无机微粒的应用及标记和识别基片或制品的方法.pdf

上传人:1** 文档编号:885564 上传时间:2018-03-16 格式:PDF 页数:19 大小:1.13MB
返回 下载 相关 举报
摘要
申请专利号:

CN98812733.4

申请日:

1998.12.22

公开号:

CN1283216A

公开日:

2001.02.07

当前法律状态:

授权

有效性:

有权

法律详情:

专利权的转移IPC(主分类):C09D 11/00变更事项:专利权人变更前权利人:西柏股份有限公司变更后权利人:西柏控股股份有限公司变更事项:地址变更前权利人:瑞士普里利变更后权利人:瑞士普里利登记生效日:20110330|||专利权人的姓名或者名称、地址的变更IPC(主分类):C09D 11/00变更事项:专利权人变更前:西柏控股有限公司变更后:西柏股份有限公司变更事项:地址变更前:瑞士普里利变更后:瑞士普里利|||授权|||实质审查的生效申请日:1998.12.22

IPC分类号:

C09D11/00; B41M3/14; B42D15/00; G06K19/06

主分类号:

C09D11/00; B41M3/14; B42D15/00; G06K19/06

申请人:

西柏控股有限公司;

发明人:

O·罗祖梅克; E·米勒

地址:

瑞士普里利

优先权:

1997.12.29 EP 97811029.4

专利代理机构:

中国专利代理(香港)有限公司

代理人:

卢新华;王其灏

PDF下载: PDF下载
内容摘要

本发明涉及无机微粒,该微粒包含至少两种呈预先规定的并可分析鉴别的比例的化学元素。该微粒用作标记方法加入到任何所需的制品中或涂敷其上,它们具有高的防伪安全潜能,因为分析取决于空间和化学信息。第一步骤中,包含信息的微粒必须被扫描电子显微镜定域,在第二步骤中,用能量散射或波长-散射X-射线分析法(SEM/EDX)分析。

权利要求书

1: 至少一种类型的无机微粒作为标记方法的应用,该微粒含至 少两种化学元素,其比例是预先规定的并能分析识别。
2: 权利要求1的微粒的应用,其中微粒能由扫描电子显微镜定 域。
3: 权利要求2的微粒的应用,其中无机微粒能由反向散射电子 探测定域。
4: 权利要求1-3中之一的微粒的应用,其中该化学元素的比 例能在扫描电子显微镜上由能量散射或波长散射X-射线分析。
5: 权利要求1-4中之一的微粒的应用,其中每个微粒的体积 基本上在0.01μm 3 -10000μm 3 范围内,优选在0.1μm 3 -1000μm 3 范围内, 更优选在1μm 3 -100μm 3 范围内。
6: 权利要求1-5中之一的微粒的应用其中该无机微粒含有呈 非化学计量比例的化学元素。
7: 权利要求1-5中之一的微粒的应用,其中该无机微粒由呈 化学计量组合物的化学元素组成。
8: 权利要求6或7的无机微粒的应用,其中该微粒为晶体。
9: 权利要求8的无机微粒的应用,其中该晶体微粒选自有柘榴 石-、尖晶石-、钙钛矿-、锆石结构的晶体。
10: 权利要求8的无机微粒的应用,其中该晶体微粒选自稀土元 素和/或钇的氧硫化物。
11: 权利要求6的无机微粒的应用,其中该微粒是无定形的或玻 璃状的。
12: 权利要求6的无机微粒的应用,其中该微粒具有金属合金。
13: 上述权利要求之任一的微粒在涂料组合物和/或印刷墨水和/ 或纸和/或安全膜和/或卡片和/或纤维和/或本体材料中的应用,其用 量在0.0001%-10%范围内,优选0.001%-1%,更优选0.01%- 0.1%,该量按其被加入到的总组合物或材料的总重量计。
14: 上述权利要求之任一的微粒的应用,其中该微粒另外具有一 种或几种下列特性:萤光、磁性、红外吸收、无线电频率和/或微波 共振。
15: 上述权利要求之任一的无机微粒在标记安全文件中的应用。
16: 一种标记基片的方法,它包括下列步骤: (a)提供至少一种类型的无机微粒,该微粒包含至少两种化学 元素,其比例是预先规定的并能被分析识别的非化学计量比和/或化 学计量比,其各个微粒的体积基本上在0.01μm 3 -10000μm 3 范围内,优 选在0.1μm 3 -1000μm 3 范围内,更优选在1μm 3 -100μm 3 范围内; (b)将步骤(a)得到的无机微粒加入到涂料组合物中,优选 是印刷墨水中; (c)任选地加入一种或几种伪装化合物,该化合物包含至少一 种在步骤(b)加入的那些无机微粒的化学元素; (d)将步骤(b)或(c)的涂料组合物,优选是印刷墨水涂复 于基片上。
17: 一种标记和鉴定基片的方法,它包括下列步骤: (a)提供至少一种类型的无机微粒,该微粒包含至少两种化学 元素,其比例是预先规定的并能被分析识别的非化学计量比和/或化 学计量比,其各个微粒的体积基本上在0.01μm 3 -10000μm 3 范围内,优 选在0.1μm 3 -1000μm 3 范围内,更优选在1μm 3 -100μm 3 范围内; (b)将步骤(a)得到的无机微粒加入到涂料组合物中,优选 是印刷墨水中; (c)任选加入一种或几种伪装化合物,该化合物包含至少一种 在步骤(b)加入的那些无机微粒的化学元素; (d)将步骤(b)或(c)的涂料组合物,优选是印刷墨水涂复 于基片上。 (e)优选用扫描电子显微镜定域在步骤(d)涂复的涂料组合 物和/或印刷墨水之中的该步骤(a)提供的无机微粒的至少一种类型 的位置。 (f)优选在扫描电子显微镜上用能量散射或波长散射X-射线 分析在步骤(e)中被定域的每一无机微粒的化学元素比例。
18: 标记和鉴定制品的方法,它包括下列步骤: (a)提供至少一种类型的无机微粒,该微粒包含至少两种化学 元素,其比例是预先规定的并能被分析识别的非化学计量比和/或化 学计量比,其各个微粒的体积基本上在0.01μm 3 -10000μm 3 范围内,优 选在0.1μm 3 -1000μm 3 范围内,更优选在1μm 3 -100μm 3 范围内; (b)将步骤(a)获得的无机微粒加入到用于制造该制品、安 全膜、纸、卡片、纤维的至少一种材料中; (c)可加入也可不加入一种或几种伪装化合物,该化合物包含 至少一种在步骤(b)加入的那些无机微粒的化学元素; (d)优选用扫描电子显微镜定域成形制品,纸,安全膜,卡片 或纤维中的该无机微粒的至少一种类型的位置。 (e)优选用在扫描电子显微镜上用能量散射或波长散射X-射 线分析分析在步骤(d)中被定域的每一无机微粒的化学元素比例。
19: 权利要求17-18的方法,其中该无机微粒是用反向散射电 子探测定域的。
20: 一种优选含权利要求17-19的标记方法的纸、卡片或安全 膜制成的安全文件。

说明书


无机微粒的应用及 标记和识别基片或制品的方法

    本发明涉及无机微粒的应用,该微粒包含至少两种呈预先规定和能被分析识别其比例的化学元素,涉及一种标记基片的方法以及一种标记和识别基片和/或制品的方法。

    DE 2651528和US 4329393中已描述编码的微粒,其编码至少用三种能目视识别的有机树脂颜色层表示,它们用作标记和/或安全特征以防伪冒制品。最初,研制这类微粒是为了跟踪炸药的生产和引爆。这类标记物的售出商标为Microtaggant或Microtrace。

    由于层的颜色顺序是唯一的编码特性,微粒度和材料选择限制了这类标记物的应用。粒度小于30μm对很多用途是必需的要求,特别是打印墨水和相关产品。高分辨的条纹和图形难以用其所含微粒大于印制特征本身的打印墨水绘制。有机叠层制成的颗粒几乎不落在预期的大小范围内。

    这类有机颗粒地另一缺点是其不耐热。如果制品暴露于火焰或受热之中,这会导至标记或安全码单元的破坏。

    US5,670,239公开了一种不定域标记制品的组合物,供这类制品的伪造或非法使用难以进行。该组成含有非随遇的化学元素,即周期表主族和副族的或多或少的稀有元素。具体而言,这类元素具有3.69keV-76.315 keV范围内的X-射线Kα线,它们既可呈元素状态或呈任何所需化合物状态。

    元素组成和它们的浓度作为非定域贮存的信息,它们不能用裸眼识别。一个信息条目,例如加密的数字编码或数字/字符组合可用一组具体的元素或化合物表示,其中每个具体的元素或化合物代表编码的数字,而元素和化合物的浓度表示该数字的值,例如图形或字符。如果属于该组的具体元素或化合物在组合物中不存在,则相应数位的值为零或空白。

    US5,670,239提及若干缺点。这种标记方法在任何情况下要求检索在标记它体材料、涂料或打印墨水中标记组分的准确浓度。这取决于标记组分的均匀分布,标记组分通常以溶液形式提供。要在整个要求的浓度范围内寻找所有均匀地溶解在涂料组合物中又不先成沉淀的所需元素的化合物是相当困难的。

    同时排除了应用固态材料混合物,因为它们本身倾向于按其粒度、比重等发生偏析。

    另一缺点在于编码的可能性的受限范围,因为每一具体的化学元素或化合物只能表示编码的有n值的数字。因此,对于m个具体的元素总的编码容量为nm。受限的编码容量是由于在无定域编码系统中只评价化学信息。这样,编码可被任一种足够灵敏的分析方法破译,这些方法能产生定量结果,例如经典元素分析、X-射线萤光、激光-消融-ICP-MS等。这就能使任何可能的伪造者的解码和反演设计易于进行。

    US5,670,239提出的另一缺点是对干扰元素加密的灵敏性。用于加密的一种或多种元素可由于另一原因出现在标记物体之中或之上。这将阻碍编码数字的正确读取。反之,其它安全系统的干扰可由于这类编码的存在而出现,具体而言,如果采用稀土离子的可溶性化合物,这些化合物常常在光谱的可见光或红外光谱范围是发萤光的。这类干扰有可能会在多种仿伪系统组合使用的安全文件中出现。

    因此,本发明的目的在于提供一种标记方法,该方法无现有技术的缺点,而且特别适用于安全文件。

    本发明的另一目的是提供一种可靠的法律工具用于标记防假冒和非法使用的物品。

    本发明的再一目的是提供一种标记方法,该方法与现有安全系统相容,特别与用于安全文件的系统和用作自动机识别的系统相容。

    本发明的另一目的是增加编码容量。

    本发明的再一目的是提供使反演设计难以进行的加密方法,该加密不会由大多数现存的常规分析工具所破译。

    本发明的再一目的是提供一种标记方法,该方法对干扰元素不灵敏。

    本发明的再一目的是提供一种标记方法,该方法不取决于与待标记的基体材料或制品材料或与涂料或印刷墨水的均相混合物的生成。

    这些目的是由独立权利要求的特征所实现的。

    具体说来,采用至少一种含至少两种呈预先规定并可分析鉴别其比例的化学元素作标记方法来实现这些目的。

    这类微粒被引入制品中或涂复于制品之上作标记方法。无机微粒中元素的具体比例是每种类型的微粒所特有,它代表编码或编码的一部分。

    包含信息的微粒用扫描电子显微镜(SEM)采用反向散射电子探测定域。

    这样,包含信息的微粒应在第一步骤中被定域。在包含信息的微粒被定域之后,包含在该微粒内的化学元素比例可用能量分散或波长分散γ-射线分析(EDX)测定。该两个步骤,即微粒定域及其分析是在同一SEM设备上进行。本发明的标记的特有解码受分析方法的制约,该方法组合使用定域显微镜和编码的元素分析。将编码信息浓集在至少一个定域微粒处,使信息检索与均相混合无关。对于这类标记的读取,SEM/EDX是目前最实用的方法。对于SEM/EDX,数量级为0.01μm3的微粒体积足能被准确读取。

    SEM/EDX分析方法另一有利的特性在于它与标准密切相关,以能获得可靠的定量结果。在微粒中存在的元素的量按其特征性X-射线发射强度确定。但是,后者取决于确准的激发条件,即激发电子束的能量。由于激发电子束的能量会随材料密度或多或少地衰减,因此分析必须参照化学性质相近的标准材料进行。在缺乏这种标准时,定量结果可能有相当大的误差。在安全应用中,标准及其准确组成对标记拥有者是已知的,但对伪造却是未知的。因此伪造者只能依靠间接证据,因而不能复制标记,甚至在他配置了SEM/EDX设备和使用了材料合成的设施的条件下亦是如此。

    标记微粒可含任何化学元素。

    特别有用的是周期表后半部分的元素,因为它所易于使微粒在SEM上定域。但是,对于编码目的可采用原子序数至少为5的任一元素,这些元素能用上述检测和分析装置读取。

    本发明所用的编码化合物最好选自非化学计量的晶体化合物或从不同类型的玻璃。化学计量的晶体化合物虽不具完全相同的安全潜能,但对选择应用仍是令人满意的。化学计量化合物是这样一些化合物,它们仅以确定的元素比存在。碳酸钙(CaCO3),石英(SiO2),重晶石(BaSO4)等是化学计量化合物的一些例子。

    非化学计量晶体是带微观有序结构的固体,即原子按称为晶体结构的规则方式排列。某些晶体结构对于一种类型的原子被另一类型的原子置换具有相当大的容许度,而不需要改变其微观顺序,其条件是遵守某些普遍法则如原子大小和电荷中性。这种结构类型的例子是尖晶石(AB2O4)、柘榴石(A3B2C3O12或A3B5O12)、钙钛矿(ABO3)、镧系元素的氧硫化物(Y,Ln)2O2S、锆石(ABO4)等。这里A、B、C代表出现在晶体结构中的不同类型的格点;这些格点必须被相应的金属离子所占据。Ln代表镧系,即57-71号元素。所有这些结构中的给定格点被单一类型的金属离子或者被不同类型的化学上相似的金属离子的混合物占据。例如,化合物Fe3O4、ZnFe2O4、(ZnxCO1-x)Fe2O4和Co(Fe2-xA1x)O4全都具有尖晶石结构。参数X在某些这类化学式中可自由选取,即存在一个或多个不为化学式量规定的浓度比例。本发明主要依靠这类化合物的存在以实现含适当信息的微粒。

    玻璃是非晶体固体材料,其特征是缺少微观序列。在原子水平上,玻璃的结构类似于液体。因此,可将玻璃看作是室温下极端粘稠的液体。玻璃的组成可在很大程度上变化,可将各种另外的金属离子引入(溶入)玻璃中形成基料。这种玻璃形成物在氧化物(B2O3、SiO2等)、氟化物(BeF2等)、氮化物等领域内是众所周知的。玻璃组成按其定义是非化学计量的,因为它们不具由化学计量确定的晶体结构。玻璃形成中唯一的限制因素是溶解度,即如果所有所需组分能在单一熔体中均相混合并在冷却过程中保持这种状态。很奇特的玻璃适用于本发明的标记目的,例如以各种元素比的含Si、Ge、Al、La、Ta、Er和O的玻璃。玻璃可研磨成所需的粒度,但这种研磨要求高新技术,以获得3-5μm量级的细小微粒。

    在另一实施方案中,微粒为金属合金,诸如铝镍钴合金、黄铜、青铜等等。

    所有类型的颗粒可单独使用或以任意组合使用。

    本发明的一个实施方案在于含信息的微粒由叠合层组成,该层含以非化学计量的或化学式量形式的几种化学元素。

    无机微粒可具有任何形状,包括不规则形成的和规则形成的微粒。该微粒的大小基本上在0.1-30微米之间,优选范围在0.5-10微米之间,甚至更优选的范围为1-5微米。基本上是指材料总重量的80%或80%以上落在上述范围内。单个微粒的体积基本上在0.01μm3-10000μm3之间的范围内,优选在0.1μm3-1000μm3之间的范围内,更优选在1μm3-100μm3的范围内。

    本发明的无机微粒可渗入任一载体介质内,该介质能生成该微粒的稳定弥散体,并使微粒保留在用于定域和分析的位置上。这些微粒宜渗入任一种涂料组合物和印刷墨水之中,再将它们涂复在需标记的任一种基片上。在一个优选的实施方案中,如果编码应使人眼不能觉察,则成膜的载体介质被选择成在电磁谱的可见范围内是透明的。在另一种应用模式中,微粒渗入本体材料中,然后经挤压、浇铸、注模,辊压等获得其所需的形状。含有该微粒的涂料组合物或印刷墨水可用任一种已知工艺涂复到底基片上。这些工艺包括喷涂、刷涂、浸渍、印刷。印刷可用凹板、凹印、胶印、丝网、凸版、苯胺印刷和相关技术完成。

    含信息的微粒亦可渗入粉末涂料组合物、调色剂等以及渗入纸、安全膜、塑料片和渗入纤维中,特别是对有价证券、纸币、支票等,以及安全文件、护照、驾驶执照等。它们还可用于信用卡、ID卡、出入卡以及所有其它类型的赋权卡或载值卡。

    对可靠探测和分析所必需的微粒的有效量界于其被加入的总组合物或材料总量的0.0001%-10%,优选为0.001%-1%,更优选为0.01%-0.1%。

    如果该微粒另外有萤光、磁性、红外吸收、无线电频率和/或微波共振等性质,则防伪保持可提高。涂料组合物和/或印刷墨水可涂复任何安全文件上,以便防伪或该文件的非授权交易和使用。

    按照本发明,编码的读取可采用任一种现有的扫描电子显微镜(SEM),其前提是它装备有反向散射电子探测器和能量分散或波长分散X-射线探测器。下述例子的数据来源于三种不同的仪器(LEO435VP,Philips XL 30W和Hitachi S-3500N),它们可以无区别地用于同一目的。

    在扫描电子显微镜中,样品用精细聚焦的电子束扫描,其光点大小为5-10nm,电子能量为1-30kV。当基束打在样品上,产生不同类型的次级辐射,后者可藉助适宜的装置探测。相应的探测器强度作为扫描电子束的坐标的函数图象产生SEM图。随电子能量和样品密度之不同,基束或多或少地透入样品材料。例如,20kV的电子束对有机墨水基体的穿透深度为5-8μm。

    最重要的次级辐照类型是:

    (ⅰ)次级电子,即基束电子碰撞后样品材料放出的电子。次级电子的能量低(小于50eV),从而只能透射样品的表面。其结果,次级电子探测产生样品的表面分布图象(“分布对比”)。

    (ⅱ)反向散射电子,即在样品原子核或核心上反射的基束电子。反向散射电子的能量高,接近基束的能量并可穿透整个样品体积。由于原子的电子散射能力随其原子序数增大。所以反向散射电子产生有关样品化学性质的图象(“化学对比”)。

    (ⅲ)X-射线,它来自以基束电子撞击之后样品原子的空电子壳的重填。每一原子发射其特征性的X-射线谱,由K、L、M等线序列构成,该谱可对样品中存在的某些化学元素作出结论,如果有对比标准存在,就可确定其相对量。接收到的X-射线发射的强度明显地取决于激发的基电子束的能量,同样取决于射线路径中存在的X-射线吸收物质。作为普遍准则,扫描电子束的能量至少必须是拟观察的发射线能量的两倍,并且能量低于2keV发射线已会在有机墨水基体中受到吸收损失。通常SEM操作中基束能量为20keV。在这种条件下,直到溴(原子序数35)的元素宜用其K-线测定,而从铷至铋(原子序数37-83)应宜用其L-线测定。对于后面族的较重元素,M-线具有一定意义,它们宜用于测定锕系元素。至于计算,对K-、L-、和M-线系的峰面积分别积分,并考虑按照装置特有的计算方法。

    下面的附图和例子将对本发明作进一步的阐述,但本发明不限于此。

    图1表示本发明包含信息的非化学计量无机晶体微粒的SEM图象,该微粒渗入凹版印刷墨水,该图象由反向散射电子探测(“化学对比”)获得。

    图2表示本发明包含信息的非化学计量无机晶体微粒的SEM图象,该微粒渗入可见光丝网印刷墨水。

    图3表示与图2相同的微粒的SEM图象,该微粒渗入可见光凹版印刷墨水。

    图4表示包含信息的非化学计量无机晶体微粒本体量的SEM图象,该图象由反向散射电子探测形象化。

    图5表示图2中定域的一个非化学计量晶体微粒的能量散射X-射线谱。

    图6表示SEM/EDX分析表,该表是基于本发明的无机微粒得到。

    图7表示本发明包含信息的玻璃型无机微粒的SEM图象。

    图8表示图7的一个微粒的能量散射X-射线谱。其化学组合物为(GeO2-SiO2-La2O3-Er2O3-Ta2O5)。

    图6表示对本发明无机微粒的SEM/EDX分析表。第一列表示图4的纯微粒的SEM/EDX结果,结果是利用仪器内含标准的算法系统,参比标准微粒的元素比例得到的,该标准微粒只属该标准拥有者所有。列2,3和4表示标记物的各个单体晶体的SEM/EDX结果,其在两种不同凹版墨水中的浓度分别为1%和0.1%。这些分析是对这些墨水的通常印刷进行的。

    本发明这种类型的标记对编码容量的提高以其耐干扰元素和抗反演设计将藉助下列实例予以阐明:

    实例:

    编码微粒P1:    (Y1.6Nd0.2Gd0.2)O2S

    编码微粒P2:    (Y1.0Gd0.6Yb0.4)O2S

    编码微粒P3:    (Y1.3Nd0.1Gd0.4Yb0.2)O2S

    伪装材料C1:    La2O3

    伪装材料C2:    Gd2O3

    用P1和P2的1∶1混合物获得的编码与用P3获得的编码可根据本发明予以区别,而US5,670,239却不能区别这两个案例、这表明本发明的标记方法具有较高的编码容量。

    用P1和伪装材料C1的1∶1混合物获得的编码按照本发明易于解码,因为它有该元素比例(Y1.6Nd0.2Gd0.2);这确实足以定域(Y1.6Nd0.2Gd0.2)O2S微粒的一个晶体并分析这个晶体。由于US5,670,239要补充考虑La2O3,在此案例中将得出(La1.0Y0.8Nd0.1Gd0.1)的总元素比例。这同样可能是用经典元素分析、X-射线萤光、激光-消融-ICP-MS等得到的组成比例,这表明本发明的标记方法有较高的抗反演设计。

    用P1和伪装材料C2的混合物获得的编码亦同样如此。SEM/EDX仍有能力准确读出编码,而其它分析方法将得出完全错误的钆含量。这表明本发明编码的抗干扰元素性质是很强的,干扰元素可能出于其它的原因可能存在于编码制品中或制品上。另一方面,可有目的的添加伪装材料,以误导任何可能的伪造者。

无机微粒的应用及标记和识别基片或制品的方法.pdf_第1页
第1页 / 共19页
无机微粒的应用及标记和识别基片或制品的方法.pdf_第2页
第2页 / 共19页
无机微粒的应用及标记和识别基片或制品的方法.pdf_第3页
第3页 / 共19页
点击查看更多>>
资源描述

《无机微粒的应用及标记和识别基片或制品的方法.pdf》由会员分享,可在线阅读,更多相关《无机微粒的应用及标记和识别基片或制品的方法.pdf(19页珍藏版)》请在专利查询网上搜索。

本发明涉及无机微粒,该微粒包含至少两种呈预先规定的并可分析鉴别的比例的化学元素。该微粒用作标记方法加入到任何所需的制品中或涂敷其上,它们具有高的防伪安全潜能,因为分析取决于空间和化学信息。第一步骤中,包含信息的微粒必须被扫描电子显微镜定域,在第二步骤中,用能量散射或波长散射X射线分析法(SEM/EDX)分析。。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 化学;冶金 > 染料;涂料;抛光剂;天然树脂;黏合剂;其他类目不包含的组合物;其他类目不包含的材料的应用


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1