)2取代。
本发明的一些化合物与前列腺特异性膜抗原(PSMA)相互作用。因此,当化合物包含放射性同位素时,它们可适于用作成像剂、诊断用药、和/或者治疗剂。
在许多情况下,在化合物中使用的放射性同位素为短寿命的。因此,放射性同位素标记的化合物在使用前立即或者即刻制备,或者仅为用于给药的充足量。由于此原因,本发明也包括放射性同位素标记的化合物的前体,其可用化学方法转化为本发明的放射性同位素标记的化合物。
附图说明
图1显示在水分子的存在下在PSMA的活性位点(PDB ID:3D7H)上3、6和8的最佳位置与结晶配体的叠加,即3与PSMA共结晶。暗球(锌离子),亮球(氯根离子)。
图2显示在水分子的缺失在PSMA的活性位点上最佳位置(3、6和8)与结晶配体(3)的叠加。暗球(锌离子),亮球(氯离子)。
图3显示在PCa肿瘤模型中的[125I]3SPECT-CT(注射后4小时)。仅记录了在PSMA+PIP肿瘤内的摄取。在肾内的摄取在大量测量中是由于[125I]3与肾皮质的特异性结合。
图4显示在PCa肿瘤模型中的与CT融合的[18F]6PET(注射后约100分钟)。仅记录了在PSMA+PIP肿瘤内的摄取。在肾内的摄取大量测量是由于[125I]3与肾皮质的特异性结合。相比于[125I]3,用该药物观察到更密集的肿瘤摄取和较少的肝摄取。
图5显示在PSMA+LNCaP肿瘤中的[125I]8SPECT-CT(注射后4小时)。记录在肿瘤内的密集摄取。得到针对PSMA+PIP而不是PSMA-flu肿瘤(数据未显示)的相似结果。相比于卤代苯甲酰化类似物[125I]3和[18F]6,用该药物分别观察到较少的肾摄取和较少的肝摄取。
具体实施方式
本发明的实施方案包括如下显示的根据式I的化合物或者其药用盐:
其中Z为四唑基或者CO2Q,且每个Q独立选自氢或者保护基团。
在示例性实施方案(A)中,m为0、1、2、3、4、5或者6,R为选自下述的吡啶环
其中X为氟、碘、氟的放射性同位素、碘的放射性同位素、氯、溴、溴的放射性同位素、砹的放射性同位素、NO2、NH2、N+(R2)3、Sn(R2)3、Si(R2)3、Hg(R2)、B(OH)2、-NHNH2、-NHN=CHR3、-NHNH-CH2R3;n为1、2、3、4或者5;Y为O、S、N(R′)、C(O)、NR′C(O)、C(O)N(R′)、OC(O)、C(O)O、NR′C(O)NR′、NR′C(S)NR′、NR′S(O)2、S(CH2)p、NR′(CH2)p、O(CH2)p、OC(O)CHR8NHC(O)、NHC(O)CHR8NHC(O)或者共价键;p为1、2或者3,R′为H或者C1-C6烷基,且R8为烷基、芳基或者杂芳基,所述基团各自可被取代;R2为C1-C6烷基;且R3为烷基、烯基、炔基、芳基或者杂芳基,所述基团各自被氟、碘、氟的放射性同位素、碘的放射性同位素、氯、溴、溴的放射性同位素或者砹的放射性同位素、NO2、NH2、N+(R2)3、Sn(R2)3、Si(R2)3、Hg(R2)或者B(OH)2取代。
在其它实施方案(B)中,m为0、1、2、3、4、5或者6;Y为O、S、N(R′)、C(O)、NR′C(O)、C(O)N(R′)、OC(O)、C(O)O、NR′C(O)NR′、NR′C(S)NR′、NR′S(O)2、S(CH2)p、NR′(CH2)p、O(CH2)p、OC(O)CHR8NHC(O)、NHC(O)CHR8NHC(O)或者共价键;p为1、2或者3;R′为H或者C1-C6烷基;R8为烷基、芳基或者杂芳基,所述基团各自可被取代;R为
其中X′选自NHNH2、-NHN=CHR3和-NHNH-CH2R3;其中R3为烷基、烯基、炔基、芳基或者杂芳基,所述基团各自被氟、碘、氟的放射性同位素、碘的放射性同位素、氯、溴、溴的放射性同位素或者砹的放射性同位素、NO2、NH2、N+(R2)3、Sn(R2)3、Si(R2)3、Hg(R2)或者B(OH)2取代;R2为C1-C6烷基;n为1、2、3、4或者5;或者其药用盐。
在其它实施方案(C)中,m为4;Y为NR′;且R为
其中G为O、NR′或者共价键;R′为H或者C1-C6烷基;p为1、2、3或者4,且R7选自NH2、N=CHR3、NH-CH2R3,其中R3为烷基、烯基、炔基、芳基或者杂芳基,所述基团各自被氟、碘、氟的放射性同位素、碘的放射性同位素、溴、溴的放射性同位素或者砹的放射性同位素、NO2、NH2、N+(R2)3、Sn(R2)3、Si(R2)3、Hg(R2)或者B(OH)2取代;R2为C1-C6烷基;或者其药用盐。
本申请所述的化合物可具有一个或者多个不对称中心或者平面。含有不对称取代的原子的本发明化合物可分离为旋光形式或者外消旋形式。在本领域中已知的是如何制备旋光形式,诸如通过外消旋形式(外消旋化合物)的拆分,通过不对称合成或者通过由旋光起始物质合成。例如可通过常规方法诸如在拆分剂的存在下结晶,或者使用例如手性HPLC柱进行色谱法来完成外消旋化合物的拆分。许多烯烃、C=N双键等的几何异构体也可存在于本申请所述的化合物中,且认为所有所述稳定的异构体存在于本发明中。描述了本发明化合物的顺式和反式几何异构体且其可被分离为异构体的混合物或者为分开的异构体形式。所有手性形式(对映异构体和非对映异构体)和外消旋形式,以及所述结构的几何异构体形式包括在本发明内,除非特别说明特殊立体化学形式或者异构体形式。
本申请所述的化合物可具有一个或者多个带电原子。例如,所述化合物可为两性离子,但整体上可为中性的。按照pH和其它因素,其它实施方案可具有一个或者多个带电基团。在这些实施方案中,所述化合物可带有适当的抗衡离子。在本领域中已知的是如何制备盐或者交换抗衡离子。一般地,所述盐可通过使这些化合物的游离酸形式与化学量的适当碱(诸如Na、Ca、Mg或者K的氢氧化物、碳酸盐、碳酸氢盐等)反应来制备,或者通过使这些化合物的游离碱形式与化学量的适当酸反应来制备。所述反应典型地在水中或者在有机溶剂中或者在这两者的混合物中进行。抗衡离子可通过例如离子交换技术诸如离子交换色谱法来改变。本发明包括所有两性离子、盐和抗衡离子,除非特别说明抗衡离子或者盐。在一些实施方案中,所述盐或者抗衡离子可为药用的,用于对患者给药。所述药用盐在下文讨论。
当任意变化形式在化合物的任意组成或者化学式中出现多于一次时,其定义在每次出现时独立于其定义在其它每次出现时的定义。因此,例如,如果基团显示为取代有(X)n,其中n为1、2、3、4或者5,则所述基团任选取代有多达5个X基团且每次出现独立选自X的定义。同样,取代基和/或者变化形式的组合仅在所述组合导致稳定化合物时,才是允许的。
如上说明,各种化学式的各种取代基为″取代的″或者″可为取代的″。如本申请所述的术语″取代的″是指在指定原子或者基团上的任意一个或者多个氢被取代基替代,条件是不超过指定原子的正常化合价,且所述取代导致稳定化合物。当取代基为氧代(酮,即=O)时,则在原子上的2个氢为取代的。本发明意在包括存在于本发明化合物的原子的所有同位素(包括放射性同位素)。当化合物为取代的时,它们可在一个或者多个可用位置(典型地1、2、3或者4位)被一个或者多个适当基团(诸如本申请披露的那些)取代。可存在于″取代的″基团上的适当基团包括例如卤素;氰基;羟基;硝基;叠氮基;氨基;烷酰基(诸如C1-C6烷酰基,诸如酰基等);氨基甲酰基;烷基(包括环烷基,其具有1至约8个碳原子,例如1、2、3、4、5或者6个碳原子);烯基和炔基(包括具有一个或者多个不饱和键且由2至约8(诸如2、3、4、5或者6)个碳原子构成);具有一个或者多个氧键且由1至约8(例如1、2、3、4、5或者6)个碳原子构成的烷氧基;芳基氧基诸如苯氧基;烷基硫基,包括具有一个或者多个硫醚键且由1至约8个碳原子(例如1、2、3、4、5或者6个碳原子)构成的那些;烷基亚硫酰基,包括具有一个或者多个亚硫酰基键且由1至约8个碳原子(诸如1、2、3、4、5或者6个碳原子)构成的那些;烷基磺酰基,包括具有一个或者多个磺酰基键且由1至约8个碳原子(诸如1、2、3、4、5或者6个碳原子)构成的那些;氨基烷基,包括具有一个或者多个N原子且由1至约8(例如1、2、3、4、5或者6)个碳原子构成的基团;碳环芳基,具有4、5、6或者更多个碳原子以及一个或者多个环(例如苯基、联苯、萘基等,每个环为取代的或者未取代的芳环);芳基烷基,具有1至3个分开的或者稠合的环且由6至约18个环碳原子构成(例如苄基);芳基烷氧基,具有1至3个分开的或者稠合的环且由6至约18个环碳原子构成(例如O-苄基);或者饱和的、不饱和的或者芳族的杂环基团,具有1至3个分开的或者稠合的环,且每个环具有3至约8个环成员以及一个或者多个N、O或者S原子(例如香豆素基(coumarinyl)、喹啉基、异喹啉基、喹唑啉基、吡啶基、吡嗪基、嘧啶基、呋喃基、吡咯基、噻吩基、噻唑基、三嗪基、噁唑基、异噁唑基、咪唑基、吲哚基、苯并呋喃基、苯并噻唑基、四氢呋喃基、四氢吡喃基、哌啶基、吗啉基、哌嗪基和吡咯烷基)。所述杂环基可进一步取代有例如羟基、烷基、烷氧基、卤素和氨基。
如本申请使用,″烷基″意在包括支链的、直链的和环状饱和脂族烃基。烷基的实例包括但不限于甲基、乙基、正丙基、异丙基、正丁基、仲丁基、叔丁基、正戊基和仲戊基。在一些实施方案中,烷基为C1-C6烷基或者C1-C4烷基。具体的烷基为甲基、乙基、丙基、丁基和3-戊基。如本申请使用的术语″C1-C6烷基″表示直链的、支链的或者环状C1-C6烃基,其为完全饱和的以及其混合物诸如(环烷基)烷基。C1-C6烷基取代基的实例包括甲基(Me)、乙基(Et)、丙基(包括正丙基(n-Pr,nPr)、异丙基(i-Pr,iPr)和环丙基(c-Pr,cPr))、丁基(包括正丁基(n-Bu,nBu)、异丁基(i-Bu,iBu)、仲丁基(s-Bu,sBu)、叔丁基(t-Bu,tBu)或者环丁基(c-Bu,cBu))等。″环烷基″意在包括饱和环基,诸如环丙基、环丁基、环戊基或者环己基。环烷基典型地具有3至约8个环成员。在术语″(环烷基)烷基″中,环烷基和烷基如上定义,且连接在烷基上。该术语涵盖但不限于环丙基甲基、环戊基甲基和环己基甲基。
如本申请使用,″烯基″意在包括含有一个或者多个不饱和碳碳双键的直链或者支链构型的烃链,所述双键可存在于链上任意稳定的位点上,诸如乙烯基和丙烯基。烯基典型地具有2至约8个碳原子,更典型地具有2至约6个碳原子。
如本申请使用,″炔基″意在包括含有一个或者多个不饱和碳碳三键的直链或者支链构型的烃链,所述三键可存在于链上任意稳定的位点上,诸如乙炔基和丙炔基。炔基典型地具有2至约8个碳原子,更典型地具有2至约6个碳原子。
如本申请使用,″卤代烷基″意在包括具有具体数目的碳原子的支链和直链饱和脂族烃基,其取代有1个或者多个卤素原子。卤代烷基的实例包括但不限于一氟甲基、二氟甲基或者三氟甲基、一氯甲基、二氯甲基或者三氯甲基、一氟乙基、二氟乙基、三氟乙基、四氟乙基或者五氟乙基以及一氯乙基、二氯乙基、三氯乙基、四氯乙基或者五氯乙基等。典型的烷基具有1至约8个碳原子,更典型地具有1至约6个碳原子。
如本申请使用,″烷氧基″表示经氧桥连接的如上定义的烷基。烷氧基的实例包括但不限于甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、2-丁氧基、叔丁氧基、正戊氧基、2-戊氧基、3-戊氧基、异戊氧基、新戊氧基、正己氧基、2-己氧基、3-己氧基和3-甲基戊氧基。烷氧基典型地具有1至约8个碳原子,更典型地具有1至约6个碳原子。
如本申请使用,″卤代烷氧基″表示具有指定数目的碳原子的经氧桥连接的如上定义的卤代烷基。卤代烷氧基具有1至约8个碳原子,更典型地具有1至约6个碳原子。
如本申请使用,″烷基硫基″包括具有一个或者多个硫醚键的那些基团且典型地由1至约8个碳原子构成,更典型地1至约6个碳原子。
如本申请使用,术语″烷基亚硫酰基″包括具有一个或者多个亚砜(SO)键的那些基团且典型地由1至约8个碳原子构成,更典型地1至约6个碳原子。
如本申请使用,术语″烷基磺酰基″包括具有一个或者多个磺酰基(SO2)键的那些基团且典型地由1至约8个碳原子构成,更典型地1至约6个碳原子。
如本申请使用,术语″烷基氨基″包括具有一个或者多个伯、仲和/或者叔胺基团的那些基团且典型地由1至约8个碳原子构成,更典型地1至约6个碳原子。
如本申请使用,″卤代″或者″卤素″是指氟、氯、溴或者碘;且″抗衡离子″用于表示小的、负电荷的种类诸如氯离子、溴离子、氢氧根、乙酸根、硫酸根等。
如本申请使用,″碳环基团″意在表示任意稳定的3-至7-元单环或者二环或者7-至13-元二环或者三环基团,其中任意的可为饱和的、部分不饱和的或者芳族的。除了在本申请中示例说明的那些,所述碳环基的实例包括但不限于环丙基、环丁基、环戊基、环己基、环庚基、金刚烷基、环辛基、[3.3.0]二环辛基、[4.3.0]二环壬基、[4.4.0]二环癸基、[2.2.2]二环辛基、芴基、苯基、萘基、茚满基和四氢萘基。
如本申请使用,术语″芳基″包括含有1至3个分开的或者稠合的环且由6至约18个环原子构成的基团,其杂原子不作为环成员。芳基的实例包括但不限于苯基和萘基,包括1-萘基和2-萘基。
如本申请使用,″杂环基″意在包括具有1至3个(可能稠合的)环的饱和的、部分不饱和的或者不饱和的(芳族)基团,其中每个环具有3至约8个环成员,且至少一个环含有选自N、O或者S的原子。氮和硫原子可任选被氧化。所述术语或者″杂环烷基″用于指代饱和的杂环基团。
杂环可与其侧基在导致稳定结构的任意杂原子或者碳原子上连接。本申请所述的杂环可在碳原子或者氮原子上被取代,只要所得的化合物是稳定的。在杂环上的氮可任选被季铵化。
如本申请使用,术语″杂芳基″意在包括任意稳定的5-至7-元单环或者10-至14-元二环杂环芳环系统,其包含碳原子且由1至4个独立选自N、O和S的杂原子构成。在示例性实施方案中,在芳杂环上的S和O原子的总数不多于2,且典型地不多于1。
杂芳基的实例包括但不限于在本申请示例说明的那些,且其进一步包括吖啶基、吖辛因基(azocinyl)、苯并咪唑基、苯并呋喃基、苯并噻吩基、苯并噻吩基、苯并噁唑基、苯并噻唑基、苯并三唑基、苯并四唑基、苯并异噁唑基、苯并异噻唑基、苯并咪唑啉基、咔唑基、NH-咔唑基、咔啉基、色满基、色烯基、噌啉基、十氢喹啉基、2H.6HA,5,2-二噻嗪基、二氢呋喃并[2,3-b]四氢呋喃基、呋喃基、呋咱基、咪唑烷基、咪唑啉基、咪唑基、1H-吲唑基、3H-吲哚基(indolinyl)、二氢吲哚基、吲嗪基、吲哚基、3H-吲哚基、异苯并呋喃基、异色满基、异吲唑基、异二氢吲哚基、异吲哚基、异喹啉基、异噻唑基、异噁唑基、吗啉基、二氮杂萘基、八氢异喹啉基、噁二唑基、1,2,3-噁二唑基、1,2,4-噁二唑基;1,2,5-噁二唑基、1,3,4-噁二唑基、噁唑烷基、噁唑基、噁唑烷基、嘧啶基、菲啶基、菲咯啉基、吩嗪基、吩噻嗪基、吩噻噁基、吩噁嗪基、酞嗪基、哌嗪基、哌啶基、蝶啶基、嘌呤基、吡喃基、吡嗪基、吡唑烷基、吡唑啉基、吡唑基、哒嗪基、吡啶并噁唑基、吡啶并咪唑基、吡啶并噻唑基、吡啶基、吡啶基、嘧啶基、吡咯烷基、吡咯啉基、2H-吡咯基、吡咯基、喹唑啉基、喹啉基、4H-喹嗪基、喹噁啉基、奎宁环基、四氢呋喃基、四氢异呋喃基、四氢喹啉基、6H-1,2,5-噻二嗪基、1,2,3-噻二唑基、1,2,4-噻二唑基、1,2,5-噻二唑基、1,3,4-噻二唑基、噻蒽基、噻唑基、噻吩基、噻吩并噻唑基、噻吩并噁唑基、噻吩并咪唑基、噻吩基、三嗪基、1,2,3-三唑基、1,2,4-三唑基、1,2,5-三唑基、1,3,4-三唑基和呫吨基。示例性的杂芳基包括但不限于吡啶基、嘧啶基、呋喃基、噻吩基、吡咯基、吡唑基、吡咯烷基、吗啉基、哌啶基、哌嗪基和咪唑基。
在一些实施方案中,Z为四唑基或者CO2Q。当Z为四唑基时,所述四唑环基经碳原子连接,如下显示。
在一些实施方案中,Q为保护基团。如本申请使用,″保护基团″为化学取代基,其可被容易得到的试剂选择性地除去,所述试剂不进攻再生的官能团或者其它在分子中的官能团。适当的保护基团可在例如Wutz et al.(″Greene′s Protective Groups in Organic Synthesis,Fourth Edition,″Wiley-Interscience,2007)中发现。如Wutz et al.(第533-643页)所述的用于保护羧基的保护基团在一些实施方案中使用。在一些实施方案中,保护基团通过用酸处理除去。保护基团的具体实例包括但不限于苄基、对甲氧基苄基(PMB)、叔丁基(tBu)、甲氧基甲基(MOM)、甲氧基乙氧基甲基(MEM)、甲基硫基甲基(MTM)、四氢吡喃基(THP)、四氢呋喃基(THF)、苄基氧基甲基(BOM)、三甲基甲硅烷基(TMS)、三乙基甲硅烷基(TES)、叔丁基二甲基甲硅烷基(TBDMS)和三苯基甲基(三苯甲基,Tr)。
在一些实施方案中,R8为烷基、芳基或者杂芳基,所述基团各自可被取代。在一些实施方案中,R8描述了天然或者合成的氨基酸的侧链。R8的具体实例包括氢、甲基(CH3)、异丙基(CH(CH3)2)、2,2-二甲基乙基(CH2CH(CH3)2)、2-甲基丙基(CH(CH3)CH2CH3)、苯基、4-羟基苯基、羟基甲基(CH2OH)、羧基甲基(CH2CO2H)、硫基甲基(CH2SH)、咪唑基甲基、吲哚基甲基等。
一些实施方案包括根据式I的化合物,其中Z为CO2Q。在其它实施方案中,Q为氢。在一些具体实施方案中,Z为CO2Q且Q为氢。
一些实施方案包括根据式I的化合物,其中m为1、2、3或者4。
其它实施方案包括根据式I的化合物,其中m为0、1、2、3、4、5或者6;R为选自下述的吡啶环
其中X为氟、碘、氟的放射性同位素、碘的放射性同位素、氯、溴、溴的放射性同位素、砹的放射性同位素、NO2、NH2、N+(R2)3、Sn(R2)3、Si(R2)3、Hg(R2)、B(OH)2、-NHNH2、-NHN=CHR3、-NHNH-CH2R3。在一些实施方案中,n为1。每个Q独立选自氢或者保护基团;Z为四唑基或者CO2Q;Y为O、S、N(R′)、C(O)、NR′C(O)、C(O)N(R′)、OC(O)、C(O)O、NR′C(O)NR′、NR′C(S)NR′、NR′S(O)2、S(CH2)p、NR′(CH2)p、O(CH2)p、OC(O)CHR8NHC(O)、NHC(O)CHR8NHC(O)或者共价键;其中p为1、2或者3,R′为H或者C1-C6烷基,且R8为烷基、芳基或者杂芳基,所述基团各自可被取代;R2为C1-C6烷基;且R3为烷基、烯基、炔基、芳基或者杂芳基,所述基团各自被氟、碘、氟的放射性同位素、碘的放射性同位素、氯、溴、溴的放射性同位素或者砹的放射性同位素、NO2、NH2、N+(R2)3、Sn(R2)3、Si(R2)3、Hg(R2)或者B(OH)2取代。在一些实施方案中,R3为芳基,其被氟、碘、氟的放射性同位素、碘的放射性同位素、溴、溴的放射性同位素或者砹的放射性同位素取代。
其它实施方案包括具有下述结构的化合物
其中m不为0。R为选自下述的吡啶环
其中X为氟、碘、氟的放射性同位素、碘的放射性同位素、氯、溴、溴的放射性同位素、砹的放射性同位素、NO2、NH2、N+(R2)3、Sn(R2)3、Si(R2)3、Hg(R2)、B(OH)2、-NHNH2、-NHN=CHR3或者-NHNH-CH2R3。R2为C1-C6烷基;且R3为烷基、烯基、炔基、芳基或者杂芳基,所述基团各自被氟、碘、氟的放射性同位素、碘的放射性同位素、氯、溴、溴的放射性同位素或者砹的放射性同位素、NO2、NH2、N+(R2)3、Sn(R2)3、Si(R2)3、Hg(R2)或者B(OH)2取代。在一些实施方案中,n为1。其它具体实施方案包括下述化合物,其中X为氟、碘或者氟的放射性同位素、碘的放射性同位素、氯、溴、溴的放射性同位素或者砹的放射性同位素。在一些实施方案中,R3为芳基,其被氟、碘、氟的放射性同位素、碘的放射性同位素、溴、溴的放射性同位素或者砹的放射性同位素取代。具体实施方案包括具有如上显示的结构的化合物,其中Z为CO2Q,Q为氢,且m为4。
可制备根据本发明实施方案的化合物,例如根据如下显示的方案1由对甲氧基苄基(PMB)保护的前体Lys-C(O)-Glu制备。
其它实施方案包括具有下述结构的化合物
其中m不为0。R为选自下述的吡啶环
其中X为氟、碘、氟的放射性同位素、碘的放射性同位素、氯、溴、溴的放射性同位素、砹的放射性同位素、NO2、NH2、N+(R2)3、Sn(R2)3、Si(R2)3、Hg(R2)、B(OH)2、-NHNH2、-NHN=CHR3、-NHNH-CH2R3。R2为C1-C6烷基;且R3为烷基、烯基、炔基、芳基或者杂芳基,所述基团各自被氟、碘、氟的放射性同位素、碘的放射性同位素、氯、溴、溴的放射性同位素或者砹的放射性同位素;NO2、NH2、N+(R2)3、Sn(R2)3、Si(R2)3、Hg(R2)或者B(OH)2取代。在一些实施方案中,n为1。其它具体实施方案包括下述化合物,其中X为氟、碘或者氟的放射性同位素、碘的放射性同位素、氯、溴、溴的放射性同位素或者砹的放射性同位素。在一些实施方案中,R3为芳基,其被氟、碘、氟的放射性同位素、碘的放射性同位素、溴、溴的放射性同位素或者砹的放射性同位素取代。具体实施方案包括具有如上显示的结构的化合物,其中Z为CO2Q,Q为氢,且m为1、2或者3。
其它实施方案包括根据式I的化合物,其中R为下述结构
其中X′选自-NHNH2、-NHN=CHR3、-NHNH-CH2R3。在所述实施方案中,R3为烷基、烯基、炔基、芳基或者杂芳基,所述基团各自被氟、碘、氟的放射性同位素、碘的放射性同位素、溴、溴的放射性同位素或者砹的放射性同位素、NO2、NH2、N+(R2)3、Sn(R2)3、Si(R2)3、Hg(R2)、B(OH)2取代。R2为C1-C6烷基;且R3为烷基、烯基、炔基、芳基或者杂芳基,所述基团各自被氟、碘、氟的放射性同位素、碘的放射性同位素、氯、溴、溴的放射性同位素或者砹的放射性同位素、NO2、NH2、N+(R2)3、Sn(R2)3、Si(R2)3、Hg(R2)或者B(OH)2取代。在一些实施方案中,R3为芳基,其被氟、碘、氟的放射性同位素、碘的放射性同位素、溴、溴的放射性同位素或者砹的放射性同位素取代。具体实施方案包括下述化合物,其中n为1。
可制备根据本发明实施方案的化合物,例如,其由肼取代的苯基前体制备,接着用烷基、烯基、炔基、芳基或者杂芳基试剂进行衍生,所述试剂各自被氟、碘、氟的放射性同位素、碘的放射性同位素、氯、溴、溴的放射性同位素或者砹的放射性同位素、NO2、NH2、N+(R2)3、Sn(R2)3、Si(R2)3、Hg(R2)和B(OH)2取代,如在下述方案2中示例说明。
a.4-[2-(叔丁氧基羰基)肼基苯甲酸琥珀酰亚氨酯、三乙胺、DMF、CH2Cl2;b.TFA、CH2Cl2;c.4-氟苯甲醛、50mM KH2PO4、CH3CN;d.4-[18F]氟苯甲醛、50mM KH2PO4。
其它实施方案包括根据式I的化合物,其中m为4,Y为NR′,且R为
其中G为O、NR′或者共价键,R′为H或者C1-C6烷基,且p为1、2、3或者4。R7可选自NH2、N=CHR3和NH-CH2R3,其中R3为烷基、烯基、炔基、芳基或者杂芳基、所述基团各自被以下基团取代:氟、碘、氟的放射性同位素、碘的放射性同位素、溴、溴的放射性同位素、砹的放射性同位素、NO2、NH2、N+(R2)3、Sn(R2)3、Si(R2)3、Hg(R2)或者B(OH)2,其中R2为C1-C6烷基。在一些实施方案中,R3为芳基,其被氟、碘、氟的放射性同位素、碘的放射性同位素、氯、溴、溴的放射性同位素或者砹的放射性同位素取代。在一些实施方案中,G为O或者NR′。
可制备根据本发明实施方案的化合物,例如,将PMB保护的Lys-C(O)-Glu用带有游离胺或者经保护的胺的酰化剂进行酰化、接着如果必要对胺进行脱保护备,并且用烷基、烯基、炔基、芳基和杂芳基试剂进行衍生,所述试剂各自被氟、碘、氟的放射性同位素、碘的放射性同位素、氯、溴、溴的放射性同位素或者砹的放射性同位素、NO2、NH2、N+(R2)3、Sn(R2)3、Si(R2)3、Hg(R2)或者B(OH)2取代,如在以下显示的方案3中示例说明。
a.N-叔丁基氧基羰基-O-(羧基甲基)羟基胺羟基琥珀酰亚氨酯、三乙胺、CH2Cl2;b.TFA、苯甲醚;c.对氟苯甲醛、三乙胺、甲醇;d.对[18F]氟苯甲醛、三乙胺、甲醇。
其它实施方案包括根据本申请讨论的任意实施方案的化合物,其包含放射性同位素。具体示例性放射性同位素包括18F、123I、124I、125I、126I、131I、75Br、76Br、77Br、80Br、80mBr、82Br、83Br和211At。含有放射性同位素的本发明任意实施方案的化合物可用足量放射标记制备以用于成像应用。换句话说,当特定的放射性同位素天然存在时,所述化合物可用大于天然丰度的浓度的放射性同位素制备。
根据前述实施方案的化合物的具体实例包括如下显示的结构的化合物
其它实施方案包括在前述实施方案中所述的化合物的药用盐。
根据本发明的化合物,特别是各种放射性标记化合物,可用于诊断、成像或者治疗目的。例如,一些化合物例如用125I和123I标记的那些,被设计用于SPECT成像,而一些化合物例如用18F和124I标记的那些,被设计用于PET成像,且一些放射性同位素标记的化合物可在治疗上使用。一般地,用于特殊目的的具体放射性同位素的适应性在本领域中被很好的公知。其它示例性实施方案为用作放射性标记化合物前体的化合物,其中取代基可在一步或者多步反应中直接与放射性同位素交换。除非另作描述,术语″转化″、″衍生″、″交换″或者″反应″意在涵盖一步或者多步反应。可与放射性同位素交换的取代基的实例包括卤素、NO2、N+(R2)3、Sn(R2)3、Si(R2)3、Hg(R2)和B(OH)2。其它化合物为前体,其可与放射性同位素标记的试剂进行化学反应以产生稳定的放射性同位素标记的化合物。带有取代基诸如卤素、-NH2、-NHNH2、Sn(R2)3和B(OH)2的化合物,可例如通过在本领域中已知的化学反应转化为放射性同位素标记的化合物。
本发明的化合物可通过本领域已知的方法制备。例如,用作前体的不对称脲可通过如下显示的一般方案产生,其中R为天然或者合成氨基酸的侧链,其带有可进一步衍生的基团。氨基酸的具体实例包括赖氨酸、半胱氨酸、高半胱氨酸、丝氨酸、苏氨酸、酪氨酸、苯丙氨酸和经取代的苯丙氨酸。经取代的苯丙氨酸具有如下苯丙氨酸的结构,其中苯基侧链被例如硝基、氨基或者卤素取代。
经保护的脲前体Cys-C(O)-Glu和Lys-C(O)-Glu(如下显示)(其中Q为对甲氧基苄基(PMB))用于合成示例性化合物。例如Kozikowski et al.(29)描述了前体Cys-C(O)-Glu的制备,同时Banerjee et al.(19)描述了Lys-C(O)-Glu的制备。
本发明的化合物可通过例如使经保护的脲前体与取代有放射性同位素或者其它取代基的试剂反应来制备,所述取代基可转化为或者衍生为含有放射性同位素的化合物。经保护的脲前体诸如如上所述的那些可例如与活化的苯甲酸酯或者吡啶羧酸酯反应。卤代苯甲酸酯和吡啶羧酸酯的含有放射性核素的前体的合成已经在(20)(21)(22)(23)(25)(37)(38)中有述。
吡啶羧酸酯18F前体诸如N-羟基琥珀酰亚胺活化的吡啶羧酸酯可例如通过如下显示的方案制备。
其它18F吡啶前体可通过Olberg et al.(J.Labeled Compd.Radiopharm,vol.52:Supplement 1,p.S160,2009)所述的如下显示的方法制备。
18F吡啶羧酸酯前体可用于例如根据如下显示的方案制备根据本发明的化合物。
类似地,可制备前体,然后可将其转化为18F-取代的化合物。例如,化合物可根据下述方案制备。
其它化合物可由适当的经保护的前体诸如如上所述的那些产生,其通过与带有放射性同位素取代基或可转化为放射性同位素的取代基的溴甲基吡啶化合物反应来产生,或者用含有放射性同位素的化合物进行衍生。例如,下述方案显示了由PMB保护的前体Cys-C(O)-Glu制备示例性化合物。
适于制备根据本发明化合物的溴甲基吡啶化合物诸如18F、NO2或者N(CH3)3+取代的溴甲基吡啶可例如根据如下显示的方案制备。
其它化合物可例如由肼(-NHNH2)取代的吡啶前体制备,接着用烷基、烯基、炔基、芳基或者杂芳基试剂进行衍生,所述试剂各自被氟、碘、氟的放射性同位素、碘的放射性同位素、氯、溴、溴的放射性同位素或者砹的放射性同位素、NO2、NH2、N+(R2)3、Sn(R2)3、Si(R2)3、Hg(R2)和B(OH)2取代。例如,醛试剂可与肼取代基反应,如在下面显示的方案4中示例说明。所得的亚胺也可被例如氰基硼氢化钠或者其它还原剂还原以产生还原的化合物。
a.6-(N′-叔丁氧基羰基-肼基)-烟酸琥珀酰亚氨酯、三乙胺、CH2Cl2;b.TFA、CH2Cl2;c.4-氟苯甲醛、50mM KH2PO4、CH3CN;d.4-[18F]氟苯甲醛、50mM KH2PO4。
其它实施方案包括具有下式的化合物
其中R5为氢或者对甲氧基苄基;R4选自氢、
其中A为氟、碘、氟的放射性同位素、碘的放射性同位素、溴、溴的放射性同位素、砹的放射性同位素、Sn(R2)3、Si(R2)3或者HgCl。其它实施方案包括根据上述结构的化合物,其包含放射性同位素。一个具体的实施方案包括具有如下显示的化学式的化合物,其也已知为PMB保护的Lys-C(O)-Glu。
其中PMB为对甲氧基苄基。另一个具体实施方案包括化合物2-[3-(5-氨基-1-羧基-戊基)-脲基]-戊二酸,其也已知为Lys-C(O)-Glu。其它示例性实施方案包括如下显示的化合物。
含有放射性同位素的示例性化合物包括如下显示的化合物
本发明的其它实施方案包括使一种或者多种细胞、器官或者组织成像的方法,其包括将所述细胞暴露于患者或者对患者给予有效量的具有用于成像的同位素标记的化合物。在一些实施方案中,所述一种或者多种器官或者组织包括前列腺组织、肾组织、脑组织、血管组织或者肿瘤组织。
在另一个实施方案中,所述成像方法适于PSMA抑制剂的成像研究,例如,通过研究非放射标记的抑制剂的竞争性结合。在另一个实施方案中,所述成像方法适于对癌症、肿瘤或者新生物(neoplasm)成像。在另一个实施方案中,所述癌症选自眼癌或眼部癌症、直肠癌、结肠癌、子宫颈癌、前列腺癌、乳腺癌和膀胱癌、口腔癌、良性和恶性肿瘤、胃癌、肝癌、胰腺癌、肺癌、子宫体癌、卵巢癌、前列腺癌、睾丸癌、肾癌、脑癌(例如胶质瘤)、咽喉癌、皮肤黑素瘤、急性淋巴细胞性白血病、急性骨髓性白血病、尤因肉瘤、卡波西肉瘤、基底细胞癌和鳞状细胞癌、小细胞肺癌、绒毛膜癌、横纹肌肉瘤、血管肉瘤、血管内皮瘤、维尔姆斯瘤、成神经细胞瘤、口/咽癌、食管癌、喉癌、淋巴瘤、神经纤维瘤病、结节性硬化症、血管瘤和淋巴血管发生。
本发明的成像方法适于其中涉及PSAM的任意生理学过程或者特征。典型地,成像方法适于表达高浓度PSMA的组织或者靶标区域的鉴别。典型的应用包括对如下进行成像:谷氨酸神经传递、突触前谷氨酸神经传递、表达PSMA的恶性肿瘤或者癌症、前列腺癌(包括转移的前列腺癌)和血管发生。基本上所有实体瘤在新血管系统(neovasculture)中表达PSMA。因此,本发明的方法可用于对几乎所有实体瘤成像,所述实体瘤包括肺癌、肾细胞癌、恶性胶质瘤、胰腺癌、膀胱癌、肉瘤、黑素瘤、乳腺癌、结肠癌、生殖细胞癌、嗜铬细胞瘤、食管癌和胃癌。同样,一些良性病变和组织(包括子宫内膜、神经鞘瘤和巴雷特食管)可根据本发明成像。
本发明提供的血管发生成像的方法适于在对出现血管发生的各种疾病和病症成像中使用。示例性的非限制实例包括肿瘤、胶原血管病、癌症、中风、血管畸形、视网膜病变。本发明提供的血管发生成像的方法也适于在对正常组织发育的诊断和观察中使用。
PSMA经常在各种恶性肿瘤的肿瘤外周和内部区域中在毛细血管的内皮细胞上表达,因此本发明的化合物和使用所述化合物成像的方法适于对所述恶性肿瘤成像。
在一些实施方案中,放射性标记化合物在体内稳定。
在一些实施方案中,放射性标记化合物通过正电子发射断层摄影术(PET)或者单光子发射计算断层摄影术(SPECT)检测。
在一个实施方案中,本发明提供了一种方法,其中受试者为人、大鼠、小鼠、猫、狗、马、羊、牛、猴子、鸟类或者两栖动物。在另一个实施方案中,细胞为体内的或者体外的。可对典型的受试者给药本发明化合物,所述受试者为哺乳动物,特别地为灵长类,特别是人类。对于兽医应用,各种类型的受试者为适用的,例如家畜诸如牛、绵羊、山羊、奶牛、猪等;家禽诸如鸡、鸭、鹅、火鸡等;以及家养动物,特别是宠物诸如狗和猫。对于诊断或者研究应用,各种类型的哺乳动物为适用的受试者,包括啮齿类(例如小鼠、大鼠、仓鼠)、兔子、灵长类和猪诸如近交系猪等。此外,对于体外应用,诸如诊断和研究应用,上述受试者的体液和细胞样本适于使用,诸如哺乳动物(特别是灵长类诸如人)的血液、尿或者组织样本,或者针对兽医应用的上面提及的动物的血液、尿或者组织样本。
在本发明的一些方法中,本发明的化合物由身体的组织快速排泄以防止延长的暴露导致对患者给药的放射性标记化合物的辐射。典型地,本发明的化合物在不到24小时的时间内由体内清除。更典型地,本发明的化合物在不到约16小时、12小时、8小时、6小时、4小时、2小时、90分钟或者60分钟的时间内由体内清除。示例性化合物在60分钟至约120分钟内被清除。
在一些实施方案中,化合物强效地与PSMA蛋白结合,例如并入存在于附属结合位点的结构特征。例如,在化合物3中,4-碘苯甲酰基存在于S1结合位点附属的疏水口袋中(39)。
在一些实施方案中,本发明的化合物在体内稳定,因此基本上所有(例如多于约50%、60%、70%、80%或者90%)的注射化合物在被排泄前不在体内代谢。可对典型的受试者给药本发明化合物,所述受试者为哺乳动物,特别地为灵长类,特别是人类。对于兽医应用,各种类型的受试者为适用的,例如家畜诸如牛、绵羊、山羊、奶牛、猪等;家禽诸如鸡、鸭、鹅、火鸡等;以及家养动物,特别是宠物诸如狗和猫。对于诊断或者研究应用,各种类型的哺乳动物为适用的受试者,包括啮齿类(例如小鼠、大鼠、仓鼠)、兔子、灵长类和猪诸如近交系猪等。此外,对于体外应用,诸如诊断和研究应用,上述受试者的体液和细胞样本适于使用,诸如哺乳动物(特别是灵长类诸如人)的血液、尿或者组织样本,或者针对兽医应用的上面提及的动物的血液、尿或者组织样本。
本发明的其它实施方案提供了治疗肿瘤的方法,其包括对受试者给予治疗有效量的包含治疗有效的放射性同位素的根据本发明的化合物。在一些实施方案中,肿瘤细胞可表达PSMA,诸如前列腺肿瘤细胞或者转移的前列腺肿瘤细胞。在其它实施方案中,肿瘤可通过对表达PSMA的邻近或者附近的细胞进行寻靶作用(targeting)来治疗。例如,肿瘤相关的具有血管发生的血管细胞可被寻靶。基本上所有实体瘤在新血管系统中表达PSMA。因此,本发明的方法可用于对几乎所有实体瘤成像,所述实体瘤包括肺癌、肾细胞癌、恶性胶质瘤、胰腺癌、膀胱癌、肉瘤、黑素瘤、乳腺癌、结肠癌、生殖细胞癌、嗜铬细胞瘤、食管癌和胃癌。同样,一些良性病变和组织(包括子宫内膜、神经鞘瘤和巴雷特食管)可根据本发明成像。治疗有效的放射性同位素的实例包括131I和211At。
其它实施方案提供了试剂盒,其包含根据本发明的化合物。在一些实施方案中,试剂盒提供了包装的药物组合物,其包含药用载体和本发明的化合物。在一些实施方案中,所述包装的药物组合物包含与放射标记前体组合时产生本发明化合物必要的反应前体。本发明提供的其它包装的药物组合物还包含以下标记,其包括至少一种:由提供的前体制备根据本发明化合物的说明书、使用组合物以对表达PSMA的细胞或者组织成像的说明书、或者使用组合物以对患有应激相关病症的患者中的谷氨酸神经传递成像的说明书、或者使用组合物以对前列腺癌成像的说明书。
在一些实施方案中,根据本发明的试剂盒含有如上所述的约1至约30mCi的放射性核素标记的成像剂,其与药用载体组合。所述成像剂和载体可以溶液或者低压冻干的形式提供。当试剂盒的成像剂和载体为低压冻干形式时,所述试剂盒可任选含有无菌且生理学可用的复原媒介物诸如水、盐水、缓冲盐水等。所述试剂盒可提供溶液或者低压冻干形式的本发明化合物,且这些本发明试剂盒的组分可任选含有稳定剂诸如NaCl、硅酸盐、磷酸盐缓冲液、抗坏血酸、龙胆酸等。试剂盒组分的额外稳定作用可在该实施方案中提供,例如,通过提供抗氧化形式的还原剂。对所述稳定剂和稳定方法的确定和优化在本领域技术人员的水平范围内已知。
在一些实施方案中,试剂盒提供了与放射标记试剂在位点上(on-site)组合的非放射标记前体。放射标记试剂的实例包括Na[125I]、Na[131I]、Na[123I]、Na[124I]、K[18F]、Na[76Br]、Na[75Br]、Na[211At]。其它放射标记试剂包括如前讨论的活化的放射标记的苯甲酰基化合物、放射标记的吡啶羧酸酯、放射标记的溴甲基吡啶化合物以及放射标记的醛。
本发明的成像剂可通过本领域的技术人员根据本发明的方法使用。由于当与PSMA接触时在位点累积的成像剂的空间分布的差异,所以产生了图像。空间分布可使用适于具体标记的任意方法测量,例如,γ照相机、PET装置、SPECT装置等。成像剂累积的程度可使用针对定量放射性发射的已知方法进行定量。特别有效的成像方法使用多于一种成像剂以进行同时研究。
一般地,将可检测的有效量的本发明成像剂对受试者给药。根据本发明,本发明成像剂的″可检测的有效量″定义为使用用于临床使用的仪器足够产生可接受图像的量。可检测的有效量的本发明成像剂可以多于一次注射给予。本发明成像剂的可检测的有效量可根据以下因素进行改变:诸如个体敏感性的程度、个体的年龄、性别和体重、个体的特应性应答和放射量测定。本发明成像剂的可检测的有效量也可根据仪器和胶片相关因素进行改变。所述因素的优化在本领域的技术人员水平范围内已知。针对诊断目的使用的成像剂的量和成像研究的持续时间取决于用于标记药物的放射性核素、患者的体重、待治疗病症的性质和严重性、患者正在进行的治疗性处理的性质以及患者的特应性应答。最后,主治医师将决定对每个个体患者给予的成像剂的量以及成像研究的持续时间。
″药用载体″是指生物相容的溶液,其具有预期的无菌度、p[Eta]、等渗性、稳定性等,且可包括任意和所有的溶剂、稀释剂(包括无菌盐水、氯化钠注射液、林格注射液、葡萄糖注射液、葡萄糖和氯化钠注射液、乳酸林格注射液和其它缓冲水溶液)、分散介质、包衣、抗菌剂和抗真菌剂、等渗剂等。药用载体也可包括稳定剂、防腐剂、抗氧化剂或者对于本领域技术人员已知的其它添加剂,或者本领域已知的其它媒介物。
如本申请使用,″药用盐″是指本发明披露的化合物的衍生物,其中母体化合物通过制备其无毒酸或者碱盐来修饰。药用盐的实例包括但不限于碱残基诸如胺的无机酸或者有机酸盐;酸残基诸如羧酸的碱或者有机盐等。药用盐包括由例如无毒无机酸或者有机酸形成的母体化合物的常规无毒盐或者季铵盐。例如,常规无毒酸盐包括由无机酸(诸如盐酸、氢溴酸、硫酸、氨基磺酸、磷酸、硝酸等)衍生的那些;以及由有机酸(诸如乙酸、丙酸、琥珀酸、羟乙酸、硬脂酸、乳酸、苹果酸、酒石酸、枸橼酸、抗坏血酸、扑酸、马来酸、羟基马来酸、苯基乙酸、谷氨酸、苯甲酸、水杨酸、甲磺酸、对氨基苯磺酸、2-乙酰氧基苯甲酸、富马酸、甲苯磺酸、甲磺酸、乙烷二磺酸、草酸、羟乙磺酸、HOOC-(CH2)n-COOH(其中n为0-4))等制备的盐。本发明的药用盐可由含有碱或者酸部分的母体化合物通过常规化学方法进行合成。一般地,所述盐可通过使这些化合物的游离酸形式与化学量的适当碱(诸如Na、Ca、Mg或者K的氢氧化物、碳酸盐、碳酸氢盐等)反应来制备,或者通过使这些化合物的游离碱形式与化学量的适当酸反应来制备。所述反应典型地在水或者在有机溶剂或者在两者的混合物中进行。一般地,适当时使用非水介质如醚、乙酸乙酯、乙醇、异丙醇或者乙腈,其中额外的适当盐的可用的列表在例如Remington′s Pharmaceutical Sciences,17th ed.,Mack Publishing Company,Easton,PA,p.1418(1985)中发现。
将在本申请通篇引用的所有引用的参考文献的内容(包括文献来源、期刊专利、公开专利申请)通过引用的方式明确地并入本申请。本发明以及制备和使用本发明的方式和方法以完全、清晰、简洁且精确的方式进行描述以使得所属领域的任意技术人员能够制备且使用本发明。
应该理解的是前面描述了本发明的示例性实施方案且可对本申请在不脱离如在所附权利要求中阐述的本发明主旨或者范围的情况下进行修改。
实施例
通过下述实施例进一步示例说明本发明且所述实施例不应理解为以任何方式进行限制。除非另作说明,本发明的实践将使用常规技术,其在本领域技术范围内。在文献中完全解释了所述技术。
合成
一般操作
所有试剂和溶剂由Sigma-Aldrich(Milwaukee,WI)或者Fisher Scientific(Pittsburgh,PA)购买。PMB-保护的Lys-C(O)-Glu(化合物1)的甲苯磺酸盐根据报道的操作制备(19)。1H NMR光谱在Varian Mercury 400mHz或者BrukerAvance 400mHz光谱仪上获得。ESI质谱在API 15OEXTM或者Bruker Esquire3000plus系统上获得。高分辨质谱(HRMS)在Notre Dame大学在质谱实验室在JEOL JMS-AX505HA质谱仪上进行。参考化合物的HPLC纯化在具有Waters 490E多波长UV/Vis检测器(Milford,MA)的Waters 625LC系统上进行。
[125I]NaI由MP Biomedicals(Costa Mesa,CA)购买。[18F]氟化物使用General Electric PETtrace生物医学回旋加速器(Milwaukee,WI)通过高压[18O]H2O靶标的18MeV质子轰击产生。固相萃取柱(C18plus,Sep-Pak)由Waters Associates购买。放射性在Capintec CRC-10R剂量校准器(Ramsey,NJ)中测量。比放射性如下计算:在半制备性HPLC纯化过程中在产物的保留时间内洗脱的放射性除以相应于紫外吸收曲线下面积的质量。
实施例1
2-{3-[5-(4-碘-苯甲酰基氨基)-1-(4-甲氧基-苄基氧基羰基)-戊基]-脲基}-戊二酸二(4-甲氧基-苄基)酯(2)
向1(0.126g,0.148mmol)在CH2Cl2(4mL)中的溶液中加入三乙胺(0.1mL,0.712mmol),接着加入N-羟基琥珀酰亚氨基-4-碘苯甲酸酯(24)(0.073g,0.212mmol)。在室温搅拌2小时后,将溶剂在旋转蒸发器上蒸发。将粗物质在硅胶柱上纯化(使用甲醇/二氯甲烷(5∶95)洗脱)得到0.127g(94%)的2。1HNMR(400MHz,CDCl3)δ7.69(d,J=8.8Hz,2H),7.49(d,J=8.8Hz,2H),7.17-7.26(m,6H),6.77-6.86(m,7H),5.37-5.46(m,2H),4.93-5.09(m,6H),4.32-4.40(m,2H),3.76-3.77(m,9H),3.30-3.33(m,2H),2.30-2.36(m,2H),2.07-2.12(m,1H),1.84-1.92(m,1H),1.70-1.79(m,1H),1.49-1.57(m,3H),1.25-1.33(m,2H)。ESI-Mass C43H48IN3O11Na[M+Na]+的计算值为932.2,实测值为932.7。
实施例2
2-{3-[1-羧基-5-(4-碘-苯甲酰基氨基)-戊基]-脲基}-戊二酸(3)
在0℃将3%苯甲醚在TFA(15mL)中的溶液加入至2(0.117g,0.129mmol)中。将混合物在室温搅拌30分钟然后在旋转蒸发器上浓缩。将粗物质经HPLC纯化(Econosil C1810μ,250x10mm,H2O/CH3CN/TFA(70/30/0.1),4mL/min,3在11分钟洗脱)得到0.040g(57%)的3。1H NMR(400MHz,D2O∶CD3CN=1∶1(v/v))δ7.79(d,J=8.0Hz,2H),7.46(d,J=8.0Hz,2H),4.08-4.16(m,2H),3.26(m,2H),2.35(m,2H),2.00-2.03(m,1H),1.72-1.84(m,2H),1.52-1.62(m,3H),1.34-1.36(m,2H)。ESI-Mass C19H24IN3O8Na[M+Na]+的计算值为572.1,实测值为572.0。FAB-HRMS C19H25IN3O8[M+H]+的计算值为550.0686,实测值为550.0648。
实施例3
2-{3-[1-(4-甲氧基-苄基氧基羰基)-5-(4-三丁基甲锡烷基-苯甲酰基氨基)-戊基]-脲基}-戊二酸二(4-甲氧基-苄基)酯(4)
向1(0.120g,0.148mmol)在CH2Cl2(6mL)中的溶液中加入三乙胺(0.1ml,0.712mmol),接着加入N-羟基琥珀酰亚氨基-4-三丁基甲锡烷基苯甲酸酯(24)(0.075g,0.147mmol)。在室温搅拌2小时后,将反应混合物在旋转蒸发器上浓缩。将粗物质在硅胶柱上纯化(使用甲醇/二氯甲烷(5∶95)洗脱)得到0.130g(86%)的4。1H NMR(400MHz,CDCl3)δ7.68(d,J=8.4Hz,2H),7.49(d,J=7.6Hz,2H),7.18-7.24(m,6H),6.80-6.85(m,6H),6.47(m,1H),5.44-5.47(m,2H),4.95-5.09(m,6H),4.41-4.45(m,2H),3.76-3.77(m,9H),3.32-3.38(m,2H),2.35-2.37(m,2H),2.08-2.16(m,1H),1.90-1.94(m,1H),1.70-1.79(m,1H),1.45-1.64(m,9H),1.24-1.30(m,8H),1.01-1.06(m,6H),0.85-0.87(m,9H)。ESI-Mass C55H75N3O11SnNa[M+Na]+的计算值为1096.4,实测值为1096.7。
实施例4
2-{3-[5-(4-氟-苯甲酰基氨基)-1-(4-甲氧基-苄基氧基羰基)-戊基]-脲基}-戊二酸二(4-甲氧基-苄基)酯(5)
向1(0.120g,0.164mmol)在CH2Cl2(4mL)中的溶液中加入三乙胺(0.1mL,0.712mmol),接着加入N-羟基琥珀酰亚氨基-4-氟苯甲酸酯(22)(0.043g,0.181mmol)。在室温搅拌2小时后,将溶剂在旋转蒸发器上蒸发。将粗物质在硅胶柱上纯化(使用甲醇/二氯甲烷(5∶95)洗脱)得到0.120g(91%)的5。1HNMR(400MHz,CDCl3)δ7.78(m,2H),7.16-7.24(m,6H),7.01(m,2H),6.80-6.85(m,7H),5.51-5.64(m,2H),4.93-5.09(m,6H),4.34-4.40(m,2H),3.75-3.77(m,9H),3.28-3.34(m,2H),2.26-2.38(m,2H),2.04-2.15(m,1H),1.82-1.91(m,1H),1.68-1.74(m,1H),1.44-1.57(m,3H),1.25-1.33(m,2H)。ESI-Mass C43H48FN3O11Na[M+Na]+的计算值为824.3,实测值为824.7。
实施例5
2-{3-[1-羧基-5-(4-氟-苯甲酰基氨基)-戊基]-脲基}-戊二酸(6)
在0℃将3%苯甲醚在TFA(15mL)中的溶液加入至5(0.081g,0.1mmol)中。将混合物在室温搅拌20分钟然后在旋转蒸发器上浓缩。将粗物质经HPLC纯化(Econosil C18 10μm,250x10mm,H2O/CH3CN/TFA(75/25/0.1),4mL/min,其中纯化的6在约9分钟洗脱)得到0.035g(79%)的6。1H NMR(400MHz,D2O)δ7.66-7.69(m,2H),7.11-7.16(m,2H),4.12-4.19(m,2H),3.28-3.31(m,2H),2.39-2.43(m,2H),2.07-2.09(m,1H),1.79-1.90(m,2H),1.55-1.69(m,3H),1.39-1.40(m,2H)。ESI-Mass C19H24FN3O8Na[M+Na]+的计算值为464.1,实测值为464.4。FAB-HRMS C19H25FN3O8[M+H]+的计算值为442.1626,实测值为442.1646。
实施例6
2-(3-{1-(4-甲氧基-苄基氧基羰基)-5-[(5-三丁基甲锡烷基-吡啶-3-羰基)-氨基]-戊基}-脲基)-戊二酸二(4-甲氧基-苄基)酯(7)
向1(0.120g,0.148mmol)在CH2Cl2(2mL)中的溶液中加入三乙胺(0.1mL,0.712mmol),接着加入N-羟基琥珀酰亚氨基-5-(三正丁基甲锡烷基)-3-吡啶羧酸酯(25)(0.075g,0.147mmol)。在室温搅拌30分钟后,将粗物质在硅胶柱上纯化(使用甲醇/二氯甲烷(5∶95)洗脱)得到0.115g(76%)的7。1HNMR(400MHz,CDCI3)δ8.85(s,1H),8.65(s,1H),8.19(s,1H),7.19-7.24(m,6H),6.81-6.85(m,6H),6.65(m,1H),5.32-5.35(m,1H),5.22-5.25(m,1H),4.96-5.10(m,6H),4.40-4.47(m,2H),3.70-3.77(m,9H),3.34(m,2H),2.35-2.39(m,2H),2.10-2.15(m,1H),1.90-1.94(m,1H),1.72-1.79(m,1H),1.46-1.59(m,9H),1.27-1.36(m,8H),1.02-1.25(m,6H),0.84-0.87(m,9H)。ESI-Mass C54H75IN4O11Sn[M+H]+的计算值为1075.4,实测值为1075.5。
实施例7
2-(3-{1-羧基-5-[(5-碘-吡啶-3-羰基)-氨基]-戊基}-脲基)-戊二酸(8)
向7(0.025g,0.023mmol)在2mL甲醇中的溶液中加入0.020mL乙酸和碘化钠(0.017g,0.113mmol),接着加入N-氯琥珀酰亚胺(0.025g,0.187mmol)。在室温20分钟后,将溶剂在氮气流下除去。然后将TFA在CH2Cl2(1∶1,2mL)中的溶液加入至残留物中。在室温1小时后,将8(0.008g,62%)通过HPLC分离(Econosphere C18 10μ.,250x10mm,H2O/CH3CN/TFA(85/15/0.1),4mL/min,产物峰在10分钟洗脱)。1H NMR(400MHz,D2O)δ9.00-9.15(m,3H),4.18-4.24(m,2H),3.40-3.41(m,2H),2.45-2.49(m,2H),2.12-2.13(m,1H),1.85-1.97(m,2H),1.64-1.73(m,3H),1.44(m,2H)。ESI-Mass C18H24IN4O8[M+H]+的计算值为551.1,实测值为551.0。FAB-HRMS C18H24IN4O8[M+H]+的计算值为551.0639,实测值为551.0607。
实施例8
2-{3-[1-羧基-5-(4-[125I]碘-苯甲酰基氨基)-戊基]-脲基}-戊二酸([125I]3)
[125I]3经相应的三正丁基甲锡烷基前体4的碘代脱锡化(iododestannylation)、接着进行脱保护来制备。向4(1mg,0.932μmol)在0.1mL甲醇中的溶液中加入0.001mL乙酸和[125I]NaI,接着加入N-氯琥珀酰亚胺(0.25mg,0.187μmol)在0.025mL甲醇中的溶液。在室温搅拌20分钟后,将溶剂在氮气流下除去。然后将3%苯甲醚在TFA(0.1mL)中的溶液加入至残留物中。在室温5分钟后,将[125I]3经HPLC分离(Econosil C1810μ.,250x4.6mm,H2O/CH3CN/TFA(72/28/0.1),1mL/min)。[125I]3的反相放射-HPLC纯化使用Waters 510泵、在254nm的Waters 490E可变波长UV/Vis检测器和Bioscan Flow Count PMT放射性检测器(Washington,DC)进行。该反应的收率为65-80%(三次分开确定)。比放射性始终>700Ci/mmol(25.9GBq/μmol)。
实施例9
N-羟基琥珀酰亚氨基-4-[18F]氟苯甲酸酯[18F]SFB
N-羟基琥珀酰亚氨基-4-[18F]碘苯甲酸酯([18F]SFB)通过文献操作制备(23)并经HPLC纯化(Econosphere C 18 10μ,250x10mm,H2O/CH3CN/TFA(75/25/0.1),5mL/min,产物峰在19分钟洗脱)。
2-{3-[1-羧基-5-(4-[18F]氟-苯甲酰基氨基)-戊基]-脲基}-戊二酸([18F]6)
在含有2mg 1和0.002mL Et3N的小瓶中加入[18F]SFB在CH2Cl2中的溶液。将反应混合物在45℃加热20分钟,然后将溶剂在氮气流下除去。然后加入0.1mL 3%苯甲醚/TFA并将反应混合物在45℃加热5分钟。在HPLC纯化(Econosphere C18 10μ.,250x10mm,H2O/CH3CN/TFA[80/20/0.1],4mL/min)后得到最终产物([18F]6)。[18F]6的衰变校正收率(decay-correctedyield)为30-35%,其基于起始[18F]氟化物(三次分开确定)。由加入[18F]氟化物的时间开始的平均合成时间为180分钟。由40mCi[18F]氟化物开始,[18F]6的比放射性实测为250-300Ci/mmol(9.1-11.1GBq/μmol)。
实施例10
2-(3-{1-羧基-5-[(5-[125I]碘-吡啶-3-羰基)-氨基]-戊基}-脲基)-戊二酸([125I]8)
[125I]8经相应的三正丁基甲锡烷基前体7的碘代脱锡化、接着进行脱保护来制备。向7(0.05mg,0.047μmol)在0.05mL甲醇中的溶液中加入0.002mL乙酸、[125I]NaI,接着加入N-氯琥珀酰亚胺(0.1mg,0.749μmol)在0.010mL甲醇中的溶液。在室温20分钟后,将溶剂在氮气流下除去。然后将3%苯甲醚在TFA(0.1mL)中的溶液加入至残留物中。在室温5分钟后,将[125I]8经HPLC分离(Econosil C18 10μ.,250x4.6mm,H2O/CH3CN/TFA[85/15/0.1],1mL/min)。[125I]8的反相放射-HPLC纯化使用Waters 510泵、在354nm的Waters 490E可变波长UV/Vis检测器和Bioscan Flow Count PMT放射性检测器(Washington,DC)进行。该反应的收率为59-75%(三次分开确定)。在每个实例中比放射性为>2,000Ci/mmol(74.0GBq/μmol)。
实施例11
2-(3-{1-羧基-5-[2-(4-氟-亚苄基氨基氧基)-乙酰基氨基]-戊基}-脲基)-戊二酸(9)的合成
向化合物1(0.062g,0.073mmol)在CH2Cl2(2mL)中的溶液中加入三乙胺(0.045mL,0.320mmol),接着加入N-叔丁基氧基羰基-O-(羧基甲基)羟基胺羟基琥珀酰亚氨酯(0.025g,0.087mmol,Bioconjugate Chemistry 1993,4,515-20)。在室温搅拌30分钟后,将溶剂蒸发。将粗物质经硅胶柱纯化(使用甲醇/二氯甲烷(5∶95)洗脱)得到0.055g(89%)的化合物10。1H NMR(400MHz,CDCl3)δ7.98(bs,1H),7.91(s,1H),7.25-7.27(m,6H),6.85-6.88(m,6H),5.56-5.63(m,2H),5.01-5.11(m,6H),4.47-4.53(m,1H),4.27-4.38(m,3H),3.79(m,9H),3.30-3.38(m,1H),3.15-3.21(m,1H),2.36-2.41(m,2H),2.10-2.15(m,1H),1.89-1.95(m,1H),1.74-1.81(m,1H),1.23-1.61(m,14H)。ESI-Mass C43H57N4O14[M+H]+的计算值为853.4,实测值为853.5。
将3%苯甲醚在TFA(1mL)中的溶液中加入化合物10(0.031g,0.036mmol)。将混合物在室温搅拌5分钟,然后在旋转蒸发器上浓缩。将粗物质经HPLC纯化(Econosil C18 10μ,250×10mm,H2O/CH3CN/TFA(90/10/0.1),4mL/min)得到0.009g(49%)的化合物11。1H NMR(400MHz,D2O)δ4.68(s,2H),4.28-4.35(m,2H),3.34(m,2H),2.58(m,2H),2.24(m,1H),1.78-2.13(m,3H),1.62(m,2H),1.49(m,2H)。ESI-Mass C14H25N4O9[M]+的计算值为393.2,实测值为393.3。
向化合物11(0.005g,0.010mmol)在甲醇(0.3mL)中的溶液中加入三乙胺(0.0075ml,0.05mmol),接着加入4-氟苯甲醛(0.0017ml,0.016mmol)。在室温30分钟后,将反应混合物经HPLC纯化(Econosil C18 10μ,250×10mm,H2O/CH3CN/TFA(75/25/0.1),得到化合物9(0.002g,41%)。1H NMR(400MHz,D2O∶CD3CN=1∶1)δ8.26(s,1H),7.56-7.80(m,2H),7.10-7.14(m,2H),4.53(s,2H),4.13-4.17(m,1H),3.96-4.00(m,1H),3.16(m,2H),2.37(m,2H),2.10-2.16(m,1H),1.80-1.88(m,2H),1.65(m,1H),1.54(m,1H),1.42(m,1H),1.28(m,1H)。ESI-Mass C21H27F4O9Na[M+Na]+的计算值为521.2,实测值为521.3。FAB-HRMS C21H28FN4O9[M+H]+的计算值为499.1840,实测值为499.1869。
实施例12
2-(3-{1-羧基-5-[2-(4-[18F]氟-亚苄基氨基氧基)-乙酰基氨基]-戊基}-脲基)-戊二酸([18F]9)的合成
4-[18F]氟苯甲醛通过使用文献操作(Nuclear Medicine and Biology 19(1992)275-281)合成并经HPLC纯化(H2O/CH3CN/TFA 70/30/0.1)。4-[18F]氟苯甲醛的HPLC洗脱液用H2O稀释,经过C18 Sep Pak,用2mL甲醇洗脱。向化合物11(1mg)在甲醇(0.05mL)中的溶液中加入[18F]4-氟苯甲醛在2mL甲醇中的溶液。在室温搅拌30分钟后,将反应混合物经HPLC纯化得到化合物[18F]9。放射化学收率(衰变校正收率且基于起始[18F]氟化物,n=2)为6-9%。最终化合物的比放射性实测为350-1300mCi/μmol。
实施例13
2-[3-(1-羧基-5-{4-[N′-(4-氟-亚苄基)-肼基]-苯甲酰基氨基}-戊基)-脲基]-戊二酸(12)的合成
向化合物1(0.030g,0.035mmol)在CH2Cl2(2mL)中的溶液中加入三乙胺(0.020mL,0.142mmol),接着加入4-[2-(叔丁氧基羰基)肼基苯甲酸琥珀酰亚氨酯(0.020g,0.057mmol,Bioconjugate Chem.1991,2,333-336)在DMF(0.2mL)中的溶液。在室温搅拌1小时后,将溶剂蒸发。将粗物质在硅胶柱上纯化(使用甲醇/二氯甲烷(5∶95)洗脱)得到0.025g(78%)的化合物13。1HNMR(400MHz,CDCl3)δ7.63(d,J=8.0Hz,2H),7.19-7.23(m,6H),6.81-6.85(m,6H),6.68(d,J=8.8Hz,2H),6.61(s,2H),6.15(bs,1H)5.68(m,2H),4.95-5.07(m,6H),4.34-4.45(m,2H),3.74(m,9H),3.25(m,2H),2.31(m,2H),2.10(m,1H),1.84(m,1H),1.19-1.74(m,14H)。ESI-Mass C48H59N5O13Na[M+Na]+的计算值为936.4,实测值为935.9。
将TFA/CH2Cl2 1∶1(2mL)的溶液加入至化合物13(0.025g,0.027mmol)中。将混合物在室温搅拌1小时,然后在旋转蒸发器上浓缩。将粗物质经HPLC纯化(Econosphere C18 10μ,250×10mm,H2O/CH3CN/TFA(92/8/0.1),4mL/min)得到0.010g(64%)的化合物14。1H NMR(400MHz,D2O)δ7.72(d,J=8.8Hz,2H),7.02(d,J=8.8Hz,2H),4.15-4.23(m,2H),3.35(m,2H),2.46(m,2H),2.10-2.17(m,1H),1.80-1.95(m,2H),1.59-1.74(m,3H),1.45(m,2H)。ESI-Mass C19H28N5O8[M+H]+的计算值为454.2,实测值为453.9。
向化合物14(0.004g,0.009mmol)在水(0.030mL)中的溶液中加入0.1mL 50mM KH2PO4,接着加入4-氟苯甲醛(0.0011g,0.009mmol)在0.05mL乙腈中的溶液。将反应混合物在90℃加热10分钟,然后经HPLC纯化(Econosphere C18 10μ,250×10mm,H2O/CH3CN/TFA(65/35/0.1),得到化合物12(0.003g,76%)。1H NMR(400MHz,D2O∶CD3CN=3∶2)δ7.82(s,1H),7.64(m,4H),7.11(m,4H),4.14(m,2H),3.24(m,2H),2.01(m,2H),1.94(m,1H),1.80(m,2H),1.52-1.63(m,3H),1.35(m,2H)。ESI-Mass C26H31FN5O8[M+H]+的计算值为560.2,实测值为560.1。
实施例14
2-[3-(1-羧基-5-{4-[N′-(4-[18F]氟-亚苄基)-肼基]-苯甲酰基氨基}-戊基)-脲基]-戊二酸(18F]12)的合成
4-[18F]氟苯甲醛通过使用已知方法(Nuclear Medicine and Biology 33(2006)677-683)合成。向粗4-[18F]氟苯甲醛在DMSO中的溶液中加入1-2mg化合物14、0.2mL 50mM KH2PO4。封闭小瓶并在90℃加热15分钟。然后将反应混合物经HPLC纯化(Ecomosphere C18 10μ,250×10mm,H2O/CH3CN/TFA[70/30/0.1],4mL/min)。放射化学收率(衰变校正收率且基于起始[18F]氟化物,n=2)为30-55%。化合物12在制备后不久分解。未确定最终化合物的比放射性。
实施例15
2-{3-[1-羧基-5-({6-[N′-(4-氟-亚苄基)-肼基]-吡啶-3-羰基}-氨基)-戊基]-脲基}-戊二酸(15)的合成
向化合物1(0.040g,0.047mmol)在CH2Cl2(2mL)中的溶液中加入三乙胺(0.020mL,0.14mmol),接着加入6-(N′-叔丁氧基羰基-肼基)-烟酸琥珀酰亚氨酯(0.020g,0.057mmol,Bioconjugate Chem.1991,2,333-336)。在室温搅拌1小时后,将溶剂蒸发。将粗物质经硅胶柱纯化(使用甲醇/二氯甲烷(10∶90)洗脱)得到0.032g(74%)的化合物16。1H NMR(400MHz,CDCl3)δ8.54(s,1H),7.90(m,1H),7.17-7.23(m,6H),6.90-7.05(m,3H),6.79-6.84(m,6H),6.55(d,J=8.8Hz,2H),5.79(m,2H),4.94-5.07(m,6H),4.38-4.45(m,2H),3.74(m,9H),3.26(m,2H),2.33(m,2H),2.07(m,1H),1.85(m,1H),1.68(m,1H),1.18-1.55(m,13H)。ESI-Mass C47H59N6O13[M+H]+的计算值为915.4,实测值为914.9。
将TFA/CH2Cl2 1∶1(2mL)的溶液加入至化合物16(0.032g,0.035mmol)中。将混合物在室温搅拌1小时,然后在旋转蒸发器上浓缩。将粗物质经HPLC纯化(Econosphere C 18 10μ,250x10mm,H2O/CH3CN/TFA(92/8/0.1),4mL/min)得到0.009g(45%)的化合物17。1H NMR(400MHz,D2O)δ8.07-8.40(m,2H),7.00-7.13(m,1H),4.18-4.24(m,2H),3.38(m,2H),2.48(m,2H),2.14(m,1H),1.86-1.98(m,2H),1.62-1.65(m,3H),1.44(m,2H)。ESI-MassC18H27N6O8[M+H]+的计算值为455.2,实测值为455.0。
向化合物17(0.005g,0.0011mmol)在水(0.030mL)中的溶液中加入50mM KH2PO40.1mL,接着加入4-氟苯甲醛(0.002g,0.0016mmol)在0.05mL乙腈中的溶液。将反应混合物在90℃加热10分钟,然后经HPLC纯化(Econosphere C18 10μ,250×10mm,H2O/CH3CN/TFA(80/20/0.1),得到化合物15(0.002g,41%)。1H NMR(400MHz,D2O)δ8.38(m,1H),8.22(m,2H),7.83(m,2H),7.20(m,3H),4.26(m,2H),3.41(m,2H),2.52(m,2H),2.11(m,1H),1.92(m,2H),1.73(m,3H),1.47(m,2H)。ESI-Mass C25H30FN6O8[M+H]+的计算值为561.2,实测值为560.9。
实施例16
2-{3-[1-羧基-5-({6-[N′-(4-[18F]氟-亚苄基)-肼基]-吡啶-3-羰基}-氨基)-戊基]-脲基}-戊二酸([18F]15)的合成
4-[18F]氟苯甲醛通过使用已知方法(Nuclear Medicine and Biology 33(2006)677-683)合成。向粗4-[18F]氟苯甲醛在DMSO中的溶液中加入1-2mg化合物16、0.2mL 50mM KH2PO4。封闭小瓶并在90℃加热15分钟。然后将反应混合物经HPLC纯化(Ecomosphere C18 10μ,250×10mm,H2O/CH3CN/TFA[80/20/0.1],4mL/min)。放射化学收率(衰变校正收率且基于起始[18F]氟化物,n=1)为49%。
实施例17
体外结合
NAALADase测定
NAAG水解基本上如前所述进行(26)(27)。简言之,LNCaP细胞萃取物通过在NAALADase缓冲液(50mM Tris[pH 7.4]和0.5%Triton X-100)中超声来制备。在37℃具有或者不具有抑制剂的条件下培养细胞裂解物10分钟。培养后,在37℃、10-15分钟内加入放射性标记底物N-乙酰基-L-天冬氨酰基-L-(3,4-3H)谷氨酸(NEN Life Science Products,Boston,MA),使其终浓度为30nM。通过加入等体积的冰冷的100mM磷酸钠和2mM EDTA来终止反应。将产物经AG 1-X8甲酸酯树脂(Bio-Rad Laboratories,Hercules,CA)阴离子交换色谱分配(用1M甲酸钠洗脱),并用液体闪烁计数定量。使用半对数图和在酶活性被50%抑制的浓度确定的IC50值来确定抑制曲线。进行三次重复平行测定,其中整体抑制研究至少重复一次以证实亲和性和抑制模式。在水解的线性区间(即总底物中<20%的裂解)收集数据。使用Cheng-Prusoff转换计算出酶抑制常数(Ki值)(28)。数据分析使用适用于Windows的GraphPad Prism version 4.00(GraphPad Software,San Diego,California)来进行。
还可使用根据前述报道的操作的基于荧光的测定来确定PSMA活性(29)。简言之,在具有抑制剂、存在4μM NAAG的条件下培养LNCaP细胞裂解物。还原的谷氨酸的量通过用Amplex Red谷氨酸试剂盒(MolecularProbes Inc.,Eugene,OR,USA)工作溶液培养来测量。通过用VICTOR3V多标记平板读数器(Perkin Elmer Inc.,Waltham,MA,USA)读取来确定荧光,其中激发波长为490nm且发射波长为642nm。
进行NAALADase抑制测定以确定3、6和8的Ki值(26)。相对于[3H]NAAG的固定量(30nM),每个化合物的浓度在0.01nM至1000nM范围内改变。NAALADase(PSMA)由LNCaP细胞裂解物制备。产生的酶裂解产物[3H]谷氨酸的百分数通过闪烁计数进行测量并对在研究中的化合物的对数浓度进行绘图。所得数据的线性回归解析为50%[3H]谷氨酸产生(50%抑制)且得到3的Ki值为0.010nM、6的Ki值为0.256nM且8的Ki值为0.351nM(表1)。所述结果与该类其它化合物一致(30)。当这些化合物经作为对亲和性第二次检查的基于荧光的抑制测定进行评价时,3、6和8的Ki值分别为0.010、0.194和0.557nM。
表1.体外PSMA抑制活性和计算出的ClogD值
化合物 Ki[nM]a SDb Ki[nM]c SDb ClogD 3 0.010 0.003 0.010 0.004 -5.16 6 0.256 0.038 0.194 0.134 -5.64 8 0.351 0.257 0.557 0.265 -5.88
a由NAALADase(放射测量)测定得到。b95%置信区间。c由基于荧光的测定得到。
实施例18
在PSMA活性位点的抑制剂模型
蛋白制备
用于对接(docking)研究的GCPII的3-D坐标按照与2-PMPA(PDB ID:2PVW)或者化合物3(PDB ID:3D7H)络合的GCPII晶体结构经在DiscoveryStudio 2.0(DS 2.0)中完成的净化方法(clean-up process)进行制备,其可校正结构无序、固定键级(bond order)和氨基酸残基的连接性。应用于对接研究的蛋白和结合位点的CHARMm力场经自动化方法通过使用来自受体腔探测位点的选项来获得。在活性位点的两个锌离子和氯根离子输入为Zn2+和Cl-,其中有效电荷分别为+2和-1。
应用CDOCKER对接研究
化合物3、6和8的对接研究用2PVW的两个构象异构体使用通过修改默认设置(最高命中:20,无规则构象:20,无规则构象动力学步骤:1000,无规则构象动力学靶标温度:1000,精修定向:20,最大错误定向(maximumbad orientations):800,定向vdW能量阈值:300,模拟加热步骤:2000,加热靶标温度:700,冷却步骤:5000,冷却靶标温度:300,网格扩展(Gridextension):8,配体部分电荷:CHARMm)的DS 2.0完成的CDOCKER模块来进行。具有高CDOCKER能量的每个配体的最佳位置用于产生与来自GCPII络合物(PDB ID:3D7H)的结晶配体3(以较亮颜色显示)的重叠结构(图1和2)。来自结晶配体3的在内的7个水分子包括在采用3D7H的对接研究中。
解析了与3络合的PSMA结晶结构,其位于蛋白数据库(PDB ID:3D7H)中。Barinka et al.(39)描述了与3以及与其它基于脲的PSMA抑制剂诸如DCIT、DCMC和DCFBC共结晶的PSMA细节。如由模型研究预测,在与3的PSMA络合物中仅发现精氨酸碎片区域(patch region)的结合构象。为了阐明其它两个化合物(6和8)的潜在结合模式,在水分子的存在或者缺失条件下在活性位点进行使用3D7H的3-D坐标的对接研究。使用CDOCKER模型的对接研究的3、6和8的最佳位置在图1显示,其与3的结晶配体(即与PSMA共结晶的化合物)重叠。如在图1中显示,所有带有放射性核素的部分(4-碘苯基、4-氟苯基和5-碘-3-吡啶基)位于S1结合位点的精氨酸碎片内。相比于5-碘-3-吡啶基部分,4-碘苯基和4-氟苯基在投影点(subpocket)内深深地突出。三个位置的CDOCKER评分排序为3(80.63)>6(72.39)>8(69.78)。3、6和8的芳环提供了与Arg 463和Arg 534的胍官能团的π-π相互作用,导致配体在投影点内的稳定作用。在8的情况下,吡啶环的氮能够进行与Asp 465羧酸酯的静电作用和与一个水分子的氢结合。在不具有水分子的条件下在活性位点的PSMA的对接结果显示6和8的带有放射性核素部分在投影点外部且突出至隧道区域(图2),而3的4-碘苯基突出至投影点内。基于体外PSMA抑制活性和分子模型研究,认为相比于与隧道区域的相互作用,配体与S1结合位点的投影点的相互作用对亲合力贡献更大。
并不惊奇的是,3、6和8在PSMA活性位点内具有相似构象。然而,在每个情况下,在S1’结合位点的精氨酸碎片内8的带有放射性核素部分残基不与在口袋内时一样深(图1)。化合物3已经与PSMA共结晶,且该化合物的结合构象显示与酶的Arg 463和Arg 534产生的π-π叠加,而8的吡啶部分不能形成类似产生的π-π相互作用。然而,与3或者6不同,8能够与Asp 465(经吡啶的氮)、Asp 453(经羰基氧)和水分子相互作用,这是因为带有放射性核素部分的羰基指向S1投影点。那些额外的相互作用可能弥补较少产生的8的π-π键合几何学,条件是具有高亲合力相互作用和产生肿瘤的清晰图形的成像剂(图5)。尽管6在活性位点内采用与3非常相似的构象时,但以显著较低的亲合力结合,这可能是由于碘在针对3的正电荷精氨酸碎片内的额外的相互作用。总的来说,3、6和8(表1)的亲合力用基于分子模型的预测来跟踪。
生物分布和成像
细胞系和小鼠模型:PC-3PIP(PSMA+)和PC-3flu(PSMA-)细胞系由Dr.Warren Heston(Cleveland Clinic)获得且如前所述进行培养(19)。在所有细胞生长至达到80-90%融合后,用胰蛋白酶消化并配制在汉克平衡盐溶液(Hank’s Balanced Salt Solution)(HBSS,Sigma,St.Louis,MO)中以接种至小鼠。
所有动物研究完全依照关于进行动物实验的惯例指导方针进行。对雄性重度联合免疫缺陷病(SCID)小鼠(Charles River Laboratories,Wilmington,MA)在其各肩前方经皮下植入1-5x106个细胞。PC-3PIP细胞植入左肩后方且PC-3flu细胞植入右肩后方。当肿瘤异种移植物达到直径3-5mm时,对小鼠成像或者将其用于生物分布测定。
离体生物分布和成像
实施例19
化合物[125I]3
对带有异种移植物的SCID小鼠经尾静脉注射74Bq(2μCi)的[125I]3。通过颈脱位法将每四只小鼠在注射后30、60、120、300分钟、12、24和48小时处死。快速切除心、肺、肝、胃、胰、脾、脂肪、肾、肌肉、小肠和大肠、膀胱以及PIP和flu肿瘤。同样收集0.1mL血液样本。对器官称重并将组织放射性用自动化γ计数器(1282 Compugamma CS,Pharmacia/LKBNuclear,Inc,Gaithersburg,MD)测量。每克组织的注射剂量百分数(%ID/g)通过与初始剂量的标准稀释样品进行比较来计算。针对衰变校正所有测量。
表2概括了[125I]3的离体啮齿动物组织分布结果。血液、肾、膀胱、脾和PSMA+PC-3PIP肿瘤在开始、注射后(p.i.)30分钟时间点显示了高摄取。注射后60分钟,膀胱显示了最高的摄取,而在PSMA+PC-3PIP肿瘤中的摄取也实现了其最高绝对值。肾在注射后24小时实现其最大摄取。在肾中标记的值主要是由于特异性结合而不是肾清除,这是由于大量的PSMA在近端肾小管的表达(31)(32)。膀胱摄取表示在所有时间点的排泄,即没有对膀胱壁的特异性结合。肿瘤摄取证实了高度特异性,其通过在60分钟的10∶1的PIP∶flu比且该比值在48小时升至140∶1来证实。在与其它器官相关的肿瘤内的放射性药物摄取也随时间增加。不进行位点特异性阻断研究,这是因为根据工程化(PC-3PIP和PC-3flu)肿瘤的用途认为该研究在确定结合特异性中是多余的。
表2.[125I]3在荷瘤小鼠中的离体生物分布a,b
a.值按%ID/g±SD计;ND=未确定;n=4,除了在48小时其中n=3。Int.=肠。
b.Pip肿瘤:器官比值在括号内。
实施例20
化合物[18F]6
离体生物分布如在针对[125I]3所述进行,除了下述不同:对小鼠注射3.7MBq(100[μCi)的[18F]6且摄取时间为注射后30、60、120和300分钟。
表3示例说明了[18F]6的组织摄取。该放射性药物在PSMA+PIP肿瘤(8.58±3.09%ID/g,在注射后30分钟)和肾(72.05±3.19%ID/g,在注射后30分钟)中也显示了快速、特异性摄取。在非特异性组织中摄取和由该组织清除分别为低的和快速的。仅有肝和脾显示与在PIP肿瘤中观察得到的相当的摄取值。脾显示了在任意非特异性组织中最高的摄取(12.67±0.36%ID/g,在注射后30分钟),这可能是由于GCPIII的存在,其为一种GCPII/PSMA的亲近同系物(33)。推测出[18F]6可与GCPIII以及GCPII结合,这是因为其它几种PSMA配体已经显示具有该行为(34)。
表3.[18F]6在荷瘤小鼠中的离体生物分布a,b
a.值按%ID/g±SD计;n=4;Int.=肠。
b.Pip肿瘤:器官比值在括号内。
实施例21
化合物[125I]8
对荷PC-3PIP和PC-3flu异种移植物SCID小鼠经尾静脉注射74KBq(2μCi)的[125I]8。通过颈脱位法每次将四只小鼠在注射后30、60、120、300分钟、8和24小时处死。快速切除心、肺、肝、胃、胰、脾、脂肪、肾、肌肉、小肠和大肠、膀胱以及PIP和flu肿瘤。同样收集0.1mL血液样本。对器官称重并将组织放射性用自动化γ计数器(1282 Compugamma CS,Pharmacia/LKB Nuclear,Inc,Gaithersburg,MD)测量。所述%ID/g通过与初始剂量的标准稀释样品进行比较来计算。针对衰变校正所有测量。
表4概括了[125I]8的离体啮齿动物组织分布结果。肝、脾、肾和PSMA+PC-3PIP肿瘤在开始、注射后(p.i.)30分钟时间点显示了高摄取。注射后60分钟,肾显示了最高的摄取,而在PSMA+PC-3PIP肿瘤中摄取保持稳定,显示与30分钟时相似的值。在24小时,显示放射性由独立的非靶标器官完全清除。在肾中观察的值主要是由于特异性结合而不是肾清除,如同如上讨论的其它放射性药物。膀胱摄取表示在所有时间点的排泄,即没有对膀胱壁的特异性结合,而肿瘤摄取证实了高度特异性,其通过在30分钟的18∶1的PIP∶flu比且该比值在24小时升至48∶1来证实。如同[125I]3,在与其它器官相关的肿瘤内的放射性药物摄取也随时间增加。
表4.[125I]8在荷瘤小鼠中的离体生物分布a,b
a.值按%ID/g±SD计;n=4;Int.=肠。
b.Pip肿瘤:器官比值在括号内。
关于离体生物分布,在注射后1小时3证实了肿瘤摄取仅为6的约2倍,而其亲合力约高25倍。然而,针对6的靶点与非靶点(PIP∶flu)比值高于3,其反映了较低的非特异性结合。针对3在注射后48小时所述靶点与非靶点比值升至约140,且针对6在注射后5小时所述比值升至31。化合物8与3不同在于芳环为吡啶且碘在3-位取代。在注射后1小时,相比于3,8证实了类似的高肿瘤摄取(12.05±4.92%ID/g),但在此时具有更高的靶点与非靶点(PIP∶flu)比值(22),其在注射后24小时升至48.3。有趣的是,在三个测试化合物中8的亲合力为最低的(表1),然而,其在注射后1小时提供了最高的靶点与非靶点比值。如在前述工作中用该系列99mTc-标记的化合物证实,再次显示了亲合力与体内肿瘤摄取选择性之间无明确的关系。值得注意的是,所有这些亲合力为相当高的且肿瘤被清晰描绘(图3-5)。
体内生物分布和成像
实施例22
化合物[125I]3
对植入有PC-3PIP和PC-3flu异种移植物的单一SCID小鼠经静脉内注射37MBq(1mCi)的[125I]3在盐水中的溶液。在注射后4和6小时,用异氟烷麻醉并在氧气中保持在1%异氟烷的条件下。将小鼠固定在X-SPECT(Gamma Medica,Northridge,CA)支架上并使用两个低能量、高分辨针孔型准直器(Gamma Medica)扫描,其以6°一次增量、每次增量45秒进行360°旋转。所有γ图像使用软件(Gamma Medica,Northridge,CA)重建。在SPECT采集后,立刻将小鼠通过CT(X-SPECT)在4.6cm视野内使用600μA、50kV光束进行扫描。然后使用供应商软件(Gamma Medica,Northridge,CA)共同记录SPECT和CT数据并使用AMIDE(http://amide.sourceforge.net/)显示。使用Ordered Subsets-Expectation Maximization(OS-EM)算法对数据进行重建。
图3显示在注射后4小时放射性药物摄取的SPECT-CT图像。注意到在PC-3PIP中的密集摄取和在PC-3flu肿瘤中的摄取缺失。放射性示踪剂的甲状腺摄取说明游离[125I]碘化物的存在,这是由于脱卤素酶的脱碘作用(35)(36)。然而,游离[125I]碘化物的量相比于PC-3PIP肿瘤摄取的量而言是少的(甲状腺∶肌肉=2;PIP肿瘤∶甲状腺=12.5)。在肝中观察到少量的放射性药物摄取,而无同时发生的胃肠摄取,这可能是由于[125I]3的亲水性质(在pH 7.4,ClogD=-5.16)。
实施例23
化合物[18F]6
体内PET-CT
将皮下植入PC-3PIP和PC-3flu异种移植物的SCID小鼠麻醉(使用3%异氟烷在氧气中的条件进行诱导并使用0.8L/min流速的1.5%异氟烷在氧气中的条件进行维持)并将其俯卧固定在GE eXplore Vista小动物PET扫描器(GE Healthcare,Milwaukee,WI)的支架上。对小鼠静脉内注射7.4MBq(200μCi)的[18F]6,接着使用下述规程进行图像采集:图像作为假动态扫描(pseudodynamic scan),即一连串连续的全身图像的以三个层位(bed position)获取,总计90分钟。每个位置的采样时间为5分钟,以至于给定的层位(或者小鼠器官)每15分钟再采样一次。使用250-700keV的能量窗。使用FORE/2D-OSEM方法(2次重复,16个亚组)重建图像且包括对放射性衰变、扫描器停滞时间和散射辐射的校正。
图4显示来自注射后94-120分钟动态扫描的平均结果。针对[18F]6的摄取模式与针对[125I]3的极其相似:在PIP肿瘤内容易观察到,在flu肿瘤内观察不到,高肾摄取以及中等程度的肝摄取。由于针对[18F]6(在pH 7.4,-5.64)和[125I]3的类似的ClogD值,结果可预期。对于[125I]3,膀胱是完全可见的,这是由于放射性尿的不断累积存在,然而,对膀胱壁的特异性结合未被证实。
实施例24
化合物[125I]8
对植入有LNCaP异种移植物的单一SCID小鼠经静脉内注射37MBq(1mCi)的[125I]8在盐水中的溶液。在注射后4小时,小鼠用异氟烷麻醉并保持在氧气中在1%异氟烷的条件下。将小鼠固定在X-SPECT(Gamma Medica,Northridge,CA)支架上并使用两个低能量、高分辨针孔型准直器(GammaMedica)扫描,其以6°一次增量、每次增量45秒进行360°旋转。所有γ图像使用软件(Gamma Medica,Northridge,CA)重建。在SPECT采集后,立刻将小鼠通过CT(X-SPECT)在4.6cm视野内使用600μA、50kV光束进行扫描。然后使用供应商软件(Gamma Medica,Northridge,CA)共同记录SPECT和CT数据并使用AMIDE(http://amide.sourceforge.net/)显示。使用OrderedSubsets-Expectation Maximization(OS-EM)算法对数据进行重建。
图5显示在注射后4小时放射性药物摄取的SPECT-CT图像。肿瘤摄取和保留为高的,其具有缓慢清除,而[125I]8由非靶标组织的清除为快速的。
针对苯基类似物与吡啶类似物相比的靶标/非靶标比值的比较数据
在注射后5小时给出化合物3(4-碘苯甲酰基衍生物)的靶标/非靶标比值,且在注射后4小时给出化合物8(3-碘-5-羧基1-吡啶基衍生物)的靶标/非靶标比值。靶标/非靶标比值在下表5中显示。
表5
肿瘤(T)/器官 化合物3(注射后5小时) 化合物8(注射后4小时) T/血液 31 17 T/心 14 20 T/肺 3.5 14 T/肝 3 1 T/胃 15 42 T/胰 8 14 T/脾 0.1 3 T/脂肪 2 105 T/肾 0.1 0.1 T/肌肉 31 21 T/小肠 8 21 T/大肠 17 21
认为8相对3改善的靶标/非靶标比值是由于8的较快的非靶标清除(尽管两者的血液清除率是相当的)且3尤其在较后的时间点具有较高的肿瘤保留。化合物3比8更具亲脂性且具有更高的脂肪摄取。3在脂肪中的保留可提供针对在肿瘤和正常器官摄取的3的缓慢释放。
3的高且延长的肿瘤和肾(PSMA在小鼠中富集)摄取是由于该化合物与PSMA紧密结合。4-碘苯基部分位于依附于S1结合位点的疏水口袋且提供额外的疏水-疏水相互作用(39)。吡啶类似物相比3更具极性,因此它们应在该结合位点具有减少的疏水-疏水相互作用。
化合物6相比于化合物8具有更好的靶标/非靶标比值。因此更具极性的6的吡啶类似物背景清除率(background clearance)应得到更好的肿瘤-非靶标比值。
参考文献
1.Jemal,A.,Murray,T.,Samuels,A.,Ghafoor,A.,Ward,E.,and Thun,M.J.(2003)Cancer statistics,2003.CA Cancer J Clin 53,5-26.
2.Geus-Oei,L.F.,and Oyen,W.J.(2008)Predictive and prognostic valueof FDG-PET.Cancer Imaging 8,70-80
3.Larson,S.M.,Morris,M.,Gunther,I.,Beattie,B.,Humm,J.L.,Akhurst,T.A.,Finn,R.D.,Erdi,Y.,Pentlow,K.,Dyke,J.,Squire,O.,Bornmann,W.,McCarthy,T.,Welch,M.,and Scher,H.(2004)Tumor localization of16beta-18F-fluoro-5alpha-dihydrotestosterone versus 18F-FDG in patients withprogressive,metastatic prostate cancer.J Nucl Med 45,366-373
4.Scher,B.,Seitz,M.,Albinger,W.,Tiling,R.,Scherr,M.,Becker,H.C.,Souvatzogluou,M.,Gildehaus,F.J.,Wester,H.J.,and Dresel,S.(2007)Value of11C-choline PET and PET/CT in patients with suspected prostate cancer.Eur JNucl Med Mol Imaging 34,45-53
5.Reske,S.N.,Blumstein,N.M.,Neumaier,B.,Gottfried,H.W.,Finsterbusch,F.,Kocot,D.,Moller,P.,Glatting,G.,and Perner,S.(2006)Imaging prostate cancer with 11C-choline PET/CT.J Nucl Med 47,1249-1254
6.Vees,H.,Buchegger,F.,Albrecht,S.,Khan,H.,Husarik,D.,Zaidi,H.,Soloviev,D.,Hany,T.F.,and Miralbell,R.(2007)18F-choline and/or11C-acetate positron emission tomography:detection of residual or progressivesubclinical disease at very low prostate-specific antigen values(<1ng/mL)afterradical prostatectomy.BJU Int 99,1415-1420
7.Ponde,D.E.,Dence,C.S.,Oyama,N.,Kim,J.,Tai,Y.C.,Laforest,R.,Siegel,B.A.,and Welch,M.J.(2007)18F-fluoroacetate:a potential acetateanalog for prostate tumor imaging--in vivo evaluation of 18F-fluoroacetateversus 11C-acetate.J Nucl Med 48,420-428
8.Schuster,D.M.,Votaw,J.R.,Nieh,P.T.,Yu,W.,Nye,J.A.,Master,V.,Bowman,F.D.,Issa,M.M.,and Goodman,M.M.(2007)Initial experience withthe radiotracer anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid withPET/CT in prostate carcinoma.J Nucl Med 48,56-63
9.Oka,S.,Hattori,R.,Kurosaki,F.,Toyama,M.,Williams,L.A.,Yu,W.,Votaw,J.R.,Yoshida,Y.,Goodman,M.M.,and Ito,O.(2007)A preliminarystudy of anti-1-amino-3-18F-fluorocyclobutyl-1-carboxylic acid for the detectionof prostate cancer.J Nucl Med 48,46-55
10.Tehrani,O.S.,Muzik,O.,Heilbrun,L.K.,Douglas,K.A.,Lawhorn-Crews,J.M.,Sun,H.,Mangner,T.J.,and Shields,A.F.(2007)Tumorimaging using 1-(2′-deoxy-2′-18F-fluoro-beta-D-arabinofuranosyl)thymine andPET.J Nucl Med 48,1436-1441
11.Chang,S.S.,Reuter,V.E.,Heston,W.D.,Bander,N.H.,Grauer,L.S.,and Gaudin,P.B.(1999)Five different anti-prostate-specific membraneantigen(PSMA)antibodies confirm PSMA expression in tumor-associatedneovasculature.Cancer Res 59,3192-3198.
12.Zhou,J.,Neale,J.H.,Pomper,M.G.,and Kozikowski,A.P.(2005)NAAG peptidase inhibitors and their potential for diagnosis and therapy.Nat RevDrug Discov 4,1015-1026
13.Chang,S.S.(2004)Overview of prostate-specific membrane antigen.Rev Urol 6 Suppl 10,S13-18
14.Murphy,G.P.,Kenny,G.M.,Ragde,H.,Wolfert,R.L.,Boynton,A.L.,Holmes,E.H.,Misrock,S.L.,Bartsch,G.,Klocker,H.,Pointner,J.,Reissigl,A.,McLeod,D.G.,Douglas,T.,Morgan,T.,and Gilbaugh,J.,Jr.(1998)Measurement of serum prostate-specific membrane antigen,a new prognosticmarker for prostate cancer.Urology 51,89-97.
15.Galsky,M.D.,Eisenberger,M.,Moore-Cooper,S.,Kelly,W.K.,Slovin,S.F.,DeLaCruz,A.,Lee,Y.,Webb,I.J.,and Scher,H.I.(2008)Phase Itrial of the prostate-specific membrane antigen-directed immunoconjugateMLN2704 in patients with progressive metastatic castration-resistant prostatecancer.J Clin Oncol 26,2147-2154
16.Lange,P.H.(2001)PROSTASCINT scan for staging prostate cancer.Urology 57,402-406.
17.Haseman,M.K.,Rosenthal,S.A.,and Polascik,T.J.(2000)Capromab Pendetide imaging of prostate cancer.Cancer Biother Radiopharm 15,131-140.
18.Rosenthal,S.A.,Haseman,M.K.,and Polascik,T.J.(2001)Utility ofcapromab pendetide(ProstaScint)imaging in the management of prostate cancer.Tech Urol 7,27-37.
19.Banerjee,S.R.,Foss,C.A.,Mease,R.C.,Fox,J.,Kozikowski,A.P.,and Pomper,M.G.(2008)Synthesis and evaluation of 99mTc/Re labeled PSMAinhibitors.J Med Chem 51,4504-4517.
20.Vaidyanathan,G.,and Zalutsky,M.R.(1994)Improved synthesis ofN-succinimidyl 4-[18F]fluorobenzoate and its application to the labeling of amonoclonal antibody fragment.Bioconjug Chem 5,352-356
21.Vaidyanathan,G.,and Zalutsky,M.R.(2006)Synthesis ofN-succinimidyl 4-[18F]fluorobenzoate,an agent for labeling proteins andpeptides with 18F.Nature protocols 1,1655-1661
22.Vaidyanathan,G.,and Zalutsky,M.R.(1992)Labeling proteins withfluorine-18 using N-succinimidyl-4-[18F]fluorobenzoate.Int J Rad Appl InstrumPart B 19,275-281
23.Chen,X.,Park,R.,Shahinian,A.H.,Tohme,M.,Khankaldyyan,V.,Bozorgzadeh,M.H.,Bading,J.R.,Moats,R.,Laug,W.E.,and Conti,P.S.(2004)18F-labeled RGD peptide:initial evaluation for imaging brain tumorangiogenesis.Nucl Med Biol 31,179-189
24.Dekker,B.,Keen,H.,Shaw,D.,Disley,L.,Hastings,D.,Hadfield,J.,Reader,A.,Allan,D.,Julyan,P.,Watson,A.,and Zweit,J.(2005)Functionalcomparison of annexin V analogues labeled indirectly and directly withiodine-124.Nucl Med Biol 32,403-413
25.Garg,S.,Garg,P.K.,and Zalutsky,M.R.(1991)N-succinimidyl5-(trialkylstannyl)-3-pyridinecarboxylates:a new class of reagents for proteinradioiodination.Bioconjug Chem 2,50-56
26.Lupold,S.E.,Hicke,B.J.,Lin,Y.,and Coffey,D.S.(2002)Identification and characterization of nuclease-stabilized RNA molecules thatbind human prostate cancer cells via the prostate-specific membrane antigen.Cancer Res 62,4029-4033
27.Robinson,M.B.,Blakely,R.D.,Couto,R.,and Coyle,J.T.(1987)Hydrolysis of the brain dipeptide N-acetyl-L-aspartyl-L-glutamate.Identificationand characterization of a novel N-acetylated alpha-linked acidic dipeptidaseactivity from rat brain.J Biol Chem 262,14498-14506
28.Cheng,H.C.(2001)determination of KB or Ki from IC50.A closerlook at the Cheng-Prusoff equation,the Schild plot and related power equations.J.Pharmacol.Toxicol.Methods 46,61-71
29.Kozikowski,A.P.,Nan,F.,Conti,P.,Zhang,J.,Ramadan,E.,Bzdega,T.,Wroblewska,B.,Neale,J.H.,Pshenichkin,S.,and Wroblewski,J.T.(2001)Design of remarkably simple,yet potent urea-based inhibitors of glutamatecarboxypeptidase II(NAALADase).J Med Chem 44,298-301.
30.Kozikowski,A.P.,Zhang,J.,Nan,F.,Petukhov,P.A.,Grajkowska,E.,Wroblewski,J.T.,Yamamoto,T.,Bzdega,T.,Wroblewska,B.,and Neale,J.H.(2004)Synthesis of urea-based inhibitors as active site probes of glutamatecarboxypeptidase II:efficacy as analgesic agents.J Med Chem 47,1729-1738
31.Slusher,B.S.,Tsai,G.,Yoo,G.,and Coyle,J.T.(1992)Immunocytochemical localization of the N-acetyl-aspartyl-glutamate(NAAG)hydrolyzing enzyme N-acetylated alpha-linked acidic dipeptidase(NAALADase).J Comp Neurol 315,217-229
32.Silver,D.A.,Pellicer,I.,Fair,W.R.,Heston,W.D.,andCordon-Cardo,C.(1997)Prostate-specific membrane antigen expression innormal and malignant human tissues.Clin Cancer Res3,81-85
33.Bzdega,T.,Crowe,S.L.,Ramadan,E.R.,Sciarretta,K.H.,Olszewski,R.T.,Ojeifo,O.A.,Rafalski,V.A.,Wroblewska,B.,and Neale,J.H.(2004)The cloning and characterization of a second brain enzyme with NAAGpeptidase activity.J Neurochem 89,627-635
34.Hlouchova,K.,Barinka,C.,Klusak,V.,Sacha,P.,Mlcochova,P.,Majer,P.,Rulisek,L.,and Konvalinka,J.(2007)Biochemical characterization ofhuman glutamate carboxypeptidase III.J Neurochem 101,682-696
35.Bakker,W.H.,Krenning,E.P.,Breeman,W.A.,Koper,J.W.,Kooij,P.P.,Reubi,J.C.,Klijn,J.G.,Visser,T.J.,Docter,R.,and Lamberts,S.W.(1990)Receptor scintigraphy with a radioiodinated somatostatin analogue:radiolabeling,purification,biologic activity,and in vivo application in animals.J Nucl Med 31,1501-1509
36.Bakker,W.H.,Krenning,E.P.,Breeman,W.A.,Kooij,P.P.,Reubi,J.C.,Koper,J.W.,de Jong,M.,Lameris,J.S.,Visser,T.J.,and Lamberts,S.W.(1991)In vivo use of a radioiodinated somatostatin analogue:dynamics,metabolism,and binding to somatostatin receptor-positive tumors in man.J NuclMed 32,1184-1189.
37.Garg,S.,Garg,P.K.,Zhao,X-G.,Friedman,H.S.,Bigner,D.D.,andZalutsky,M.R.,Radioiodination of a monoclonal antibody using N-succinimidyl5-iodo-3-pyridinecarboxylate Nucl.Med.Biol.20:835-842(1993);
38.Ghirmai,S.,Mume,E.,Tolmachev,V.,and Sjoberg,S.,Synthesis andradioiodination of some daunorubicin and doxorubicin derivatives CarbohydrateResearch 340 15-24(2005).
39.Barinka,C.,Byun,Y.,Dusich,C.L.,Banerjee,S.R.,Chen,Y.,Castanares,M.,Kozikowski,A.P.,Mease,R.C.,Pomper,Martin G.,andLubkowski,J.,Interactions between human glutamate carboxypeptidase II andurea-based inhibitors:Structural Characterizations.J.Med.Chem.51:7737-7743(2008)。