镁合金型材毛坯、其连续铸造方法及连续铸造装置.pdf

上传人:00062****4422 文档编号:887562 上传时间:2018-03-16 格式:PDF 页数:23 大小:1.23MB
返回 下载 相关 举报
摘要
申请专利号:

CN02156171.0

申请日:

2002.12.13

公开号:

CN1424418A

公开日:

2003.06.18

当前法律状态:

终止

有效性:

无权

法律详情:

未缴年费专利权终止IPC(主分类):C22C 23/00申请日:20021213授权公告日:20070124终止日期:20101213|||授权|||实质审查的生效|||公开

IPC分类号:

C22C23/00; B22D11/04; B22D21/04

主分类号:

C22C23/00; B22D11/04; B22D21/04

申请人:

松下电器产业株式会社;

发明人:

山崎幸一; 西川幸男; 宝晃

地址:

日本国大阪府

优先权:

2001.12.14 JP 2001-382073

专利代理机构:

上海专利商标事务所

代理人:

胡烨

PDF下载: PDF下载
内容摘要

本发明涉及镁合金型材毛坯、其连续铸造方法及连续铸造装置。在隔断氧气的状态下熔化镁合金材料,并根据连续铸造法使熔融状态的镁合金冷却凝固,以得到铸造缺陷少、镁以外的成分中至少1种成分的平均浓度相对合金组成的比率高的区域(3)、分散存在于镁合金晶相(2)的内部的镁合金型材毛坯(1)。

权利要求书

1: 镁合金型材毛坯,其特征在于,镁以外成分的平均浓度相对合金组成的比率 高的区域,分散存在于镁合金的晶粒内部。
2: 如权利要求1所述的镁合金型材毛坯,所述合金是ASTM标准规定的镁合金, 其特征还在于,该标准规定的镁以外的合金成分中的至少1种成分的平均浓度超过标准 值上限浓度的区域中,平均直径达5μm以上的区域分散存在于镁合金晶粒的内部。
3: 如权利要求1所述的镁合金型材毛坯,其特征还在于,整体比重是依据合金组 成计算的理论密度的98~100%。
4: 如权利要求1所述的镁合金型材毛坯,其特征还在于,除镁之外,含有作为主 成分的铝、锌、锰,铝含量为2~10重量%。
5: 如权利要求1所述的镁合金型材毛坯,其特征还在于,其形状为板状。
6: 如权利要求5所述的镁合金型材毛坯,其特征还在于,板厚在10mm以下。
7: 如权利要求1所述的镁合金型材毛坯,其特征还在于,X射线衍射图谱中,材 料表面的结晶的(0002)面优先出现。
8: 镁合金型材毛坯的连续铸造法,其特征在于,包括以下2个工序,将镁合金材 料投入坩埚内,在隔氧状态下使坩埚内的镁合金材料熔化供给冷却式铸模后,使熔融状 态的镁合金冷却、凝固的工序;以及间歇或连续地拉拔凝固了的镁合金的工序。
9: 如权利要求8所述的镁合金型材毛坯的连续铸造方法,其特征还在于,以3~8K/ 秒的冷却速度使熔融状态的镁合金冷却凝固。
10: 如权利要求8所述的镁合金型材毛坯的连续铸造方法,其特征还在于,投入熔 化装置的材料为粒状固体,在周边氛围气保持惰性的状态下将熔融状态的镁合金供给冷 却式铸模。
11: 如权利要求1所述的镁合金型材毛坯,其特征还在于,由权利要求8所述的连 续铸造方法制得。
12: 镁合金型材毛坯的连续铸造装置,其特征在于,具备装载镁合金材料并通过加 热装置使其熔化的坩埚,与该坩埚相连并通过冷却装置冷却熔融状态的镁合金使其凝固 成所希望形状的冷却式铸模,间歇或连续地从冷却式铸模中拉拔凝固了的镁合金的拉拔 装置。
13: 如权利要求12所述的镁合金型材毛坯的连续铸造装置,其特征还在于,冷却 式铸模的内壁剖面形状为矩形,所述内壁中的至少一部分为锥形以使坩埚侧与拉拔装置 侧的铸模短边的长度有所不同。
14: 如权利要求12所述的镁合金型材毛坯的连续铸造装置,其特征还在于,坩埚 及/或冷却式铸模的材质为石墨。
15: 如权利要求12所述的镁合金型材毛坯的连续铸造装置,其特征还在于,坩埚 具备可以开闭的盖子。
16: 如权利要求12所述的镁合金型材毛坯的连续铸造装置,其特征还在于,所述 装置是冷却式铸模与坩埚侧面相连,沿水平方向拉拔镁合金的横式连续铸造装置。

说明书


镁合金型材毛坯、其连续铸造方法及连续铸造装置

    【技术领域】

    本发明涉及用镁合金材料制造镁合金零件用的铸造成塑性加工用的镁合金型材毛坯、其连续铸造方法及连续铸造装置。

    背景技术

    近年来,作为对于大量生产的家用电器,再循环处理及环境问题等的对策之一,以金属材料来代替以往的树脂材料制造家用电器的外装构件等引人注目。相对树脂材料的再循环率是20%,金属材料90%再循环是可能的。

    金属材料中,尤其是镁合金,与其他金属合金相比,轻量、强度高,振动衰减性也优异。正在便携式电子设备、汽车零件等中实用化。而且,镁合金熔点比较低,因此有再循环能耗少的特点。

    图8是用镁合金材料制造镁合金零件的工序示意图。首先,为了用镁合金材料得到镁合金成形品,一般大致分类的称为压力铸造、熔模铸造的铸造,压力加工、弯曲加工、锻造的塑性加工。铸造成形的自由度高的反面,存在铸件表面缺陷、气泡卷入内部的问题,因此有成品率低,成本高的问题。所以,关于形状比较简单的家用电器的外壳等,预先铸造近似零件的最终形状的型材毛坯后,对该型材毛坯直接塑性加工,或实施挤压、压延等1次加工制成薄板,对薄板实施二次加工,形成镁合金成形品,之后经过涂装·干燥工序制造镁合金零件的方法也正在实用化。这样使铸造与塑性加工组合的方法,与单独铸造的方法相比,认为从加工时的通道缩短化、减少表面缺陷、控制设备投资方面看是有利地。

    图7是模拟表示该制造方法使用的一般塑性加工用型材毛坯的金相组织的状态图。型材毛坯4是除了镁之外,以铝、锌、锰为主要合金元素的AZ3 1的镁合金。AZ系列镁合金与其他镁合金相比,强度高,耐蚀性优,是适于易暴露在汗、水的家用电器的外壳的合金。

    镁合金的晶体结构是六方晶体,晶界滑移面少,与其他金属相比,塑性加工性差。因此,以往为提高塑性加工性,提出利用控制镁合金的冷却速度、添加晶粒细化剂,实施晶粒直径细化的提案。可是,明确晶粒直径细化在通过挤压、压延等的1次加工时的加工变形量和加工温度的操作是能够某种程度控制的。

    在型材毛坯阶段,铸造缺陷、夹杂物的偏析多的场合,一次加工时改善那些缺陷决不容易。即图10所示的镁合金型材毛坯就是那样。型材毛坯4,化合物区域6在镁合金晶相5的晶界偏析、存在,铸造时发生的内部空隙7在晶界析出。

    一般,熔融的AZ系列镁合金凝固时,随着镁的晶核成长,镁中难以固溶的成分(金属或氧化物)在晶界逐渐偏析,往往在晶界附近以金属互化物等状态析出。并且,镁中难固溶的气体成分,在凝固时集聚在镁的晶界,形成空隙7留在型材毛坯4内部。

    铸造缺陷或夹杂物偏析的部位,在用型材毛坯4塑性加工成薄板,然后从薄板塑性加工为成形品时,容易成为裂纹开裂点,这样的型材毛坯4缺乏加工性。尤其是,滑移系少、缺乏延性的镁合金,材料的品质左右加工性的程度大,为使这样的镁合金的加工性提高,最好是减少成为薄板原材料的型材毛坯的铸造缺陷及夹杂物,并防止偏析。

    因此,鉴于前述实际问题、本发明的目的是,提供利用减少金相组织的铸造缺陷、夹杂物及防止偏析,能够提高挤压、压延等的一次加工成薄板时,或对加工成薄板再锻造等的2次加工时的塑性加工性的镁合金型材毛坯。

    【发明内容】

    为达到前述目的开发的本发明的镁合金型材毛坯是铸造塑性加工用镁合金型材毛坯,该型材毛坯的特征是,镁以外成分的平均浓度相对合金组成的比率高的区域,分散存在于镁合金的晶粒的内部。

    所谓前述镁之外的成分是指作为合金主要构成元素的铝、锌、锰。合金内部也含有这些主要构成元素以外的金属及这些金属的氧化物、碳化物等夹杂物。多数夹杂物难固溶于Mg的区域,附随或包含于前述「镁以外成分的平均浓度相对合金组成的比率高的区域」。

    以下,该「镁以外的成分的平均浓度相对合金组成的比率高的区域」也包括含有夹杂物的情况,主要称为「化合物区域」。所谓化合物区域在晶粒内的分散状态是在于镁合金的枝晶相发生假峰化、生成晶界的状态,呈现出化合物区域的成分以残留分散插入在枝晶相的构架里的状态。

    这样,由于化合物区域分散在晶粒内,夹杂物也变成分散存在,成为裂纹的开裂点类的大的夹杂物的偏析少,型材毛坯本身富有延展性。型材毛坯富有延展性,则对型材毛坯实施挤压、压延等1次加工的薄板也富有延展性,塑性加工性变得良好。

    实用镁合金按照ASTM标准规定应含有的合金成分的组成比例。前述所谓化合物区域,即镁以外的成分的平均浓度相对合金组成高的区域,严密地说能够规定,ASTM标准规定的镁以外的合金成分中,其浓度超过ASTM标准规定的该成分的标准上限值的区域。

    在本发明中,将该化合物区域定为平均直径5μm以上的区域。无论哪种镁合金,若从原子水平观察内部存在的化合物和金属,必然存在「镁以外的成分的平均浓度相对合金组成高的区域」,而本发明的特征是,没有前述的原子水平化合物区域,分散有一定大小(5μm以上)的区域。

    另外,化合物区域的成分浓度能够用SEM-EDS(电子扫描显微镜·能散X线光谱仪)等测定。

    前述合金型材毛坯(也有简称型材毛坯的场合)的整体比重是根据合金元素组成计算的理论密度的98~100%。即由于空隙和气体卷入型材毛坯的金相组织内少,富有延展性。因此,对型材毛坯挤压或压延等1次加工形成薄板之际,并且,对该薄板实施锻造等2次加工之际,能防止其空隙(空隙和空洞)部分在加工时成为裂纹的开裂点而发生断裂,能够防止即使对加工后的成形品涂装·干燥时,内部气泡的破裂产生表面缺陷的问题。

    本发明的型材毛坯是除镁以外,含有作为主要成分的铝、锌、锰的AZ系镁合金,其中含铝2~10wt%。按照前述,AZ系镁合金强度、防蚀性优异,正在作为结构材料广泛实用化。

    本发明的特征是,化合物区域分散在晶粒内,但含铝量未达2%,则占在晶粒内的化合物区域变少,因此化合物区域分散,夹杂物分散的效果便减退,从而,认为型材毛坯的塑性加工性劣化。相反,含铝量高于10%的型材毛坯,由于化合物区域本身体积变大,成为体积比较大的夹杂物在化合物区域内能够存在的状况,认为存在塑性加工性劣化的可能性。然而,本发明的型材毛坯是含铝2~10wt%的镁合金型材毛坯,能预期在晶粒内的夹杂分散的效果,成为塑性加工性优的型材毛坯。

    普通浇铸材料的圆柱状毛坯,经过挤压工序或锻压工序被加工成板状,之后经压延制成供于塑性加工的镁合金外壳用板材。一方面,将本发明的前述型材毛坯的形状形成板状,则不经挤压工序或锻压工序仅数次压延,调节板厚就能得到供于塑性加工的镁合金外壳用板材,因而能够简化工序,谋求降低成本。

    若前述型材毛坯的板厚10mm以下,则不经挤压工序或锻压工序,仅数次压延便得到家用电器的外壳最佳的板厚0.3~1.5mm左右的薄板,因而能更加简化工序,谋求成本降低。

    前述型材毛坯的X射线衍射图谱中,表面的结晶的(0002)面优先出现,因而明确,特征在于材料表面凝固之际晶体生长方向。一般来说,镁合金承受加压力的面中,(0002)面变得显著,而本发明品显示铸造之际受到压力。

    为了达到前述目的,本发明的镁合金型材毛坯的连续铸造方法的特征是包括以下2个工序,即,将镁合金材料投入坩埚内,在隔氧状态下熔化坩埚内的镁合金材料,供给冷却式铸模后,使熔融状态的镁合金冷却、凝固的工序,以及间歇或连续地从冷却式铸模中拉拔该凝固的镁合金的工序。

    熔融状态的镁合金在冷却式铸模内凝固之际,由于间歇或连续拉拔凝固的镁合金部分,形成用惯性力及振动将存在于进行凝固的固液界面的气体成分及夹杂向液体部分挤出,能够减少包含在型材毛坯内部的气体成分和夹杂物。

    该连续铸造方法中的冷却式铸模的冷却速度为3~8K/秒。该3~8K/秒的冷却速度是,对利用冷却镁合金的枝晶相一边生长、一边凝固,又利用型材毛坯内的热传导进行局部退火,枝晶相进行假峰化是最佳的冷却速度。如前所述,化合物区域留在假峰化的枝晶相的构架内,化合物区域以分散的状态存在晶粒内,则夹杂物分散存在,能够得到塑性加工性优越的型材毛坯。

    该连续铸造方法,镁合金材料是在隔断氧的状态下熔化的,防止接触氧发生燃烧,而为了隔断氧气,采用将坩埚置于惰性气体氛围气下或将除气剂投入熔融状态的镁合金,以使氧不接触液面的方法。作为惰性气体使用氩气、氦气及混有SF6的空气等。作为除气剂,能够使用氯化钾、氯化镁为主体的防燃除气剂。将除气剂投入材料的场合,也有防止自熔融状态的镁合金表面发生的金属蒸发的效果。

    前述方法中,如果投入坩埚的镁合金材料制成固体粒子,在坩埚周边氛围气保持在惰性氛围气的状态下投料,即使熔化镁合金的坩埚不具备存料炉,则粒状固体材料连续或间歇投料,能够不中断投料进行连续铸造。尤其是,由于隔断氧,在坩埚内的镁合金表面产生保护氛围气时,为投料释放惰性氛围气,则为再次建立惰性氛围气要消费生产节拍,而若采用本方法,即使不释放惰性氛围气也能投料,因此能够缩短生产节拍。

    为了达到前述目的,本发明的镁合金型材毛坯的连续铸造装置具备装载镁合金材料并通过加热装置使其熔化的坩埚;与坩埚相连并通过冷却装置冷却熔融状态的镁合金使其凝固成所希望形状的冷却式铸模;间歇或连续地从冷却式铸模中拉拔凝固的镁合金的拉拔装置。

    前述装置中,冷却式铸模的内壁剖面为矩形,前述内壁中的至少一部分形成锥形以使坩埚侧与拉拔装置侧的铸模短边的长度不同,这样能够使拉拔时加于镁合金的应力增减,因而进行材料特性的改质,并谋求使铸块与铸模的磨擦变少,防止铸块热裂。

    在前述装置中,如坩埚及/或冷却式铸模的材料选择石墨,则导热性优,能够顺利实施材料的加热·冷却,是合适的,而其他难以与镁合金发生反应的材料也可以,最好是,不含有一混入型材毛坯,则明显影响耐蚀性的铜、镍、铁的材料。另外,也有报道石墨混入镁合金,则晶粒细化的事实。

    在前述装置中,例如在坩埚的外侧设置容器,能够控制置放坩埚的氛围气的构造,以致对坩埚内熔融的镁合金的表面或坩埚的周边部能够隔断氧的构造,例如抽真空或能够置换惰性气体。而且,因是熔融状态的镁合金,频繁发生气化,为了设法使金属蒸汽不放到大气中,最好是设置容器。

    前述装置中,如具备对坩埚可以开盖的盖子,则能够抑制金属蒸汽扩散到坩埚外部,减少扩散的金属蒸汽附着在前述容器内壁等发生凝固的粉末状金属,以防止因粉末状金属积蓄而材料合格率低,以及自燃的危险性。另外,如前述方法所述那样,作为对坩埚内的镁合金材料隔断氧气的装置,将除气剂混在材料中,也可能控制自熔融状态的镁合金表面的蒸发,但该场合存在除气剂成分混入型材毛坯的危险性,因而最好是以所谓对坩埚装盖的改善装置来对应。

    前述装置是冷却式铸模与坩埚侧面相连,沿水平方向拉拔镁合金的横式连续铸造装置。这样能够防止浮在熔融状态的镁合金液面的杂质,及积蓄在坩埚底的杂质卷入,能够制造富有延展性的、组织良好的镁合金型材毛坯。

    【附图说明】

    图1是模拟表示本发明的实施方式的AZ系镁合金型材毛坯的金相组织的截面图。

    图2是该实施方式的AZ系镁合金型材毛坯的扫锚电子显微镜(SEM)拍摄的截面照片。

    图3A~图3C是该实施方式的AZ系镁合金型材毛坯的光学显微镜拍摄的截面照片。

    图4是列示该实施方式中该镁合金型材毛坯的表面状态的X射线衍射图的曲线图。

    图5是概略表示该实施方式的连续铸造装置的纵剖视图。

    图6是该实施方式中,以使拉辊侧变宽的锥形的连续铸造装置的要部的纵剖视图。

    图7是该实施方式中,以使拉辊侧变狭的锥形的连续铸造装置的要部的纵剖视图。

    图8是用镁合金材料制造镁合金零件工序的一般示意图。

    图9是方形容器拉深成形评价用镁合金薄板坯件的示意图。

    图10是模拟表示用以往的铸造方法及铸造装置制作的AZ系镁合金型材毛坯的金相组织的截面图。

    【具体实施方式】

    以下,参照图1~图9说明本发明的实施方式。以下所示的实施方式是将本发明具体化的1例,决不是限定本发明的技术范围。

    图1是模拟表示本实施方式的镁合金型材毛坯1的金相组织的状态的截面图。该镁合金型材毛坯1是采用后述的铸造方法,将铝含量3%左右、锌含量1%左右的镁合金AZ31成形为板状,在镁合金晶相2的内部(晶粒的内外)分散、存在化合物区域(镁以外的成分的平均浓度相对合金组成的比例高的区域)3。

    该状态是由镁的枝晶相的构造分断的化合物区域3的成分,而即使是枝晶相假峰化出现晶界的状态,也认为是保持分散在晶粒内的状态。

    以下表1列示AZ31镁合金的ASTM标准及本实施方式的镁合金型材毛坯1的成分比例。单位是重量%。另外,本实施方式中利用ICP发光光谱分析进行成分测定。

    表1  AZ31镁合金的ASTM标准及

    本实施方式的成分比例(重量%)Al Zn Mn Fe Si Cu Ni CaASTM标准2.5~3.5 0.5~ 1.5≥0.20≤0.03≤0.10≤0.1≤0.005<0.04本实施方式制品3.0 0.990.22 0.00470.0220.00170.00120.0001

    *余分为Mg

    图2是电子扫描显微镜(SEM)拍摄的本实施方式的镁合金型材毛坯1的金相组织的截面照片。图中所示31~34是电子扫描显微镜—能散X线光谱仪(SEM-EDS)测定的测定点,以下表2列示各测定点的元素构成比例(重量%)。

    表2  图2的测定点的元素构成比(重量%)    测定点31     测定点32     测定点33     测定点34元素重量%  元素    重量%   元素   重量%   元素    重量%Mg100.00    C    17.76    Mg    55.96    Mg    92.78    O    13.39    Al    21.16    Al    4.63    Mg    35.91    Zn    22.88    Zn    2.59    Al    15.40    Mn    17.12    Zn    0.41

    作为本实施方式的型材毛坯整体的成分比率,按照表1所示,都在ASTM标准内。可是,本实施方式的化合物区域即镁以外成分的平均浓度相对合金组成的比率高的区域是图2的测定点32~34所示的点,而如表2所示,所谓Al、Zn的Mg以外的元素中,至少1种以上的元素的比率比ASTM标准的上限值大。

    另外,测定点2是,ASTM标准未规定的C及O的比率变高,这表示该化合物区域中包含碳化物和氧化物的可能性。

    上述析出物区域对应于晶粒的分布如图3A、B和C所不。图3A是前述实施方式的厚10mm的板状镁合金型材毛坯1a的部分光学显微镜截面照片。可观察到晶界8,晶粒的平均直径约在200μm上下,晶粒的内部分散存在化合物区域3,换算成与晶粒内部面积对应的圆直径为数μm~30μm左右。截面组织中,这种析出物区域3的大小大多达到相当于圆直径5μm以上的程度。图3A的截面照片中,在1个晶粒内部观察到相当于圆直径5μm以上的析出物区域3约30~40个。

    图3B厚5mm的板状镁合金型材毛坯1b的部分光学显微镜截面照片。观察到晶界8,晶粒的平均直径约为80μm。该截面组织中,在1个晶粒内部观察到相当于圆直径5μm以上的析出物区域3约3~20个。

    图3C是厚3mm的板状镁合金型材毛坯1c的部分光学显微镜截面照片。观察到晶界8,晶粒平均直径约250μm。该截面组织中,在1个晶粒内部观察到相当于圆直径达5μm以上的析出物区域3约60~120个。

    这样,本实施方式的镁合金型材毛坯1如图10所示的以往的一般的型材毛坯4那样,在镁合金晶相5的晶界没有偏析、存在着化合物区域,铸造时发生的空隙7也未在晶界析出,由于化合物区域3是比较小的尺寸,分散的状态,夹杂服务也分散存在,为将镁合金型材毛坯1加工成薄板进行挤压,压延时难以发生断裂,富有延展性。而且,即使加工成薄板的场合,该薄板富有延展性,成为实施冲压加工、锻造等2次加工的场合,加工性优良的材料。

    表3是测定从本实施方式的镁合金型材毛坯1随机切取的试样的比重的结果。另外,本试样的体积是对外形机械加工后测定尺寸计算的。

    表3  本实施方式的镁合金型材毛坯的比重    试样编号    1    2    3    体积(cm3)  1.241  4.526  8.355    重量(g)  2.177  7.977  14.78    密度(g/cm3)  1.754  1.763  1.769    对应于理论密度    (1.78g/cm3)的比率  98.6%  99.0%  99.4%

    即使前述试样以外,本实施方式的镁合金型材毛坯1的比重达依据该合金组成计算的理论密度的98~100%的范围内。一方面,图7所示的与镁合金型材毛坯1同一组成的型材毛坯4中,由于内部存在许多空隙7,比重不到前述理论密度1.78g/cm3的98%的(比重1.744g/cm3以下)部分多。本实施方式的镁合金型材毛坯1的组织密,内部空隙少,其结果是,后工序的挤压或压延,以及之后的2次加工中,难以断裂,并且即使涂装·干燥工序(图8)中,也能回避内部气泡破裂引起表面缺陷的问题。

    本实施方式中,用后述的铸造方法成形镁合金型材毛坯1,以使形成板厚3mm、5mm、10mm。未发现由于这3种的板厚不同,前述的截面组织的特征及比重有显著的区别。

    本实施方式使用AZ31镁合金,也可以使用其他的AZ系镁合金。但是,为实现有前述特征的截面组织,最好是含有Al2~10Wt%的AZ系列的镁合金。

    本实施方式的型材毛坯1的表面曾进行X线衍射分析,如图4所示,(0002)面的结晶方位成为优先显示的图形。这种现象认为是,材料凝固时从材料表面垂直方向加以压力。

    图5是制造本实施方式的镁合金型材毛坯1用的连续铸造装置21的构成图。

    连续铸造装置21是由收容镁合金材料13,并用电加热器(加热装置)12熔化的坩埚11;与坩埚11接续、并用水冷管(冷却装置)20冷却熔融状态的镁合金13a,使之凝固成要求的形状的冷却式铸模15;是从冷却式铸模15内间歇的或连续的拉拔凝固的镁合金13b的拉拔装置的引锭杆16和拉辊17构成。

    在该连续铸造装置21中,投入坩埚11的镁合金材料13由电加热器12加热,成为熔融状态的镁合金13a。由于镁合金在熔融状态—接触到氧便剧烈燃烧,熔融时最好隔断氧。本实施方式中作为隔断氧的装置,是将坩埚11设置在容器14内,成为未图示的能够抽真空和投入惰性气体的结构。

    熔融状的镁合金13a积存在坩埚11中,但也流入直接连结坩埚11的冷却式铸模15内,因此,形成用拉辊17使引锭杆16从容器14的下部侧方能够进出冷却式铸模15内部的结构。另外,连续铸造工序中途,形成先前拉拔的凝固的镁合金13b代替引锭杆16,抑制熔融状态的镁合金13a的流出的构成。

    冷却式铸模15吸收熔融状镁合金13a放出的热,并释放到周边部,而本实施方式在冷却式铸模15的周边配置水冷管20等冷却装置,形成吸收前述释放的热的构成。吸收热时成为能够调节水流量和温度的构成。作为这样的冷却装置,除水冷之外,也可以采用空冷的构成。

    冷却式铸模15内壁的截面形状,成为在其内壁内凝固的镁合金13b,也就是镁合金型材毛坯1的截面形状,本实施方式中规定冷却式铸模15的内壁截面形状,以使镁合金型材毛坯1的截面形状成为宽50mm×厚3mm、或5mm、或10mm的矩形。并且,冷却式铸模15的冷却部分长度是170mm,而考虑冷却式铸模15内铸造的镁合金型材毛坯的形状及冷却水量等,也可以设定另外的长度。

    使用前述那样构成的连续铸造装置连续铸造镁合金型材毛坯1时,凝固的镁合金13b(铸块)易中途断裂的场合,如图6所示,在冷却式铸模15的内壁制成锥型15a,以使拉辊17侧相对坩埚11逐渐变宽,减少与冷却式铸模15的磨擦,可使铸块中途难以断裂。而相反,如图7所示,在冷却式铸模15与坩埚11的连续部分形成锥形15b,以使拉辊17侧相对坩埚11侧变狭,则对熔融状态的镁合金13a的进行凝固的部分,从相对拉拔方向垂直方向加以适度的应力,则能够降低卷入型材毛坯的夹杂物和气体量。

    装有熔化镁合金材料13的坩埚11成为内部深220mm,在距底面约10mm的垂直上方连接冷却式铸模15,将熔融状态的镁合金13a拉拔到冷却式铸模15内之际,积蓄在坩埚11底面的杂质19难以卷入镁合金13b的构成。

    图5所示的投料溜槽(材料供给装置)18设置在容器14的上部,以使不必开闭容器14而将镁合金材料13连续投入坩埚11内。另外,初期投入的镁合金材料13的形状若是坩埚11容纳的大小,则没有问题,但通过投料溜槽18投料时,最好是直径1mm~10mm左右的粒子状或切屑状,防止坩埚11破损及熔融状态的镁合金13a飞溅到坩埚11外。

    本实施方式的连续铸造装置21是冷却式铸模15连接于坩埚11侧面的横式,也可使用冷却式铸模15连接于坩埚11底面的立式的装置。

    用作加热装置的电加热器12是使用能够实现10KW左右功率的高频加热器,而若是具有把合金材料加热到780℃以上的容量的加热装置也可以,不限定于高频加热器。

    本实施方式的坩埚11及冷却式铸模15是用石墨制成的,石墨是导热性优异,并且与熔融状态的镁合金13a难以发生反应的材料。并且,不希望含有混入镁合金时影响材料耐蚀性明显的铜、镍、铁的材料用作坩埚11及冷却式铸模15的材料。

    熔融状态的镁合金13a平时发生蒸发,金属蒸气一接触容器14的内壁等凝固成为粉末。这现象不仅降低材料合格率,而且可能自燃,是危险的,最好具备对坩埚可以开关的盖子(未图示)。而且最好是仅投料时开盖,防止金属蒸气流到坩埚11外的构成。

    引锭杆16最好是用耐镁合金材料熔化时的高温(约650~800℃),并保持强度的材料制成,而本实施方式使用不锈钢制引锭杆。

    接着,具体说明用前述那样构成的连续铸造装置21的镁合金型材毛坯的连续铸造方法。

    首先将镁合金材料13投入坩埚11内,将容器14关闭形成密闭状态。

    接着将容器14内部抽真空后,注入惰性气体,最好是氩气,使内部充满惰性气体。此时,容器14内的压力,例如抽真空时是0.1~0.2乇,注入惰性气体时能达到14~18乇,但也不限定于此。如在容器14设置惰气体注入时容器内气体的排放口,以使注入惰性气体时,将初期进入内部的空气层从排放口排出,也能够形成省略抽真空的工序。

    接着使水在配置于冷却式铸模15周边的冷却装置的水冷管20流动,冷却式铸模15及引锭杆16。这时的水量控制在0.5~2.0升/分,水温控制在20~35℃,但也不限定于该条件。

    接着,用电加热器12加热坩埚11,使镁合金材料13熔化。AZ31镁合金加热到熔点630℃以上就熔化。而本实施方案考虑熔融金属的流动性及金属内部的温度梯度,决定保持在750~780℃。是缘于熔融金属温度低,则铸块(凝固的镁合金13b)易间断的实验结果。这种现象认为是,熔融金属温度是低温,则金属被冷却的过程中发生不均匀,连续铸造时多个部位发生固液界面妨碍连续凝固的缘故。

    将熔融金属控制在前述的温度,则流动性增加,表面张力减少,形成内部所含的气体易逸出的状态,认为结果是残留在成形品内部的空隙(空隙、空洞)等铸造缺陷减少。一方面,使熔融金属的温度高达必要温度以上时,使能源浪费。并且,熔融金属的蒸气压增加,因此,使粉末状金属对坩埚11及容器14的附着量增加,这是不希望的。

    接着,使拉辊17转动,拉拔着引锭杆16。本实施方式将这时的拉拔速度控制在45~125mm/min。另外,本实施方式是以间歇拉拔的方式进行的,例如拉拔速度100mm/min时,以10mm/sec的速度拉拔5mm,在该状态停止2.5sec的间歇拉拔条件下,进行连续铸造,其综合达100mm/min的拉拔速度。以正转、反转组合控制拉辊17的转动,则边反复拉拔和压进、边拉拔镁合金13b也是可能的。

    与以规定速度连续拉拔镁合金13b的场合相比,如本实施方式的交替停止时间、间歇拉拔的场合惯性力及振动施以熔融镁合金13的进行凝固的固液界面,夹杂物及气泡从液体部分排出,从而可以预期成形为夹杂物和空隙(空隙)少、塑性加工性更优的型材毛坯。

    如果充分拉拔引锭杆16,凝固的镁合金13b达到拉辊17的位置,则该状态的镁合金13b承担引锭杆16的任务。

    刚从冷却式铸模15拉拔出的镁合金13b温度达约100℃或其以下,在连续铸造装置21中使用冷却部分为170mm的冷却式铸模15。从而,以100mm/min速度拉拔镁合金13b时,在坩埚内是780℃的镁合金通过170mm的期间,即1.7分钟(102秒)冷却到100℃,因此,能够实现约6.7K/秒的冷却速度。

    同样,以45mm/min的速度拉拔镁合金13b时,达到3.0K/秒的冷却速度,以125mm/min的速度拉拔镁合金13b时,达8.3K/秒的冷却速度。本实施例中,确认形成有如图1所示特征的金相组织,是以前述约3~8K/秒冷却速度的连续铸造制作的镁合金型材毛坯,但考虑金属的凝固速度对于金相组织的影响,则予测以大致1~20K/秒的冷却速度能获得前述金相组织是可能的。冷却速度过快时,残留枝状晶相,成为不出现镁晶界的组织,冷却速度过慢的场合,固枝状晶相完全消失,成为化合物区域3在纯镁的晶相2中固溶或移动偏析的组织。

    前述那样的实施方式没有进行固溶处理,因而能制作的型材毛坯,其特征是,出现晶界,并且,镁以外的成分相对合金组成比率高的区域分散、存在于晶粒内。

    采用连续铸造,随坩埚11内的镁合金材料13a减少,则施于材料凝固的固液界面的压力减少,铸块(镁合金13b)变得易间断。因此,本实施方式中,坩埚11内的材料减少到初期投料量的一半左右,则从投料溜槽18追加供料。此时,容器14内的氛围气不必泄漏,根据场合,边进行连续铸造、边供料也是可能的。该供料的方法,一定量材料减少后集中供料的间歇供料方法,及在连续铸造材料减少的同时逐步供料的连续供料方法中任何一种都是可能的。

    接着,介绍本实施方式的镁合金型材毛坯1的塑性加工性的优越性。

    在本实施方式的镁合金型材毛坯1中,对成形板厚3.0mm板坯,成形板厚5.0mm的板坯及成形板厚10.0mm的板坯分别压延,得到各自板厚0.5mm的薄板(依次定为试验板1、2、3)。压下率为约10~30%的冷轧实施多次以使板坯不发生裂纹,并在各压延工序之间进行450℃10分钟的退火。经最后的冷轧达到板厚0.5mm之后,进行约200℃1小时的消除应力退火。另外,实际的压延次数是,试验板1是6次;试验板2是7次;试验板3是12次。

    而且,准备了不是本实施方式的板厚0.5mm的镁合金薄板(试验板4),其是市场出售经过挤压加工及压延加工制作的。另外,这4个试验板的晶粒平均直径约是7~12μm。

    这些试验板截成图9所示的8角形坯件形状(约40mm×40mm,角部切成6mm),进行冲头台肩R1.5mm,冲头平面R2.0mm,冲头外形25mm×25mm的方形容器拉深试验,单侧间隙达0.1mm。控制金属模下降速度,边改变拉伸速度,边进行试验,严密的说,使拉伸速度变化为100mm/s、70mm/s、50mm/s、20mm/s、5mm/s、2mm/s、1mm/s、0.75mm/s、0.5mm/s、0.1mm/s进行实验。

    拉伸速度快的场合,成形品的四角,出现裂纹,而拉伸速度慢成形,则得到不出现裂纹的成形品,将不出现裂纹的拉伸速度中最大速度定为极限拉伸速度,求得各试验板的极限拉伸速度。另外,金属模的温度设定在250℃、200℃、150℃,作为润滑剂,使用二硫化钼系的喷雾剂。试验准备多个坯件9,各条件实施3次以上,目视确认裂纹出现,再依据其平均状态规定极限拉深速度。

    以下表4列示前述4个试验拔的极限拉深速度。

    表4  各试验板的极限拉深速度(单位mm/sec) 金属模  温度  用本实施方式的型材毛坯制作的薄板  市售薄板  试验板1  试验板2    试验板3  试验板4 250℃    100    100    100    10 200℃    20    10    10    1 150℃    1    1    1    0.1

    依据本实验可以说,对本实施方式的镁合金型材毛坯1压延制作的试验板1、2、3中任何1个与市场出售的板材(试验板4)相比,即使快10倍的速度也难以出现裂纹,即塑性加工性优异。

    前述实验结果是确认本实施方式的镁合金型材毛坯1的塑性加工优异性的一实施例,而不仅拉伸加工,而且对所谓锻造、弯曲变形的其他塑性加工也能期望同样的效果。

    正如前述说明那样,若采用本发明,因能够防止金相组织内的空隙、空洞等的铸造缺陷、夹杂物的偏析,因而富有延展性,对型材毛坯实施挤压、压延等1次加工形成薄板时,并且,对该薄板实施锻造等2次加工时,能够防止其缺陷部分成为加工时裂纹开裂点而发生断裂,而且,对型材毛坯就原状压延,用于塑性加工用薄板的场合,也能够简化工序,谋求成本降低。而且,对加工后的成形品涂装·干燥时,也能够防止内部气泡的破裂引起表面缺陷的问题。

镁合金型材毛坯、其连续铸造方法及连续铸造装置.pdf_第1页
第1页 / 共23页
镁合金型材毛坯、其连续铸造方法及连续铸造装置.pdf_第2页
第2页 / 共23页
镁合金型材毛坯、其连续铸造方法及连续铸造装置.pdf_第3页
第3页 / 共23页
点击查看更多>>
资源描述

《镁合金型材毛坯、其连续铸造方法及连续铸造装置.pdf》由会员分享,可在线阅读,更多相关《镁合金型材毛坯、其连续铸造方法及连续铸造装置.pdf(23页珍藏版)》请在专利查询网上搜索。

本发明涉及镁合金型材毛坯、其连续铸造方法及连续铸造装置。在隔断氧气的状态下熔化镁合金材料,并根据连续铸造法使熔融状态的镁合金冷却凝固,以得到铸造缺陷少、镁以外的成分中至少1种成分的平均浓度相对合金组成的比率高的区域(3)、分散存在于镁合金晶相(2)的内部的镁合金型材毛坯(1)。 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 化学;冶金 > 冶金;黑色或有色金属合金;合金或有色金属的处理


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1