聚合物组合物 本发明涉及一种聚合物组合物,尤其涉及一种支化聚合物及其制备方法。
支化聚合物是具有有限尺寸的支化聚合物分子,常常具有许多支链。支化聚合物不同于交联聚合物网络,后者具有分子相互连接的无限尺寸且通常不溶。支化聚合物通常可溶于溶解类似线性聚合物的溶剂中,但其优点是支化聚合物的溶液通常不如具有类似分子量的相应线性聚合物的相同浓度溶液粘稠。因此,支化聚合物的溶液尤其在高固含量下更易加工且可以使用比线性聚合物溶液少的溶剂制备。为此,支化聚合物例如是溶剂基涂料和油墨的有用添加剂且它们还具有许多其他应用。另外,支化聚合物的熔体粘度也比类似的线性聚合物低且可用于改善注塑、压塑、挤塑或粉末涂料中的熔体加工性。
支化聚合物可以由两步法制备,其中含有支化位点的线性聚合物进行进一步聚合或改性步骤,由支化位点形成支链。两步法的固有复杂性可能不吸引人且使所得支化聚合物使用昂贵。另外,可以使用一步法,其中存在多官能单体以在聚合物链中提供可以从中生长聚合物支链的官能团。然而,使用传统一步法的限制是必须小心控制多官能单体的量,通常控制到基本上低于约0.5%w/w,以避免聚合物的过度交联和形成不溶性凝胶。使用该体系避免交联是极罕见的,尤其是不存在作为稀释剂的溶剂和/或单体高度转化为聚合物时。
GB-A-2294467描述了一种分子量为80,000-400,000的支化聚甲基丙烯酸甲酯聚合物,其中支化点间的分子量为30,000-1,000,000,其包括0.05-0.2%多官能单体和<0.5mol%链转移剂。US-A-5,767,211(1998年6月16日公布)描述了多官能超支化聚合物的合成,其通过在链转移催化剂和非过氧化物游离基引发剂存在下使二-或三-乙烯基单体游离基聚合而进行。所得聚合物为油状低Tg材料。
EP-A-103199描述了丙烯酸叔丁酯与0.1-3%多官能丙烯酸酯和1-30%官能共聚单体的共聚物,其通过在链转移剂存在下进行溶液聚合而制备。官能共聚单体提供用于形成通过缩合化学法交联的涂料组合物的活性交联位点。
US-A-4880889描述了预交联的可溶性聚合物,其含10-60%OH官能化单体,5-25%具有至少两个烯属不饱和双键的单体和15-82%其他多官能单体。该聚合物组合物通过在有机溶剂中于约50%的低聚合固含量下由溶液聚合法制备,以生产未胶凝的共聚物,其中使用>0.5%地聚合调节剂。这些聚合物用于交联涂料中,其中OH基团与密胺甲醛交联剂反应。US-A-4988760和US-A-5115064定义了相似的组合物,其包含具有不同的可交联基团的官能化单体,所述基团包括羧基和异氰酸根。
在本发明的第一方面中,一种制备支化聚合物的方法包括如下步骤:将每分子具有一个可聚合双键的单官能单体与0.3-100%w/w(基于单官能单体重量)每分子具有至少两个可聚合双键的多官能单体和0.0001-50%w/w(基于单官能单体重量)链转移剂以及任选地,游离基聚合引发剂,混在一起,然后使所述混合物反应形成聚合物。这样可以由简单的一步法制备可溶性支化聚合物。
在本发明的第二方面,提供了一种包含如下组分的残基的聚合物:每分子具有一个可聚合双键的单官能单体,0.3-100%w/w(基于单官能单体重量)每分子具有至少两个可聚合双键的多官能单体,0.0001-50%w/w(基于单官能单体重量)链转移剂和聚合引发剂。
为简单起见,每分子具有一个可聚合双键的单体下文称为单官能单体(MFM),而每分子具有至少两个可聚合双键的单体下文称为多官能单体(PFM)。
令人惊奇的是,可溶性支化聚合物可以由含有较大比例的多官能单体的混合物制备,因为该类混合物通常被预期会产生不溶性交联聚合物网络。重要的是,聚合可以在不存在溶剂下一步完成且单体高度转化为聚合物(>90%),得到可溶性支化聚合物。
单体混合物的聚合可以使用游离基聚合法进行,例如溶液聚合法、悬浮聚合法、乳液聚合法和本体聚合法都可使用。对于本发明支化聚合物的许多应用而言,要求该材料呈固体形式。对于这些应用,由溶液聚合法制备的聚合物要求在使用前除去溶剂。这增加了成本且难以除去所有溶剂,从而在应用聚合物时产生缺陷。另外,当要求聚合物以溶液形式使用时,必须在溶剂中进行聚合,若要避免分离聚合物的步骤,则该溶剂存在于最终应用中。因此有利的是通过非溶液法如悬浮聚合或本体聚合生产支化聚合物。令人惊奇的是可以由多官能单体以非溶液法成功地形成支化聚合物,因为预期这样会形成凝胶。US-A-4880889教导要求使用特殊反应条件来获得未胶凝的聚合物,包括在约50%的较低固含量下进行溶液聚合。
因此,在本发明的又一方面,提供了一种通过悬浮聚合制备支化聚合物的方法,包括:(ⅰ)将每分子具有一个可聚合双键的单官能单体与0.3-100%w/w(基于单官能单体重量)每分子具有至少两个可聚合双键的多官能单体和0.0001-50%w/w(基于单官能单体重量)链转移剂混在一起;(ⅱ)将所得混合物作为分散相分散于连续相中,在连续相中单体在分散剂存在下较为不溶,该分散剂将单体混合物在连续相中维持为分散相;(ⅲ)引发单体混合物聚合;(ⅳ)将单体在连续相中的分散液在反应温度下维持足够长的时间以使单体反应形成聚合物;和(ⅴ)随后将含聚合物的分散相与连续相分离。
连续相通常为水。合适的分散剂在本技术领域众所周知且包括改性纤维素聚合物(如羟乙基、羟丙基、羟丙基甲基纤维素)、聚丙烯酸、聚甲基丙烯酸、部分和完全中和的这些酸、聚乙烯醇、聚(乙烯醇/乙酸乙烯酯)共聚物等。通常在整个聚合方法过程中高速搅拌单体在连续相中的分散液以帮助使分散液保持稳定并使连续相和分散的粒子或液滴之间存在良好的传热。随着聚合反应的进行,分散相中的单体发生反应而形成仍留在分散相中的聚合物。反应温度可以根据所用单体和引发剂的类型变化且通常为20-150℃,例如50-120℃。合适的反应温度在本领域是众所周知的。
单官能单体可以包括任何可以通过游离基机理聚合的单体,如甲基丙烯酸酯和丙烯酸酯,苯乙烯及其衍生物(苯乙烯系),乙酸乙烯酯,马来酐,衣康酸,N-烷基(芳基)马来酰亚胺和N-乙烯基吡咯烷酮,乙烯基吡啶,丙烯酰胺,甲基丙烯酰胺,N,N-二烷基甲基丙烯酰胺和丙烯腈。优选的单体为乙烯基单体,如苯乙烯系,丙烯酸酯和甲基丙烯酸酯,(甲基)丙烯酰胺和丙烯腈。可以使用一种以上的单官能单体的混合物来生产无规、交替嵌段或接枝共聚物。
合适的单官能(甲基)丙烯酸酯单体实例包括(甲基)丙烯酸的低级烷基酯,即C1~C20烷基酯,如(甲基)丙烯酸甲酯,(甲基)丙烯酸乙酯,(甲基)丙烯酸丙酯,(甲基)丙烯酸正丁酯,(甲基)丙烯酸异丁酯,(甲基)丙烯酸叔丁酯,(甲基)丙烯酸2-乙基己酯,(甲基)丙烯酸辛酯或(甲基)丙烯酸十二烷基酯。另外,可以使用环状烷基类单体,如(甲基)丙烯酸环己酯,(甲基)丙烯酸异冰片酯和(甲基)丙烯酸双环戊烯酯。官能单体如甲基丙烯酸和丙烯酸,甲基丙烯酸羟烷基酯如(甲基)丙烯酸羟乙酯,(甲基)丙烯酸羟丙酯和(甲基)丙烯酸羟丁酯,(甲基)丙烯酸缩水甘油酯,(甲基)丙烯酸二烷基氨基烷基酯如(甲基)丙烯酸二甲氨基乙酯,(甲基)丙烯酸二乙氨基乙酯,(甲基)丙烯酸二甲氨基丙酯和(甲基)丙烯酸二乙氨基丙酯。(甲基)丙烯酸酯意指可以使用甲基丙烯酸酯或类似的丙烯酸酯。
多官能单体意指每分子具有至少两个可聚合双键的单体。术语多官能单体还包括具有至少两个可通过游离基机理聚合的双键的反应性低聚物或反应性聚合物或预聚物。合适双官能单体的实例包括:二(甲基)丙烯酸乙二醇酯,二(甲基)丙烯酸己二醇酯,二(甲基)丙烯酸三丙二醇酯,二(甲基)丙烯酸丁二醇酯,二(甲基)丙烯酸新戊二醇酯,二(甲基)丙烯酸二甘醇酯,二(甲基)丙烯酸三甘醇酯,二(甲基)丙烯酸二丙二醇酯,(甲基)丙烯酸烯丙基酯,二乙烯基苯及其衍生物。三官能实例包括:三(甲基)丙烯酸三丙二醇酯,三(甲基)丙烯酸三羟甲基丙烷酯,三(甲基)丙烯酸季戊四醇酯。也可使用四官能单体如四(甲基)丙烯酸季戊四醇酯和六官能单体如六(甲基)丙烯酸二季戊四醇酯。任选地,多官能单体可以包括不止一种多官能单体的混合物。
支化聚合物可以使用每分子具有至少两个可以通过游离基机理聚合的双键的反应性低聚物或反应性聚合物或预聚物作为多官能单体或作为多官能单体之一而形成。此类官能聚合物和预聚物包括在术语“多官能单体”中,因为可聚合官能基团使得该反应性低聚物或反应性聚合物以与简单多官能单体相同的方式聚合到生长的聚合物分子中。典型的反应性低聚物包括但不限于环氧-(甲基)丙烯酸酯,聚醚(甲基)丙烯酸酯,聚酯-(甲基)丙烯酸酯和聚氨酯-(甲基)丙烯酸酯。典型的反应性聚合物包括加成聚合物或缩合聚合物如含有可聚合(甲基)丙烯酸酯侧基的苯乙烯或丙烯酸系共聚物或不饱和聚酯。低聚物或反应性聚合物的分子量范围可以为500-500,000g/mol。当使用该反应性低聚物或聚合物来提供至少一部分多官能单体时,在该反应方法中引入的多官能物质量通常比使用简单单体时大得多,这是因为此类物质的分子量高得多。
多官能单体的存在量至多为总的单官能单体最初浓度的100wt%。优选多官能单体的存在量在多官能单体为简单单体,即不为反应性低聚物或聚合物时基于单官能单体为0.3-25%,如0.5-10%。当使用反应性聚合物或预聚物时,该浓度可变至至多约50%w/w或若使用高分子量反应性聚合物或低聚物的话,大于约50%w/w。
链转移剂可以选自硫醇化合物,包括单官能和多官能硫醇。单官能硫醇包括但不限于丙基硫醇,丁基硫醇,己基硫醇,辛基硫醇,十二烷基硫醇,硫代乙醇酸,巯基丙酸,巯基乙酸烷基酯如巯基乙酸2-乙基己酯或巯基乙酸辛酯,巯基乙醇,巯基十一烷酸,巯基乳酸,巯基丁酸。多官能硫醇包括三官能化合物如三羟甲基丙烷三(3-巯基丙酸酯),四官能化合物如季戊四醇四(3-巯基丙酸酯),季戊四醇四巯基乙酸酯,季戊四醇四巯基乳酸酯,季戊四醇四巯基丁酸酯;六官能化合物如二季戊四醇六(3-巯基丙酸酯),二季戊四醇六巯基乙酸酯;八官能硫醇如三季戊四醇八(3-巯基丙酸酯),三季戊四醇八巯基乙酸酯。使用多官能硫醇对于增加聚合物中的支化度是一种有用的方法。任选地,链转移剂可以包括不止一种类型的化合物的混合物。
链转移剂的存在量至多为总的单官能单体最初浓度的50wt%。在第一实施方案中,链转移剂的存在量基于单体为0.1-20%w/w,如0.5-10%w/w。支化聚合物使用适量的链转移剂制备,以防止形成显著量的不溶性交联聚合物。大部分所生产的聚合物是可溶的,甚至在单体高度转化为聚合物时。可能会形成少量交联聚合物,但优选对反应条件和链转移剂含量进行选择以使所形成的交联聚合物量<10%(w/w),更优选<5%(w/w),更优选<2.5%(w/w),最佳为0%(w/w)。现已发现使用仲硫醇作为链转移剂导致交联聚合物含量降低且降低了微凝胶在所得支化聚合物溶液中的形成。因此,对于某些聚合体系,优选使用仲硫醇链转移剂。当以本体或悬浮聚合法进行聚合时,特别优选包含仲硫醇的链转移剂。
另外的链转移剂可以是已知在乙烯基单体的常规游离基聚合中降低分子量的任何物质。例子包括硫化物,二硫化物,含卤素物质。此外,催化链转移剂如钴配合物,例如钴(Ⅱ)螯合物如钴卟啉化合物是本发明的有用链转移剂。合适的钴螯合物在本领域是已知的且描述于WO98/04603中。特别合适的化合物是双(硼二氟二甲基乙二肟化物)钴酸盐(Ⅱ)(bis(borondifluorodimethylglyoximate)cobaltate(Ⅱ)),也称为CoBF。与常规硫醇链转移剂相比,催化链转移剂可以较低浓度使用,例如<0.5%,优选<0.1wt%(基于单官能单体),因为它们在低浓度下通常是高度有效的。现已惊人地发现基于钴配合物的催化链转移化合物可以在低于0.05%(500ppm)w,例如0.0001-0.01%w(1-100ppmw)的浓度下非常有效地使用在本发明的聚合方法中(该浓度基于单官能单体),以得到可溶性支化聚合物。
单体的聚合可以由任何产生游离基的合适方法引发,例如通过热引发剂如偶氮化合物、过氧化物或过氧化酯的热诱发分解。因此聚合混合物也优选含有任何已知的且常用于游离基聚合反应中的聚合引发剂,例如偶氮引发剂如偶氮二异丁腈(AIBN),偶氮二(2-甲基丁腈),偶氮(2,4-二甲基戊腈),偶氮二(4-氰基戊酸),过氧化物如过氧化二月桂酰,过氧新癸酸叔丁酯,过氧化二苯甲酰,过氧化枯基,过氧-2-乙基己酸叔丁酯,过氧二乙基乙酸叔丁酯和过氧苯甲酸叔丁酯。
本发明支化聚合物可用作许多表面涂料应用中的组分,在这些应用中使用稀释剂来施用表面涂料。其中稀释剂为有机溶剂的应用包括涂料、透明清漆、油墨和粘合剂。支化聚合物也可用作可辐射固化制剂中的组分,其中稀释剂为在辐射(如UV,电子束和红外)下聚合的可聚合液体。支化聚合物也可用于涂料应用中,如粉末涂料和热熔粘合剂(常规的和辐射固化的),这些应用不需要使用稀释剂。除了表面涂料应用外,本发明支化聚合物可用于经注塑、压塑或挤塑制备本体聚合物制品。支化聚合物也可用作其他应用中所用组合物的组分,在这些应用中丙烯酸系聚合物现场固化,例如在用于反应性铺地胶的单体包聚合物(polymer-in-monomer)浆液,用于模塑橱房水槽、工作台、丙烯酸系片材、浴盆、可固化水泥、光刻胶、粘合剂(包括压敏粘合剂)等的填充模塑组合物。本发明支化聚合物可以单独使用或与其他聚合物混合用于最终应用中。
在本发明的另一方面,提供了一种表面涂料组合物,包括支化聚合物溶液,该聚合物包括如下组分的残基:单官能单体、0.3-100%w/w(基于单官能单体重量)多官能单体、0.0001-50%w/w(基于单官能单体重量)链转移剂和聚合引发剂。表面涂料组合物通常还可包括可聚合物质如单体,官能化低聚物和共聚物以及其他化合物如交联物质,聚合物,固化剂,着色剂,溶剂,分散助剂,润滑剂,加工助剂,填料,载体液,增韧剂,增塑剂,柔顺剂,稳定剂和其他合适的组分。
在本发明的又一方面中,提供了一种包括支化聚合物的聚合制品或涂料,所述聚合物包括每分子具有一个可聚合双键的单官能单体,0.3-100%w/w(基于单官能单体重量)每分子具有至少两个可聚合双键的多官能单体,0.0001-50%w/w(基于单官能单体重量)链转移剂和聚合引发剂。该聚合制品或涂料还可含有可聚合物质如单体,官能化低聚物和共聚物以及其他化合物如交联物质、聚合物、固化剂、着色剂、溶剂、分散助剂、润滑剂、加工助剂、填料、载体液和增韧剂、增塑剂、柔顺剂、稳定剂和其他组分或其残基。
支化聚合物的重均分子量(Mw)优选为2,000-500,000。对于某些应用,例如其中需要溶解支化聚合物,优选较低分子量,例如2,000-200,000。
现参照下列实施例进一步说明本发明。在所有实施例中,MFM指单官能单体,PFM指多官能单体以及CTA指链转移剂。聚合中所用材料量相对于单官能单体总浓度以w/w计算。多官能单体、链转移剂和引发剂的用量(以wt%表示)以相对于单官能单体总重量的百分数计算。例如,对于使用3%PFM和4%CTA的MFM聚合,100g MFM中将加入3g PFM和4g CTA。通过悬浮聚合法制备聚合物
通过在去离子水中在链转移剂如十二烷基硫醇(DDM)、分散剂(羟乙基纤维素,基于单体为1-2wt%)和游离基引发剂(AIBN,基于单体为1wt%)存在下悬浮聚合含有单官能和多官能单体的单体混合物制备聚合物。在典型的制备中,将2000ml去离子水和约4g羟乙基纤维素(HEC)加入5000ml折流烧瓶中。将氮气吹入水中30分钟以除去溶解的氧并用设定为1400rpm的不锈钢搅拌器搅拌烧瓶。将CTA溶入单体混合物(500g混有所需量的PFM的MFM),然后加入反应烧瓶中,再加入AIBN。以最大功率将反应烧瓶加热至75℃。使反应进行至放热停止。最大聚合温度通常为90℃。热处理烧瓶1小时。用空气将烧瓶和内容物冷却至40℃并通过离心使内容物脱水。于40℃在烘箱中或在流化床干燥器中干燥聚合物。通过溶液聚合制备聚合物
通过将MFM溶于甲苯中(33%w/w),加入选定浓度的多官能单体(PFM)和链转移剂(CTA)并使用AIBN(基于单体为1wt%)引发聚合反应而由溶液聚合制备聚合物。在80℃和油浴中于氮气下使用冷凝器进行聚合。7小时后通过冷却终止聚合。通过在己烷中沉淀分离所得聚合物并干燥。通过GPC方法1进行表征
通过凝胶渗透色谱法测量分子量,使用混合凝胶柱和窄分子量PMMA标准物进行校正。使用氯仿作为移动相,流速为1ml/min并使用红外检测器。测量重均分子量(Mw)、数均分子量(Mn)和多分散性(Mw/Mn)。通过GPC方法2进行表征
使用Triple Detector GPC(TDGPC)表征聚合物。链支化显著改变分子尺寸与分子量的关系。对GPC的三重检测器增强使得无需常规校准就能同时测量分子尺寸和分子量。首先对线性对照聚合物将该关系标准化并且这对所有随后的支化计算成为起点。通过比较支化聚合物和线性对照物的数据能够详细测量支化随分子量的变化。用于该研究中的设备由Viscotek提供且包括激光差示折射计,差示粘度计和直角激光散射光度计。数据获得和还原的软件为Trisec Version 3,也是由Viscotek提供。使用来自Polymer Standards Service(PSS)的苯乙烯-二乙烯基苯混合床柱,以氯仿作洗脱剂,流速为1.0ml/min。除分子量信息外,GPC方法2还测量g′,α,logK和Bn,其中Bn为每分子的支链平均数。对线性聚合物而言Bn=0,对支化聚合物而言Bn>0;g′是Zimm支化因子,等于(支化)材料的均方回转半径与相同分子量的线性材料的均方回转半径之比(对线性聚合物g′=1.0,对支化聚合物g′<1.0)。由粘度和分子量之间的关系根据Mark-Houwink方程,η=KMα,log[η]=αlogM+logK,计算α和logK。溶液粘度的测定
使用Brookfield粘度计(使用LV2转子)于25℃下测量聚合物的30%(w/w)甲苯溶液的粘度。实施例1-4
通过使用作为MFM的甲基丙烯酸甲酯(MMA)和作为PFM的二丙烯酸三丙二醇酯(TPGDA)的单体混合物由悬浮聚合制备本发明的支化聚合物。TPGDA的用量及所得聚合物的性能(由GPC方法2表征)示于表1。实施例5-9(对比)
如上所述制备聚合物,但仅使用MMA作为单体。所得聚合物基本呈线性。对于线性聚合物而言,Bn=0,g′=1.0,α=0.68且logK=-3.65。
表1实施例DDM(wt%)TPGDA(wt%)在甲苯中的溶解性Brookfield粘度(cP)Mn(g.mol-1)Mw(g.mol-1)Mw/MnBng′αlogK140.75良好195,19012,6002.40.920.870.59-3.31241.5良好222,67014,3005.40.180.970.51-2.92343良好341.37056,100413.320.850.36-2.25443.5中等465,850150,10025.77.60.620.5-3.0450.10良好2,16460,760157,7002.660.20良好71636,69081,9002.270.30良好18530,89058,8001.9810良好7120,69039,7001.901.00.68-3.65920良好3110,38019,5001.9实施例10-12(对比)
使用MMA和1、2和3%w/w TPGDA的单体混合物在无链转移剂存在下进行聚合。所得聚合物不可溶,表明在无链转移剂存在下产生交联聚合物,即使多官能单体浓度较低。实施例13-20
使用不同相对量的TPGDA和DDM由与实施例1-4相同的方式制备聚合物。性能如表2所示。
表2实施例DDM(wt%)TPGDA(wt%)在甲苯中的溶解性Brookfield粘度(cP)Mn(g.mol-1)Mw(g.mol-1)Mw/MnBng′αlogK1310.25良好8516,70040,2002.40.170.970.69-3.681410.5良好12317,70066,3003.81.250.830.63-3.471510.75良好14016,800131,4007.82.680.720.59-3.321611良好33610,300488,60047.45 990.730.44-2.551720.5良好397,78022,2002.90.150.980.63-3.421821良好5013,70035,1002.61.420.80.61-3.411921.5良好7511.50080,10073.210.720.48-2.862022良好2005,820338,50058.29.950.630.44-2.67
测得的性能表明聚合物是支化的且具有宽范围分子量。与实施例5-8对比表明这些聚合物比具有类似Mw的线性聚合物产生较低溶液粘度。实施例21-26
使用不同的多官能单体(PFM)通过上述溶液聚合制备聚合物。由GPC方法1表征聚合物。使用下列多官能单体:TPGDA为二丙烯酸三丙二醇酯TMPTA为三丙烯酸三羟甲基丙烷酯PETA为四丙烯酸季戊四醇酯DPEHA为六丙烯酸二季戊四醇酯EGDMA为二甲基丙烯酸乙二醇酯
结果表明使用不同官能度的单体得到可溶性支化聚合物。实施例27-30
使用下列不同的链转移剂(CTA)通过溶液聚合制备聚合物:TRIMP为三(3-巯基丙酸)三羟甲基丙烷酯PETMP为四巯基丙酸季戊四醇酯DPEHTG为六巯基乙酸二季戊四醇酯TPEOTG为八巯基乙酸三季戊四醇酯
聚合物由GPC方法1表征且结果示于表3。结果表明可以将具有可变的多个巯基的链转移剂与多官能单体一起使用来制备可溶性支化聚合物。实施例31-33
使用表3所示多官能单体(PFM)和多官能链转移剂通过溶液聚合制备聚合物。结果(由GPC方法1表征)表明多官能单体和多官能链转移剂(二者都具有可变的多个丙烯酸酯或巯基)的各种组合可以用来制造可溶性支化聚合物。实施例34-36
使用DDM和TPGDA通过溶液聚合制备这些聚合物并由GPC方法1分析。结果示于表3。
表3实施例CTA类型CTA(wt%)PFM类型PFM(wt%)在甲苯中的溶解性Mn(g.mol-1)Mw(g.mol-1)Mw/Mn21 DDM2 TPGDA1.5良好6,75018,0202.6722 DDM2 TMPTA1.48良好7,19026,5103.8923 DDM2 PETA1.76良好9,08065,5047.2224 DDM2 DPEHA2.89良好9,500200,43221.1125 DDM2 EGDMA1良好7,85026,6383.3926 DDM2 EGDMA2良好10,03499,7129.9327 TRIMP3.98 TPGDA1.5良好6,53014,7802.2628 PETMP4.88 TPGDA1.5良好5,99013,1202.1929 DPEHTG6.98 TPGDA1.5良好5,70013,1802.3130 TPEOTG9.64 TPGDA1.5良好6,48014,0202.1631 TRIMP3.98 TMPTA1.48良好6,85022,4603.2832 PETMP4.88 PETA1.76良好6,35024,9803.9433 DPETHG6.98 DPEHA2.89良好8,01053,4706.6734 DDM2 TPGDA3良好8,38027,3303.2635 DDM2 TPGDA4.5良好8,40046,0405.4836 DDM2 TPGDA6良好9,530103,32010.84实施例37-39
使用CoBF-催化链转移剂根据本发明制备支化聚合物。MFM为MMA。所得支化聚合物可溶于甲苯而无微凝胶形成。分子量由GPC方法1测定。
表4实施例TPGDAwt%COBF(ppm)AIBN(wt%)聚合方法Mn(g/mol)Mw(g/mol)371.5101溶液聚合24,38890,416381.5201溶液聚合12,22046,070392751悬浮聚合5,20028,400
还使用5和2.5ppm CoBF进行与实施例37和38类似的聚合,得到粘稠聚合物溶液而无微凝胶形成。实施例40-53
如表5所示,使用MMA作为单官能单体且以可变量使用丙烯酸酯官能化齐聚物作为不同类型的PFM进行聚合。所得聚合物都是可溶的。分子量由GPC方法1测定。
EbecrylTM4858为脂族聚氨酯-丙烯酸酯齐聚物,具有2个丙烯酸酯官能基且分子量为450g/mol,由UCB Chemicals提供。
EbecrylTM210为芳族聚氨酯-丙烯酸酯齐聚物,具有2个丙烯酸酯官能基且分子量为1500g/mol,由UCB Chemicals提供。
EbecrylTM230为脂族聚氨酯-丙烯酸酯齐聚物,具有2个丙烯酸酯官能基且分子量为5000g/mol,由UCB Chemicals提供。
EbecrylTM605为环氧-丙烯酸酯齐聚物,每分子具有2个丙烯酸酯官能基且分子量为500g/mol,由UCB Chemicals提供。
EbecrylTM81为聚酯-丙烯酸酯齐聚物,每分子平均具有2.5个丙烯酸酯官能基且分子量为600g/mol,由UCB Chemicals提供。
EbecrylTM80为聚醚-丙烯酸酯齐聚物,每分子具有4个丙烯酸酯官能基且分子量为1000g/mol,由UCB Chemicals提供。
表5实施例齐聚物齐聚物(wt%)DDM(wt%)AIBN(wt%)方法*Mn(g/mol)Mw(g/mol)40Ebecryl6052.521sol8,61328,38441Ebecryl80521sol5,70620,16542Ebecryl81321sol6,27918,01243Ebecryl48582.2521sol8,40528,25744Ebecryl48584.521sol8,53056,71645Ebecryl48586.7521sol12,166437,69046Ebecryl2107.521sol9,04332,84647Ebecryl2101021sol8,81342,93048Ebecryl2l01221sol10,03352,59449Ebecryl2302521sol8,27031,12550Ebecryl2303021sol10,47576,46451Ebecryl2304021sol12,08144,17752Ebecryl230183.51.2sus6,40022,60053Ebecryl230438.61.4sus3,50013,300*sol=溶液聚合,sus=悬浮聚合实施例54-57
使用不止一种单官能单体(MFM)的混合物和作为PFM的TPGDA进行这些聚合。分子量由GPC方法1测定。
表6实施例MFMMFM比TPGDA(wt%)DDM(wt%)AIBN(wt%)方法*Mn(g/mol)Mw(g/mol)54MMA+IBMA50∶50521sol55MMA+BMA+MA65∶30∶5341sus5,95033,75056MMA+BMA+MA65∶30∶5681sus3,70017,15057MMA+BMA75∶25341sus6,30032,000
MMA是甲基丙烯酸甲酯,BMA是甲基丙烯酸正丁酯,IBMA是甲基丙烯酸异冰片酯,MA是甲基丙烯酸。实施例58-61
使用60%BMA、39%MMA和1%MA的单官能单体混合物以及基于总MFM为0.5%的PETA作为PFM,1.2wt%AIBN引发剂和0.5wt%VersicolTMS19悬浮稳定剂由悬浮聚合制备支化聚合物。将巯基乳酸(TLA)链转移剂与其他硫醇一起使用或用于替代其他硫醇。观察到对于倾向于形成微凝胶的那些混合物来说,当存在TLA作为第二硫醇时该倾向大为降低或被消除。分子量由GPC方法1测定。
表7实施例PETA(wt%)PETMP(wt%)DDM(wt%)TLA(wt%)Mn(g/mol)Mw(g/mol)微凝胶粘度(cP)580.50209,83022,800少量134.1590.500212,85045,670无387.5600.500124,762159,212无1,665610.501.50.2525,44057,430无190621600.59,10026,400无626316017,05022,250无62