通过发酵从可再生资源产生乙醇酸.pdf

上传人:倪** 文档编号:8840929 上传时间:2021-01-07 格式:PDF 页数:30 大小:388.01KB
返回 下载 相关 举报
摘要
申请专利号:

CN200780021493.5

申请日:

20070607

公开号:

CN101466841B

公开日:

20160427

当前法律状态:

有效性:

有效

法律详情:

IPC分类号:

C12N15/55

主分类号:

C12N15/55

申请人:

代谢探索者公司

发明人:

菲利普·索凯尔

地址:

法国圣搏齐尔

优先权:

PCT/EP2006/063046

专利代理机构:

北京坤瑞律师事务所

代理人:

封新琴

PDF下载: PDF下载
内容摘要

本发明提供在微生物中从可发酵碳源生物产生乙醇酸的方法。在发明的一个方面,通过使用重组生物体实现从葡萄糖到乙醇酸的转化的方法,所述重组生物体包括宿主大肠杆菌:所述宿主大肠杆菌经转化i)以削弱乙醛酸转化为除乙醇酸以外的其它化合物的消耗途径,ii)以使用NADPH乙醛酸还原酶将乙醛酸转化成乙醇酸,iii)以削弱所有乙醇酸代谢酶的水平和iv)增加乙醛酸途径中的通量。在本发明的另一个方面,通过增加细胞中NADPH的可用性而改进使用重组大肠杆菌从可发酵碳源产生乙醇酸的方法。任选地,可以通过聚合步骤将产生的乙醇酸纯化为至少乙醇酸二聚物,并通过从乙醇酸二聚物、寡聚物和/或多聚物解聚合而回收乙醇酸。

权利要求书

1.通过在适当的培养基中培养大肠杆菌菌株的微生物而发酵产生乙醇酸,并从培养基回收乙醇酸的方法,所述培养基包含能被所述微生物代谢的碳源,所述方法包括如下步骤:a)通过转化所述碳源来发酵所述微生物以产生乙醇酸,b)浓缩所述微生物或培养基中的乙醇酸,和c)从任选地以部分或全部量保留在终产物中的生物质和/或发酵液中分离乙醇酸,其中所述微生物包含至少一个编码NADPH依赖性乙醛酸还原酶的基因,所述至少一个编码NADPH依赖性乙醛酸还原酶的基因是ycdW,而且其中通过缺失下述与乙醛酸代谢相关的基因而修饰所述微生物以削弱从乙醛酸到除乙醇酸以外的其它产物的转化:●编码苹果酸合成酶的aceB●编码第二个苹果酸合成酶的glcB,和●编码乙醛酸醛连接酶的gcl。 2.权利要求1中要求的方法,其中通过聚合成至少乙醇酸二聚物的步骤分离乙醇酸。 3.权利要求2中要求的方法,其中通过从乙醇酸二聚物、寡聚物和/或多聚物解聚合而回收乙醇酸。 4.权利要求1中要求的方法,其中所述编码NADPH依赖性乙醛酸还原酶的基因是内源的。 5.权利要求1中要求的方法,其中所述编码NADPH依赖性乙醛酸还原酶的基因的表达增加。 6.权利要求1中要求的方法,其中所述微生物通过削弱选自下述与乙醇酸代谢相关的基因的至少一个基因在所述微生物中的表达而被修饰使得其不能代谢乙醇酸:●编码乙醇酸氧化酶的glcDEF●编码乙醇醛脱氢酶的aldA。 7.权利要求1中要求的方法,其中所述微生物经过转化通过削弱异柠檬酸脱氢酶的活性以增加乙醛酸途径的通量。 8.权利要求1中要求的方法,其中所述微生物经过转化通过削弱下述基因中至少一个基因在所述微生物中的表达以增加乙醛酸途径的通量:●编码磷酸转乙酰酶的pta●编码乙酸激酶的ack●编码丙酮酸氧化酶的poxB。 9.权利要求1中要求的方法,其中所述微生物经过转化通过增加aceA的活性来增加乙醛酸途径中的通量。 10.权利要求9中要求的方法,其中通过削弱基因iclR或fadR的表达来增加aceA的表达。 11.权利要求9中要求的方法,其中通过在基因aceA的上游引入人工启动子来增加aceA的表达。 12.权利要求1中要求的方法,其中通过削弱选自下述的基因中的至少一个基因在所述微生物中的表达而增加了NADPH的可用性:●编码6-磷酸葡萄糖异构酶的pgi●编码可溶转氢酶的udhA●编码磷酸葡糖酸脱水酶的edd。 13.权利要求1中要求的方法,其中所述碳源是下述中的至少一种:葡萄糖或蔗糖。 14.权利要求1中要求的方法,其中所述碳源是下述中的至少一种:单糖、寡糖、淀粉或甘油。 15.一种大肠杆菌菌株,其通过缺失下述与乙醛酸代谢相关的基因而被修饰以削弱从乙醛酸到除乙醇酸以外的其它产物的转化:●编码苹果酸合成酶的aceB●编码第二个苹果酸合成酶的glcB,和●编码乙醛酸醛连接酶的gcl且其中所述大肠杆菌菌株包含至少一个编码NADPH依赖性乙醛酸还原酶的基因,所述至少一个编码NADPH依赖性乙醛酸还原酶的基因是ycdW。 16.权利要求15的大肠杆菌菌株,其中所述编码NADPH依赖性乙醛酸还原酶的基因是内源的。 17.权利要求15的大肠杆菌菌株,其中所述编码NADPH依赖性乙醛酸还原酶的基因的表达增加。 18.权利要求15的大肠杆菌菌株,其中所述大肠杆菌菌株通过削弱选自下述与乙醇酸代谢相关的基因的至少一个基因在所述大肠杆菌菌株中的表达而被修饰使得其不能代谢乙醇酸:●编码乙醇酸氧化酶的glcDEF●编码乙醇醛脱氢酶的aldA。 19.权利要求15的大肠杆菌菌株,其中所述大肠杆菌菌株经过转化通过削弱异柠檬酸脱氢酶的活性以增加乙醛酸途径的通量。 20.权利要求19的大肠杆菌菌株,其中所述大肠杆菌菌株经过转化通过削弱下述基因中至少一个基因在所述大肠杆菌菌株中的表达以增加乙醛酸途径的通量:●编码磷酸转乙酰酶的pta●编码乙酸激酶的ack●编码丙酮酸氧化酶的poxB。 21.权利要求15的大肠杆菌菌株,其中所述大肠杆菌菌株经过转化通过增加aceA的活性来增加乙醛酸途径中的通量。 22.权利要求21的大肠杆菌菌株,其中通过削弱基因iclR或fadR的表达来增加aceA的表达。 23.权利要求21的大肠杆菌菌株,其中通过在基因aceA的上游引入人工启动子来增加aceA的表达。 24.权利要求15的大肠杆菌菌株,其中通过削弱选自下述的基因中的至少一个基因在所述大肠杆菌菌株中的表达而增加了NADPH的可用性:●编码6-磷酸葡萄糖异构酶的pgi●编码可溶转氢酶的udhA●编码磷酸葡糖酸脱水酶的edd。

说明书

发明领域

本发明包括通过需氧生长的微生物从可发酵碳源生物转化成乙醇酸 (glycolicacid)的方法。

发明背景

乙醇酸(HOCH2COOH)是羧酸的α-羟基酸家族中的第一个成员。乙醇酸 具有双重官能度,在非常小的分子上具有醇和中等强度的酸官能团。这导致 了独特的化学属性以及典型的酸和醇化学。

乙醇酸使用羟基和羧酸基团与多价金属形成五元环复合物(螯合物)。这种 金属离子复合能力在分解坚硬的水垢和防止沉积中有用,特别是在酸清洁设 备中,在所述设备中良好的清洗能力是关键的因素。乙醇酸与有机醇和酸经 过反应形成酯。低分子量的烷基乙醇酯具有特别的溶解性质,可以用作正丙 醇和异丙醇、乙二胺、苯酚、m-甲酚、2-乙氧基乙酸乙酯(2-ethoxyethylacetate), 和乳酸乙酯和乳酸甲酯的替代物。更高分子量的烷基酯能用于个人护理产品 配制物中。乙醇酸能与自身反应形成二聚的乙交酯、头尾相连的聚酯寡聚物, 和长链聚合物。可以与其它α-羟基酸如乳酸形成共聚物。聚酯聚合物在含水 环境中以可控制的速率逐渐水解。这种性质使它们在生物医药应用中有用, 如可分解的缝合线,而且在需要酸的控制释放以降低pH的应用中有用。目 前在美国每年消耗多于15000吨的乙醇酸。

乙醇酸的生物产生(在图1中显示)要求形成乙醛酸(glyoxylate)作为中间 物,其通过由基因ycdW编码的NADPH依赖性氧化还原酶还原成乙醇酸 (Nunez等,(2001)Biochemistry,354,707-715)。乙醛酸是乙醛酸循环(三羧酸循 环和乙醛酸旁路,在Neidhardt,F.C.(主编),R.CurtissIII,J.L.Ingraham,E.C. C.Lin,K.B.Low,B.Magasanik,W.S.Reznikoff,M.Riley,M.Schaechter和H. E.Umbarger(编).1996.EscherichiacoliandSalmonella:CellularandMolecular Biology.AmericanSocietyforMicrobiology中进行了总结)的中间物。在这个循 环中,将异柠檬酸切割成琥珀酸和乙醛酸,反应由异柠檬酸裂合酶催化,所 述酶由aceA基因编码。琥珀酸直接进入柠檬酸循环,并转化成草酰乙酸。通 过合并源自乙酸的一分子乙酰-CoA,乙醛酸转化成苹果酸,反应由aceB和 gclB编码的两个苹果酸合成酶的同工酶催化。在转录和后转录水平调控碳进 入乙醛酸支路。转录调控通过IclR抑制子对aceBAK操纵子进行。AceBAK 分别编码苹果酸合成酶、异柠檬酸裂合酶和异柠檬酸激酶/磷酸酶。iclR基因 进行负向的自调控并由FadR蛋白激活。由icd基因编码的异柠檬酸脱氢酶的 活性受到后转录调控。异柠檬酸脱氢酶和异柠檬酸裂合酶竞争共同的底物异 柠檬酸。因为异柠檬酸裂合酶反应对于异柠檬酸的Km值明显更高,所以进入 乙醛酸途径部分依赖于异柠檬酸脱氢酶的调控。异柠檬酸脱氢酶活性受到由 AceK催化的其磷酸化和去磷酸化的调节。磷酸化降低Icd的活性,而去磷酸 化重新活化Icd酶。AceK作为激酶还是磷酸酶起作用取决于几种代谢产物的 存在。耗尽异柠檬酸和3-磷酸甘油酸刺激激酶的活性,丙酮酸和AMP的存 在抑制激酶的作用,从而有利于磷酸酶活性(也参见Neidhard)。乙醛酸可以通 过由gcl编码的乙醛酸醛连接酶(glyoxylatecarboligase)转化成羟基丙二酸半醛 (tartronatesemidldahyde),并通过eda编码的2-酮-3-脱氧葡糖酸6-磷酸醛缩酶 (2-keto-3-deoxygluconate6-phosphatealdolase)转化成2-酮-4-羟基戊二酸 (2-keto-4-hydroxyglutarate),而乙醇酸可以通过aldA编码的依赖NAD+的乙 醇醛脱氢酶还原成乙醇醛,或通过glcDEF编码的依赖NAD+的乙醇酸氧化酶 氧化成乙醛酸。

本发明要解决的问题是从廉价的底物,如葡萄糖或其它糖,生物产生乙 醇酸。对于乙醇酸产生的工业可行方法,生物化学步骤的数目和代谢途径的 复杂性需要使用代谢工程改造的全细胞催化剂。

发明概述

申请人已经解决了上述的问题,本发明提供从可发酵碳源直接生物转化 成乙醇酸的方法。葡萄糖用作模式底物,而重组大肠杆菌用作模式宿主。在 本发明的一个方面,通过将编码苹果酸合成酶(aceB和glcB)、乙醛酸醛连接 酶(gcl)和2-酮-3-脱氧葡糖酸6-磷酸醛缩酶(eda)的基因失活,构建不能将乙醛 酸代谢成除乙醇酸以外的其它化合物的重组大肠杆菌。在本发明的另一个方 面中,通过使用内源的编码基因,如ycdW或yiaE,使用NADPH依赖性乙 醛酸还原酶活性将有毒的乙醛酸还原成乙醇酸。在本发明的另外的方面,缺 失了编码乙醇酸代谢酶、乙醇酸氧化酶(glcDEF)和乙醇醛脱氢酶(aldA)的基 因。此外,通过下述方法增加乙醛酸途径中的通量:i)通过失活iclR基因或 直接增加aceA的表达而增加aceA的水平,ii)失活编码异柠檬酸脱氢酶的基 因(icd)或降低表达水平,和iii)失活编码丙酮酸氧化酶(poxB)和乙酸途径(ack, pta)的基因。在本发明的最后方面,通过失活编码6-磷酸葡萄糖异构酶(pgi)、 6-磷酸葡糖酸脱水酶(edd)和可溶性转氢酶(udhA)的基因,增加NADPH的可 用性,从而获得乙醇酸产生的更好的得率(yield)。本发明通常可以应用于包括 易于转化成乙酰-CoA的任何碳底物。

因此,本发明的目的是提供用于产生乙醇酸的重组生物体,其包含:(a) 至少失活所有苹果酸合成酶、乙醛酸醛连接酶和2-酮-3-脱氧葡糖酸6-磷酸醛 缩酶编码基因;(b)编码具有NADPH依赖性乙醛酸还原酶活性的多肽的至少一 个基因,和(c)至少失活编码NAD+依赖性从乙醇酸氧化成乙醛酸的基因。任选 地,重组生物体可以包含i)失活在选自下组的内源基因中的突变:(a)编码乙 醛酸途径的抑制子的基因,(b)编码具有6-磷酸葡萄糖异构酶活性的多肽的基 因,(c)编码具有可溶性转氢酶活性的多肽的基因,(d)编码具有6-磷酸葡糖酸 脱水酶活性的多肽的基因,(e)编码具有磷酸-转乙酰酶(phospho-transacetylase) 和乙酸激酶活性的多肽的基因,(f)编码丙酮酸氧化酶活性的基因,(g)编码乙醇 醛脱氢酶活性的基因;ii)增加编码异柠檬酸裂合酶的基因的水平,和iii)失活 编码具有异柠檬酸脱氢酶活性的多肽的基因,或降低活性。

在另一个实施方案中,本发明提供从重组生物体产生乙醇酸的方法,所 述方法包括:(a)使本发明的生物体接触选自下组的至少一种碳源:单糖、寡 糖、多糖和能产生乙醇酸的单碳底物;任选地,(b)通过聚合为至少乙醇酸二 聚体的步骤和(c)通过解聚合从乙醇酸二聚体、寡聚体和/或多聚体中回收乙醇 酸来回收(a)中产生的乙醇酸。

附图简述

合并入本说明书和构成本说明书一部分的附图例示了本发明,并且与描 述一起用来解释本发明的原理(principle)。

图1描述在从碳水化合物至乙醇酸的产生系统的开发中,糖酵解、TCA 循环和乙醛酸途径的基因工程。

图2是显示构建载体pME101-ycdW的图。

发明详述

如本文所使用的,下述术语可以用于解释权利要求和说明书。

术语“突变菌株”指非野生型菌株。

术语“微生物”指所有种类的单细胞生物,包括原核生物,如细菌,和 真核生物,如酵母。细菌具体包括:肠杆菌科(Enterobacteriaceae)、芽孢杆菌 科(Bacillaceae)、链霉菌科(Streptomycetaceae)和棒杆菌科(Corynebacteriaceae)。 肠杆菌科具体包含但是不专指埃希氏菌属(Escherichia)、克雷伯氏菌属 (Klebsiella)、沙门氏菌属(Salmonella)和泛菌属(Pantoea)。

术语“转化”或“转染”指在合并外源核酸后,在细胞中获得新基因。 术语“转化子”指转化的产物。术语“遗传改变的”指通过转化或突变改变 遗传物质的过程。

术语“削弱(attenuation)”指降低基因的表达或降低蛋白(即,基因产物) 的活性。本领域的技术人员知道大量手段以获得这种结果,例如:

-将突变引入基因中,降低这个基因的表达水平,或所编码的蛋白质的 活性水平。

-用低强度启动子替换基因的天然启动子,导致较低的表达。

-使用使相应的信使RNA或蛋白质去稳定化的元件。

-如果不需要表达则缺失基因。

术语“表达”指从基因转录并翻译成蛋白质(即,基因的产物)。

本文所使用的术语“质粒”或“载体”指经常携带基因且通常为环状双 链DNA分子形式的染色体外元件,所述基因不是细胞中心代谢的部分。

术语“碳底物”或“碳源”表示能由微生物代谢的任何碳源,其中底物 包含至少一个碳原子。作者特别指可再生的、廉价的和可发酵的碳源,如单 糖、寡糖、多糖、单碳底物,和多羟基化合物,如甘油。单碳底物定义为只 包含一个碳原子的含碳分子,如甲醇。化学式为(CH2O)n的单糖也称作碳水化 合物(ose)或“简单糖(simplesugar)”;单糖包括蔗糖(saccharose)、果糖、葡萄 糖、半乳糖和甘露糖。其它包含多于一个单糖的碳源称作二糖、三糖、寡糖 和多糖。二糖包括蔗糖(sucrose)、乳糖和麦芽糖。淀粉和半纤维素是多糖,也 称作“复杂糖”。因此术语“碳源”表示上述任何产物,及它们的混合物。

术语“ATCC”代表美国典型培养物保藏中心,12301ParklawnDrive, Rockville,Md.20852,U.S.A。

术语“乙醛酸”(glyoxylate)和“乙醛酸”(glyoxylicacid)可以互换使用。

术语“乙醇酸”(glycolate)和“乙醇酸”(glycolicacid)可以互换使用。

在本发明的描述中,通过酶的比活性鉴定酶。因而这种定义包括也存在 于其它生物体中,更具体在其它微生物中的具有限定的比活性的所有多肽。 经常通过分类于某些定义为PFAM或COG的家族来鉴定具有相似活性的酶。

PFAM(比对和隐藏的Markov模型的蛋白质家族数据库; http://www.sanger.ac.uk/Software/Pfam/)代表蛋白质序列比对的大的集合。每个 PFAM可能显示多个比对,看到蛋白域,评价在生物体中的分布,访问其它 数据库,并显示已知的蛋白结构。

通过比较来自43个完全测序的基因组的蛋白质序列获得COGs(蛋白质 的正向同源(orthologous)组的簇;http://www.ncbi.nlm.nih.gov/COG/),所述基 因组代表30个主要的种系发生系(phylogenicline)。从至少三个系定义每个 COG,这允许鉴定以前的保守域。

鉴定同源序列及其百分比同源性的方法为本领域的技术人员所熟知,具 体包括BLAST程序,其可以从网站http://www.ncbi.nlm.nih.gov/BLAST/,以 该网站上指示的默认参数来使用。然后可使用,例如,程序CLUSTALW (http://www.ebi.ac.uk/clustalw/)或MULTALIN(http://prodes.toulouse.inra.fr/ multalin/cgi-bin/multalin.pl),以这些网站上指示的默认参数来利用(例如比对) 获得的序列。

使用GenBank上对于已知基因给出的参考,本领域的那些技术人员能确 定其它生物体、细菌菌株、酵母、真菌、哺乳动物、植物等中的等同基因。使 用共有序列可以有优势地完成这种常规工作,所述共有序列可以通过下述步骤 确定:用源自其它微生物的基因进行序列比对,并设计简并探针以克隆另一种 生物体中的相应基因。这些分子生物学的常规方法为本领域的那些技术人员所 熟知,并在例如Sambrook等(1989MolecularCloning:aLaboratoryManual.2nded.ColdSpringHarborLab.,ColdSpringHarbor,NewYork.)中描述。

本发明提供通过在适当的培养基中培养微生物,发酵产生乙醇酸、其衍 生物或前体并从培养基回收乙醇酸的方法,所述培养基包含碳源。

本发明的另一个实施方案提供方法,其中微生物经过修饰以具有低的除 产生乙醇酸以外的乙醛酸转化能力,原因是削弱了编码消耗乙醛酸(乙醇酸的 关键前体)的酶的基因:编码苹果酸合成酶的aceB和gclB基因,编码乙醛酸 醛连接酶的gcl和编码2-酮-3-脱氧葡糖酸6-磷酸醛缩酶的eda。

在本发明的另一个实施方案中,微生物包含编码催化乙醛酸转化成乙醇 酸的多肽的至少一个基因。

具体地,在需氧条件下,编码NADPH依赖性乙醛酸还原酶的基因可以 将有毒的乙醛酸中间物转化成低毒性的终产物乙醇酸。基因可以是外源或内 源的,并可以为染色体表达的或染色体外表达的。可以从大肠杆菌MG1655 的基因组中的ycdW或yiaE基因中选择NADPH依赖性乙醛酸还原酶编码基 因。在优选的实施方案中,增加至少一种所述基因的表达。如果需要的话, 可以通过使用基因组上的一个或几个拷贝,从染色体定位的基因获得高水平 的NADPH依赖的乙醛酸还原酶活性,所述基因组上的拷贝可以通过本领域 的专家已知的重组方法引入。对于染色体外的基因,可以使用因为复制起点 不同从而细胞中拷贝数不同的不同类型质粒。对应于具有严紧复制的低拷贝 数质粒(pSC101、RK2),低拷贝数质粒(pACYC、pRSF1010)或高拷贝数质粒 (pSKbluescriptII),它们可以作为1-5个拷贝,大约20或高达500个拷贝存 在。可以使用不同强度的启动子表达ycdW或yiaE基因,所述启动子需要或 者不需要由诱导子分子诱导。实例是启动子Ptrc、Ptac、Plac、λ启动子cI或 本领域专家已知的其它启动子。也可以通过使相应的信使RNA(Carrier和 Keasling(1998)Biotechnol.Prog.15,58-64)或蛋白质(例如,GST标签, AmershamBiosciences)稳定化的元件促进(boost)基因的表达。

在本发明的另一个实施方案中,以这样的方式修饰微生物使得其基本上 不能代谢乙醇酸。可以通过削弱编码消耗乙醇酸的酶的基因(编码乙醇酸氧化 酶的glcDEF和编码乙醇醛脱氢酶的aldA)中的至少一个而实现这种结果。可 以通过用低强度的启动子或用使相应的信使RNA或蛋白质去稳定化的元件 替代天然的启动子,来削弱基因。如果需要的话,也可以通过缺失相应的DNA 序列来实现基因的完全削弱。

在另一个实施方案中,转化本发明的方法中使用的微生物以增加乙醛酸 途径通量。

可以通过不同的手段增加乙醛酸途径中的通量,具体为:

i)降低异柠檬酸脱氢酶(Icd)的活性,

ii)通过削弱基因而降低下述酶中至少一种的活性:

●磷酸-转乙酰酶,由pta基因编码

●乙酸激酶,由ack基因编码

●丙酮酸氧化酶,由poxB基因编码

iii)增加异柠檬酸裂合酶的活性,其由aceA基因编码。

可以通过引入驱动icd基因(其编码异柠檬酸脱氢酶)表达的人工启动子, 或者通过在icd基因中引入降低蛋白的酶活性的突变,来降低异柠檬酸脱氢 酶的水平。

因为通过磷酸化降低蛋白质Icd的活性,所以还可以通过引入突变的 aceK基因控制其活性,所述基因与野生型的AceK酶相比,具有增加的激酶 活性或降低的磷酸酶活性。

可以通过削弱编码乙醛酸途径抑制子的iclR或fadR基因的水平,或通过 刺激aceA基因的表达,例如通过引入驱动基因表达的人工启动子,或通过在 aceA基因中引入增加编码蛋白的活性的突变,来增加异柠檬酸裂合酶的活性。

本发明的实施方案通过增加对NADPH依赖性乙醛酸还原酶的NADPH 可用性而提供乙醇酸产生的更好的得率。可以通过削弱选自下组的基因中的 至少一种获得对微生物性质的这种修饰:编码6-磷酸葡萄糖异构酶的pgi,编 码可溶性转氢酶的udhA和编码6-磷酸葡糖酸脱水酶活性的edd。具有这些遗 传修饰,所有6-磷酸葡萄糖将必须通过磷酸戊糖途径进入糖酵解,而且每代 谢一个6-磷酸葡萄糖将产生2个NADPH。

在另一个实施方案中,本发明提供从重组生物体发酵产生乙醇酸的方法, 所述方法包括:(a)用本发明的重组生物体接触选自下组的至少一种碳源:葡 萄糖、蔗糖、单糖、寡糖、多糖、淀粉或其衍生物、甘油和可产生乙醇酸的 单碳底物。任选地,该方法包括将细菌或培养基中的乙醇酸浓缩的步骤和从 从任选地以部分或全部量(0-100%)保留在终产物中的生物量和/或发酵培养液 (broth)中分离乙醇酸的步骤。任选地,该方法包括通过聚合为至少乙醇酸二 聚体和(b)通过解聚合从乙醇酸二聚体、寡聚体和/或多聚体中而回收乙醇酸的 步骤来回收步骤(a)中产生的乙醇酸。

本领域的技术人员能定义根据本发明的微生物的培养条件。具体地,在 20℃-55℃,优选在25℃-40℃的温度发酵细菌,而且更特定地,对谷氨酸棒 杆菌为约30℃,对大肠杆菌为约37℃。

通常在发酵罐中进行发酵,所述发酵罐中具有适合于所用细菌的已知确 定组成的无机培养基,其包含至少一种简单碳源,而且如果需要的话,包含 用于产生代谢物所必需的共同底物(co-substrate)。

本发明还涉及如前所述的微生物。优选地,这种微生物选自下组:大肠 杆菌、谷氨酸棒杆菌或酿酒酵母。

实施例1

构建除将乙醛酸还原成乙醇酸以外不能代谢乙醛酸的菌株:MG1655 ΔaceBΔgclΔglcB

要缺失aceB基因,使用由Datsenko&Wanner(2000)描述的同源重组策 略。这个策略允许插入氯霉素或卡那霉素抗性盒,同时缺失大多数有关的基 因。为此使用下述寡核苷酸:

DaceBF(SEQIDNO1)

ggcaacaacaaccgatgaactggctttcacaaggccgtatggcgagcaggagaagcaaattcttactgccga agcggtagCATATGAATATCCTCCTTAG

具有

-与基因aceB(网站http://genolist.pasteur.fr/Colibri/上的参考序列)的序列 (4213068-4213147)同源的区域(小写字母),

-用于扩增氯霉素抗性盒(Datsenko,K.A.&Wanner,B.L.,2000,PNAS,97: 6640-6645中的参考序列)的区域(大写字母),

DaceBR(SEQIDNO2))

ggcggtagcctggcagggtcaggaaatcaattaactcatcggaagtggtgatctgttccatcaagcgtgcggc atcgtcTGTAGGCTGGAGCTGCTTCG

具有

-与基因aceB(网站http://genolist.pasteur.fr/Colibri/上的参考序列)的序列 (4214647-4214569)同源的区域(小写字母),

-用于扩增氯霉素抗性盒(Datsenko,K.A.&Wanner,B.L.,2000,PNAS,97: 6640-6645中的参考序列)的区域(大写字母)。

使用寡核苷酸DaceBF和DaceBR从质粒pKD3扩增氯霉素抗性盒。然后 通过电穿孔将获得的PCR产物引入菌株MG1655(pKD46)中,其中表达的Red 重组酶允许进行同源重组。然后选择具有氯霉素抗性的转化子,并通过用下 面定义的寡核苷酸aceBF和aceBR通过PCR分析来确认抗性盒的插入。将保 留的菌株命名为MG1655ΔaceB::Cm。

aceBF(SEQIDNO3):cgttaagcgattcagcaccttacc(与4212807至4212830的 序列同源)。

aceBR(SEQIDNO4):ccagtttctgaatagcttcc(与4215327至4215308的序列 同源)。

然后,通过转导缺失MG1655ΔaceB::Cm菌株中的gcl基因。

首先用下面的寡核苷酸,使用如前述的同样方法构建MG1655Δgcl::Km菌株:

DgclF(SEQIDNO5)

ggcaaaaatgagagccgttgacgcggcaatgtatgtgctggagaaagaaggtatcactaccgccttcggtgtt ccgggagcTGTAGGCTGGAGCTGCTTCG

具有

-与基因gcl(网站http://genolist.pasteur.fr/Colibri/上的参考序列)区域的 序列(533142-533224)同源的区域(小写字母),

-用于扩增卡那霉素抗性盒(Datsenko,K.A.&Wanner,B.L.,2000,PNAS, 97:6640-6645中的参考序列)的区域(大写字母),

DgipR(SEQIDNO6)

gcgttacgttttaacggtacggatccatccagcgtaaaccggcttccgtggtggtttggggtttatattcacaccc aacccCATATGAATATCCTCCTTAG

具有

-与基因gcl(网站http://genolist.pasteur.fr/Colibri/上的参考序列)区域的 序列(535720-535640)同源的区域(小写字母),

-用于扩增卡那霉素抗性盒(Datsenko,K.A.&Wanner,B.L.,2000,PNAS, 97:6640-6645中的参考序列)的区域(大写字母)。

使用寡核苷酸DgclF和DgipR从质粒pKD4扩增卡那霉素抗性盒。然后 通过电穿孔将获得的PCR产物引入菌株MG1655(pKD46)中。然后选择具有 卡那霉素抗性的转化子,并通过用下面定义的寡核苷酸gclF和gipR通过PCR 分析来确认抗性盒的插入。将保留的菌株命名为MG1655Δgcl::Km。

gclF(SEQIDNO7):ggatatgcccaccttgctgaagg(与从532795至532817的序 列同源)。

gipR(SEQIDNO8):cgcttagtttcaatcggggaaatgg(与从536114至536090的 序列同源)。

为了将缺失Δgcl::Km转移,使用噬菌体P1转导的方法。分两步进行下 面的规程,制备菌株MG1655Δgcl::Km的噬菌体裂解物,然后转导入菌株 MG1655ΔaceB::Cm。菌株的构建如上所述。

噬菌体裂解物P1的制备:

-用菌株MG1655Δgcl::Km的100μl过夜培养物接种10mlLB+Km50 μg/ml+葡萄糖0.2%+CaCl25mM。

-在37℃振荡培育30分钟。

-向菌株MG1665中加入制备的100μl噬菌体裂解物P1(约1·109个噬菌 体/ml)。

-在37℃振荡3小时,直至所有细胞裂解。

-加入200ul氯仿并漩涡振荡。

-在4500g离心10分钟以去除细胞碎片。

-将上清液转移至无菌试管并加入200ul氯仿。

-在4℃储存裂解物。

转导

-在1500g将菌株MG1655ΔaceB::Cm在LB培养基中的5ml过夜培养 物离心10分钟。

-在2.5ml10mMMgSO4,5mMCaCl2中悬浮细胞沉淀。

-对照试管:100μl细胞

菌株MG1655Δgcl::Km的100μl噬菌体P1

-测试试管:100μl细胞+菌株MG1655Δgcl::Km的100μl噬菌体P1。

-30℃不振荡地培育30分钟。

-在每个试管中加入100μl1M柠檬酸钠并漩涡振荡。

-加入1mlLB。

-37℃振荡培育1小时。

-在7000rpm将试管离心3分钟后,涂布于LB+Km50μg/ml的平板上。

-在37℃过夜培育。

菌株的确认

然后选择具有卡那霉素抗性的转化子,用前述的寡核苷酸gclF和gipR 通过PCR分析来确认基因Δgcl::Km的缺失。将保留的菌株命名为MG1655 ΔaceB::CmΔgcl::Km。

然后消除卡那霉素和氯霉素抗性盒。然后将携带在卡那霉素和氯霉素抗 性盒的FRT位点起作用的FLP重组酶的质粒pCP20通过电穿孔引入重组位 点。在42℃的一系列培养后,通过使用与先前所用相同的寡核苷酸 (aceBF/aceBR和gclF/gipR)通过PCR分析来确认卡那霉素和氯霉素抗性盒的 丢失(loss)。将保留的菌株命名为MG1655ΔaceBΔgcl。

然后,通过转导缺失MG1655ΔaceBΔgcl菌株中的glcB基因。用下述的 寡核苷酸,使用与前述相同的方法首先构建MG1655ΔglcB::Km:

DglcBR(SEQIDNO9)

cccagagccgtttacgcattgacgccaattttaaacgttttgtggatgaagaagttttaccgggaacagggctgg acgcCATATGAATATCCTCCTTAG

具有

-与基因glcB(网站http://genolist.pasteur.fr/Colibri/上的参考序列)区域中 的序列(3121805-3121727)同源的区域(小写字母),

-用于扩增卡那霉素抗性盒(Datsenko,K.A.&Wanner,B.L.,2000,PNAS, 97:6640-6645中的参考序列)的区域(大写字母),

DglcBF(SEQIDNO10)

cgcgtaaacgccaggcgtgtaataacggttcggtatagccgtttggctgtttcacgccgaggaagattaaatcg ctggcTGTAGGCTGGAGCTGCTTCG

具有

-与基因glcB(网站http://genolist.pasteur.fr/Colibri/上的参考序列)区域中 的序列(3119667-3119745)同源的区域(小写字母),

-用于扩增卡那霉素抗性盒(Datsenko,K.A.&Wanner,B.L.,2000,PNAS, 97:6640-6645中的参考序列)的区域(大写字母)。

使用寡核苷酸DglcBF和DglcBR从质粒pKD4扩增卡那霉素抗性盒。然 后通过电穿孔将获得的PCR产物引入菌株MG1655(pKD46)。然后选择具有 卡那霉素抗性的转化子,用下面定义的寡核苷酸glcBF和glcBR通过PCR分 析来确认抗性盒的插入。将保留的菌株命名为MG1655ΔglcB::Km。

glcBR(SEQIDNO11):gccagcaaatggcgagtgc(与从3122225至3122207的 序列同源)。

glcBF(SEQIDNO12):cgcagagtatcgttaagatgtcc(与从3119475至3119497 的序列同源)。

为了将缺失ΔglcB::Km转移,使用噬菌体P1转导的方法。制备菌株 MG1655ΔglcB::Km的噬菌体裂解物,用于转导入菌株MG1655ΔaceBΔgcl。

然后选择具有卡那霉素抗性的转化子,并用前面定义的寡核苷酸glcBF 和glcBR通过PCR分析来确认基因ΔglcB::Km的缺失。将保留的菌株命名为 MG1655ΔaceBΔgclΔglcB::Km。

然后消除卡那霉素抗性盒。然后将携带在卡那霉素抗性盒的FRT位点起作 用的FLP重组酶的质粒pCP20通过电穿孔引入重组位点。在42℃的一系列培 养后,通过使用与先前所用相同的寡核苷酸(glcBF和glcBR)通过PCR分析来确 认卡那霉素抗性盒的丢失。将保留的菌株命名为MG1655ΔaceBΔgclΔglcB。

实施例2

构建NADPH依赖性乙醛酸还原酶水平增加的菌株:MG1655ΔaceBΔgcl ΔglcB(pME101-ycdW)

为了促进NADPH依赖性乙醛酸还原酶的水平,使用启动子Ptrc表达来 自质粒pCL1920(Lerner&Inouye,1990,NAR18,15p4631)的ycdW基因。为 了从低拷贝载体表达,如下构建质粒pME101。使用寡核苷酸PME101F和 PME101R来PCR扩增质粒pCL1920,并在扩增的载体中插入来自携带lacI 基因和Ptrc启动子的载体PTRC99A的BstZ17I-XmnI片段。

PME101F(SEQIDNO13):Ccgacagtaagacgggtaagcctg

PME101R(SEQIDNO14):Agcttagtaaagccctcgctag

使用下述寡核苷酸从基因组DNA来PCR扩增ycdW基因:

BspHIycdW(SEQIDNO15):agctagctctcatgagaataaatttcgcacaacgcttttcggg

SmaIycdW(SEQIDNO16):gcatgcatcccgggtctctcctgtattcaattcccgcc

用BspHI和SmaI消化PCR片段,并将其克隆进用NcoI和SmaI限制酶 切割的载体pME101,得到质粒pME101-ycdW。然后将pME101-ycdW质粒 引入菌株MG1655ΔaceBΔgclΔglcB。

实施例3

构建乙醇酸消耗降低的菌株:MG1655ΔaceBΔgclΔglcDEFGBΔaldA (pME101-ycdW)

通过转导缺失MG1655ΔaceBΔgcl菌株中的glcDEFGB基因。

首先用下述寡核苷酸,用与如前所述相同的方法构建MG1655 ΔglcDEFGB::Km:

DglcDR(SEQIDNO17)

gcgtcttgatggcgctttacccgatgtcgaccgcacatcggtactgatggcactgcgtgagcatgtccctggac ttgagatccCATATGAATATCCTCCTTAG

具有

-与基因glcD(网站http://genolist.pasteur.fr/Colibri/上的参考序列)的序列 (3126016-3125934)同源的区域(小写字母),

-用于扩增氯霉素抗性盒(Datsenko,K.A.&Wanner,B.L.,2000,PNAS,97: 6640-6645中的参考序列)的区域(大写字母),

DglcBF(SEQIDNO18)

cgcgtaaacgccaggcgtgtaataacggttcggtatagccgtttggctgtttcacgccgaggaagattaaatcg ctggcTGTAGGCTGGAGCTGCTTCG

具有

-与基因glcB(网站http://genolist.pasteur.fr/Colibri/上的参考序列)区域的 序列(3119667-3119745)同源的区域(小写字母),

-用于扩增氯霉素抗性盒(Datsenko,K.A.&Wanner,B.L.,2000,PNAS,97: 6640-6645中的参考序列)的区域(大写字母)。

使用寡核苷酸DglcDR和DglcBF从质粒pKD4扩增卡那霉素抗性盒。然 后通过电穿孔将获得的PCR产物引入菌株MG1655(pKD46),其中表达的Red 重组酶允许进行同源重组。然后选择具有氯霉素抗性的转化子,用下面定义 的寡核苷酸glcDR和glcBF通过PCR分析来确认抗性盒的插入。将保留的菌 株命名为MG1655ΔglcDEFGB::Km。

glcDR(SEQIDNO19):ccaagacaaggtcacagagc(与从3126183至3126164 的序列同源)。

glcBF(SEQIDNO20):cgcagagtatcgttaagatgtcc(与从3119475至3119497 的序列同源)。

为了将缺失ΔglcDEFGB::Km转移,使用噬菌体P1转导的方法。制备菌 株MG1655ΔglcDEFGB::Km的噬菌体裂解物,用于转导入菌株MG1655 ΔaceBΔgcl。

然后选择具有卡那霉素抗性的转化子,并用前面定义的寡核苷酸glcBF 和glcDR通过PCR分析来确认基因ΔglcDEFGB::Km的缺失。将保留的菌株 命名为MG1655ΔaceBΔgclΔglcDEFGB::Km。

然后,通过转导缺失MG1655ΔaceBΔgclΔglcDEFGB::Km菌株中的aldA基 因。首先用下述寡核苷酸,使用与先前所述相同的方法构建MG1655aldA::Cm。

AldADr(SEQIDNO21)

ttaagactgtaaataaaccacctgggtctgcagatattcatgcaagccatgtttaccatctgcgccgccaatacc ggatttCATATGAATATCCTCCTTAG

具有

-与基因aldA(网站http://genolist.pasteur.fr/Colibri/上的参考序列)的序列 (1487615-1487695)同源的区域(小写字母),

-用于扩增卡那霉素抗性盒(Datsenko,K.A.&Wanner,B.L.,2000,PNAS, 97:6640-6645中的参考序列)的区域(大写字母),

AldADf(SEQIDNO22)

atgtcagtacccgttcaacatcctatgtatatcgatggacagtttgttacctggcgtggagacgcatggattgatg tggtaGTGTAGGCTGGAGCTGCTTCG

具有

-与基因aldA(网站http://genolist.pasteur.fr/Colibri/上的参考序列)的序列 (1486256-1486336)同源的区域(小写字母),

-用于扩增卡那霉素抗性盒(Datsenko,K.A.&Wanner,B.L.,2000,PNAS, 97:6640-6645中的参考序列)的区域(大写字母)。

使用寡核苷酸aldAF和aldAR从质粒pKD3扩增氯霉素抗性盒。然后通 过电穿孔将获得的PCR产物引入菌株MG1655(pKD46),其中表达的Red重 组酶允许进行同源重组。然后选择具有卡那霉素抗性的转化子,用下面定义 的寡核苷酸YdcFCf和gapCCR通过PCR分析来确认抗性盒的插入。将保留 的菌株命名为MG1655ΔaldA::Cm。

YdcFCf(SEQIDNO23):tgcagcggcgcacgatggcgacgttccgccg(与从1485722 至1485752的序列同源)。

gapCCR(SEQIDNO24):cacgatgacgaccattcatgcctatactggc(与从1488195 至1488225的序列同源)。

为了将缺失ΔaldA::Cm转移,使用噬菌体P1转导的方法。制备菌株 MG1655ΔaldA::Cm的噬菌体裂解物,用于转导入菌株MG1655ΔaceBΔgcl ΔglcDEFGB::Km。

然后选择具有卡那霉素抗性的转化子,并用前面定义的寡核苷酸YdcFCf 和gapCCR通过PCR分析来确认基因ΔaldA::Cm的缺失。将保留的菌株命名 为MG1655ΔaceBΔgclΔglcDEFGB::KmΔaldA::Cm。

然后可以消除卡那霉素和氯霉素抗性盒。然后将携带在卡那霉素和氯霉 素抗性盒的FRT位点起作用的FLP重组酶的质粒pCP20通过电穿孔引入重 组位点。在42℃的一系列培养后,通过使用与先前所用相同的寡核苷酸 (glcBF/glcDR和YdcFCf/gapCCR)通过PCR分析来确认卡那霉素和氯霉素抗 性盒的丢失。将保留的菌株命名为MG1655ΔaceBΔgclΔglcDEFGBΔaldA。

然后将pME101-ycdW质粒引入菌株MG1655ΔaceBΔgclΔglcDEFGBΔaldA。

实施例4

构建乙醛酸途径的通量增加的菌株:MG1655ΔaceBΔgclΔglcDEFGB ΔaldAΔiclR(pME101-ycdW)

用下述寡核苷酸,使用与前述相同的策略,将iclR基因缺失引入MG1655 ΔaceBΔgclΔglcDEFGBΔaldA:

DiclF(SEQIDNO25)

Cgcacccattcccgcgaaacgcggcagaaaacccgccgttgccaccgcaccagcgactggacaggttcag tctttaacgcgTGTAGGCTGGAGCTGCTTCG

具有

-与基因iclR(网站http://genolist.pasteur.fr/Colibri/上的参考序列)的序列 (4221202-4221120)同源的区域(小写字母),

-用于扩增卡那霉素抗性盒(Datsenko,K.A.&Wanner,B.L.,2000,PNAS, 97:6640-6645中的参考序列)的区域(大写字母),

DiclR(SEQIDNO26)

gcgcattccaccgtacgccagcgtcacttccttcgccgctttaatcaccatcgcgccaaactcggtcacgcggt catcggCATATGAATATCCTCCTTAG

具有

-与基因iclR(网站http://genolist.pasteur.fr/Colibri/上的参考序列)的序列 (4220386-4220465)同源的区域(小写字母),

-用于扩增卡那霉素抗性盒(Datsenko,K.A.&Wanner,B.L.,2000,PNAS, 97:6640-6645中的参考序列)的区域(大写字母),

使用寡核苷酸DiclF和DiclR从质粒pKD4扩增卡那霉素抗性盒。然后通 过电穿孔将获得的PCR产物引入菌株MG1655ΔaceBΔgclΔglcDEFGBΔaldA (pKD46)。然后选择具有卡那霉素抗性的转化子,用下面定义的寡核苷酸iclF 和iclR通过PCR分析来确认抗性盒的插入。将保留的菌株命名为MG1655 ΔaceBΔgclΔglcDEFGBΔaldAΔiclR::Km。

IclF(SEQIDNO27):cctttgaggtcgcatggccagtcggc(与从4221558至 4221533的序列同源)。

iclR(SEQIDNO28):gctttttaatagaggcgtcgccagctccttgcc(与从4219917至 4219949的序列同源)。

然后可以消除卡那霉素抗性盒。然后将携带在卡那霉素抗性盒的FRT位 点起作用的FLP重组酶的质粒pCP20通过电穿孔引入重组位点。在42℃的一 系列培养后,使用与先前所用相同的寡核苷酸(iclF和iclR)通过PCR分析来 确认卡那霉素抗性盒的丢失。将保留的菌株命名为MG1655ΔaceBΔgcl ΔglcDEFGBΔaldAΔiclR。

然后将pME101-ycdW质粒引入菌株MG1655ΔaceBΔgclΔglcDEFGB ΔaldAΔiclR。

实施例5

构建NADPH可用性增加的菌株:MG1655ΔaceBΔgclΔiclRΔglcDEFGB ΔaldAΔedd-eda(pME101-ycdW)

通过转导缺失MG1655ΔaceBΔgclΔglcBΔglcDEFΔaldAΔiclR菌株中的 edd-eda基因。

首先用下述寡核苷酸,使用与前述相同的方法构建菌株MG1655 Δedd-eda::Cm:

DeddF(SEQIDNO29)

Cgcgcgagactcgctctgcttatctcgcccggatagaacaagcgaaaacttcgaccgttcatcgttcgcagtt ggcatgcggTGTAGGCTGGAGCTGCTTCG

具有

-与基因edd-eda(网站http://genolist.pasteur.fr/Colibri/上的参考序列)的 区域的序列(1932582-1932500)同源的区域(小写字母),

-用于扩增氯霉素抗性盒(Datsenko,K.A.&Wanner,B.L.,2000,PNAS,97: 6640-6645中的参考序列)的区域(大写字母),

DedaR(SEQIDNO30)

gcttagcgccttctacagcttcacgcgccagcttagtaatgcggtcgtaatcgcccgcttccagcgcatctgcc ggaaccCATATGAATATCCTCCTTAG

具有

-与基因edd-eda(网站http://genolist.pasteur.fr/Colibri/上的参考序列)的 区域的序列(1930144-1930223)同源的区域(小写字母),

-用于扩增氯霉素抗性盒(Datsenko,K.A.&Wanner,B.L.,2000,PNAS,97: 6640-6645中的参考序列)的区域(大写字母),

使用寡核苷酸DeddF和DedaR从质粒pKD3扩增氯霉素抗性盒。然后通 过电穿孔将获得的PCR产物引入菌株MG1655(pKD46)。然后选择具有氯霉 素抗性的转化子,用下面定义的寡核苷酸eddF和edaR通过PCR分析来确认 抗性盒的插入。将保留的菌株命名为MG1655Δedd-eda::Cm。

eddF(SEQIDNO31):Gggtagactccattactgaggcgtgggcg(与序列1932996至 1932968的序列同源)。

edaR(SEQIDNO32):ccacatgataccgggatggtgacg(与从1929754至 1929777的序列同源)

为了将缺失Δedd-eda::Cm转移,如前所述使用噬菌体P1转导的方法。 制备菌株MG1655Δedd-eda::Cm的噬菌体裂解物,用于转导入菌株MG1655 ΔaceBΔgclΔglcDEFGBΔaldAΔiclR。

然后选择具有氯霉素抗性的转化子,并用寡核苷酸eddF和edaR通过PCR 分析来确认基因Δedd-eda::Cm的缺失。将保留的菌株命名为MG1655ΔaceB ΔgclΔglcBΔglcDEFΔaldAΔiclRΔedd-eda::Cm。

然后可以消除氯霉素抗性盒。然后将携带在氯霉素抗性盒的FRT位点起 作用的FLP重组酶的质粒pCP20通过电穿孔引入重组位点。在42℃的一系列 培养后,通过使用与先前所用相同的寡核苷酸(eddF和edaR)通过PCR分析来 确认氯霉素抗性盒的丢失。将保留的菌株命名为MG1655ΔaceBΔgcl ΔglcDEFGBΔaldAΔiclRΔedd-eda。

然后将pME101-ycdW质粒引入菌株MG1655ΔaceBΔgclΔglcDEFGB ΔaldAΔiclRΔedd-eda。

实施例6

构建NADPH可用性增加的菌株:MG1655ΔaceBΔgclΔiclRΔglcDEFGB ΔaldAΔpgi::CmΔedd-eda(pME101-ycdW)

用下述寡核苷酸,使用与前述相同的策略将pgi基因缺失引入MG1655 ΔaceBΔgclΔglcBΔglcDEFΔaldAΔiclRΔedd-eda。

DpgiF(SEQIDNO33)

ccaacgcagaccgctgcctggcaggcactacagaaacacttcgatgaaatgaaagacgttacgatcgccgat ctttttgcTGTAGGCTGGAGCTGCTTCG

具有

-与基因pgi(网站http://genolist.pasteur.fr/Colibri/上的参考序列)的序列 (4231352-4231432)同源的区域(小写字母),

-用于扩增氯霉素抗性盒(Datsenko,K.A.&Wanner,B.L.,2000,PNAS,97: 6640-6645中的参考序列)的区域(大写字母),

DpgiR(SEQIDNO34)

gcgccacgctttatagcggttaatcagaccattggtcgagctatcgtggctgctgatttctttatcatctttcagctc tgCATATGAATATCCTCCTTAG

具有

-与基因pgi(网站http://genolist.pasteur.fr/Colibri/上的参考序列)的序列 (4232980-4232901)同源的区域(小写字母),

-用于扩增氯霉素抗性盒(Datsenko,K.A.&Wanner,B.L.,2000,PNAS,97: 6640-6645中的参考序列)的区域(大写字母),

使用寡核苷酸DpgiF和DpgiR从质粒pKD3扩增氯霉素抗性盒。然后通过 电穿孔将获得的PCR产物引入菌株MG1655ΔaceBΔgclΔglcBΔglcDEFΔaldA ΔiclRΔedd-eda(pKD46)。然后选择具有氯霉素抗性的转化子,用下面定义的 寡核苷酸pgiF和pgiR通过PCR分析来确认抗性盒的插入。将保留的菌株命名 为MG1655ΔaceBΔgclΔglcBΔglcDEFΔaldAΔiclRΔedd-edaΔpgi::Cm。

pgiF(SEQIDNO35):gcggggcggttgtcaacgatggggtcatgc(与从4231138至 4231167的序列同源)。

pgiR(SEQIDNO36):cggtatgatttccgttaaattacagacaag(与从4233220至 4233191的序列同源)。

然后将pME101-ycdW质粒引入菌株MG1655ΔaceBΔgclΔglcDEFGB ΔaldAΔiclRΔedd-edaΔpgi::Cm。

实施例7

构建NADPH可用性增加的菌株:MG1655ΔaceBΔgclΔiclRΔglcDEFGB ΔaldAΔpgiΔedd-eda::CmΔudhA::Km(pME101-ycdW)

用下述寡核苷酸,使用与前述相同的策略将udhA基因缺失引入MG1655 ΔaceBΔgclΔglcDEFGBΔaldAΔiclRΔpgi::CmΔedd-eda。

DudhAF(SEQIDNO37)

CCCAGAATCTCTTTTGTTTCCCGATGGAACAAAATTTTCAGCGTGCCCA CGTTCATGCCGACGATTTGTGCGCGTGCCAGTGTAGGCTGGAGCTGCTTCG

具有

-与基因udhA(网站http://genolist.pasteur.fr/Colibri/上的参考序列)的序 列(4157588-4157667)同源的区域(加粗字母),

-用于扩增卡那霉素抗性盒(Datsenko,K.A.&Wanner,B.L.,2000,PNAS, 97:6640-6645中的参考序列)的区域(下划线字母),

DudhAR(SEQIDNO38)

GGTGCGCGCGTCGCAGTTATCGAGCGTTATCAAAATGTTGGCGGCGGT TGCACCCACTGGGGCACCATCCCGTCGAAAGCCATATGAATATCCTCCTTAG

具有

-与基因udhA(网站http://genolist.pasteur.fr/Colibri/上的参考序列)的序 列(4158729-4158650)同源的区域(加粗字母),

-用于扩增卡那霉素抗性盒(Datsenko,K.A.&Wanner,B.L.,2000,PNAS, 97:6640-6645中的参考序列)的区域(下划线字母),

使用寡核苷酸DudhAF和DudhAR从质粒pKD4扩增卡那霉素抗性盒。 然后通过电穿孔将获得的PCR产物引入菌株MG1655ΔaceBΔgcl ΔglcDEFGBΔaldAΔiclRΔpgi::CmΔedd-eda(pKD46)。然后选择具有卡那霉素 抗性的转化子,用下面定义的寡核苷酸udhAF和udhAR通过PCR分析来确 认抗性盒的插入。将保留的菌株命名为MG1655ΔaceBΔgclΔglcDEFGB ΔaldAΔiclRΔpgi::CmΔedd-edaΔudhA::Km。

udhAF(SEQIDNO39):(与从4157088至4157108的序列同源)。

GATGCTGGAAGATGGTCACT

udhAR(SEQIDNO40):(与从4159070至4159052的序列同源)。

gtgaatgaacggtaacgc

然后将pME101-ycdW质粒引入菌株MG1655ΔaceBΔgclΔglcDEFGB ΔaldAΔiclRΔpgi::CmΔedd-edaΔudhA::Km。

实施例8

产生乙醇酸的菌株在锥形瓶中的发酵

首先使用经过修正的M9培养基(Anderson,1946,Proc.Natl.Acad.Sci. USA32:120-128),所述培养基中补加40g/lMOPS和10g/l葡萄糖,并调至 pH6.8,在250ml带挡板的锥形瓶中评价菌株的表现。如果需要的话,加入 浓度为50mg/l的壮观霉素(spectinomycin),如果存在表达载体的话,还加入 100μmIPTG用于诱导表达载体。使用过夜的预培养物接种50ml培养液至 OD600nm为约0.3。将培养液于30℃和400rpm置于摇床上,直至培养基中的 葡萄糖耗尽。在培养结束时,使用BioradHPX97H柱用于分离和折射计用于 检测,通过HPLC分析葡萄糖和乙醇酸。

下表中给出了对不同菌株的表现的比较(每个数值均为n次重复的平均 值)。实施例1中描述的菌株未显示任何的乙醇酸产生。

来自实施例n° 的菌株 2 3 4 5 6 7 基因型 (大肠杆菌 MG1655) ΔaceB Δgcl ΔglcB (pME101- ycdW) ΔaceB Δgcl ΔglcDEF GB aldA (pME101- ycdW) ΔaceB Δgcl ΔglcDEF GB ΔaldA ΔiclR (pME101- ycdW) ΔaceB Δgcl ΔglcDEF GB ΔaldA ΔiclR Δedd-eda (pME101- ycdW) ΔaceB Δgcl ΔglcDEF GB ΔaldA ΔiclR Δedd-eda Δpgi (pME101- ycdW) ΔaceB Δgcl ΔglcDEF GB ΔaldA ΔiclR Δedd-eda Δpgi ΔudhA (pME101- ycdW) 乙醇酸产量 (g/l) 0.28 (n=3) 0.28 (n=8) 0.65 (n=8) 1.73 (n=8) 2.75 (n=6) 2.33 (n=4) 得率(g乙醇酸 /g葡萄糖) 0.03 (n=3) 0.03 (n=8) 0.07 (n=8) 0.17 (n=8) 0.29 (n=6) 0.25 (n=4)

实施例6和实施例7中所述菌株是乙醇酸的最佳生产菌株,其效价(titer) 高于2g/l,而且得率高于0.2g/g。

实施例9

产生乙醇酸的菌株在补料分批(FEDBATCH)发酵罐中的发酵

使用补料分批发酵方法,在600ml发酵罐中在产生条件下评价实施例6 和实施例7中所述菌株。

在30℃在补充以2.5g/l葡萄糖的LB培养基中进行试管中的第一次预培 养,然后在30℃在装有50ml补充以40g/lMOPS和10g/l葡萄糖的合成培养 基(与用于摇瓶培养相同的培养基)的500ml锥形瓶中进行第二次预培养。使 用此第二次预培养物接种发酵罐。

以大约2的初始光密度接种发酵罐,所述发酵罐中装有200ml补充以40 g/l葡萄糖、50mg/l壮观霉素和100μMIPTG的合成培养基。在30℃搅拌和通 气下进行培养,调整搅拌和通气以保持溶解氧高于30%饱和度。通过加入碱将 pH调至6.8。以分批模式进行培养直至葡萄糖耗尽。此时,加入补充以硫酸镁、 微量元素(oligo-element)、壮观霉素和IPTG的500g/l葡萄糖溶液,使培养基 中葡萄糖的浓度恢复为40g/l。每次当葡萄糖耗尽时再进行其它添加。

通常地,实施例7中所述菌株比实施例6中所述菌株在发酵罐中给出更 好的生产性能(从葡萄糖的得率为0.22g/g对0.15g/g)。

下面给出使用实施例7的菌株产生乙醇酸的发酵的代表性时间过程。

时间(h) OD600nm(AU) 葡萄糖(g/l) 乙醇酸(g/l) 0 2.0 35.45 0.11 16 3.7 34.70 0.57 20 5.1 33.25 1.14 25 6.7 31.24 1.81 39 14.8 20.55 4.75 44 20.3 12.24 7.02 49 27.9 2.48 9.44 64 53.9 7.94 18.80 70 62.8 33.97 21.76 73 67.8 24.54 23.54 87 84.0 36.60 28.70 93 89.6 25.61 31.33

获得的最终效价为31g/l乙醇酸,对葡萄糖的得率为0.22g/g。

序列表

<110>代谢探索者公司(METABOLICEXPLORER)

<120>从可再生资源通过发酵产生乙醇酸

<130>351388D24477

<150>PCT/EP2006/063046

<151>2006-06-09

<160>40

<170>PatentInversion3.3

<210>1

<211>100

<212>DNA

<213>人工的

<220>

<223>PCR引物

<400>1

ggcaacaacaaccgatgaactggctttcacaaggccgtatggcgagcaggagaagcaaat60

tcttactgccgaagcggtagcatatgaatatcctccttag100

<210>2

<211>99

<212>DNA

<213>人工的

<220>

<223>PCR引物

<400>2

ggcggtagcctggcagggtcaggaaatcaattaactcatcggaagtggtgatctgttcca60

tcaagcgtgcggcatcgtctgtaggctggagctgcttcg99

<210>3

<211>24

<212>DNA

<213>人工的

<220>

<223>PCR引物

<400>3

cgttaagcgattcagcaccttacc24

<210>4

<211>20

<212>DNA

<213>人工的

<220>

<223>PCR引物

<400>4

ccagtttctgaatagcttcc20

<210>5

<211>101

<212>DNA

<213>人工的

<220>

<223>PCR引物

<400>5

ggcaaaaatgagagccgttgacgcggcaatgtatgtgctggagaaagaaggtatcactac60

cgccttcggtgttccgggagctgtaggctggagctgcttcg101

<210>6

<211>101

<212>DNA

<213>人工的

<220>

<223>PCR引物

<400>6

gcgttacgttttaacggtacggatccatccagcgtaaaccggcttccgtggtggtttggg60

gtttatattcacacccaaccccatatgaatatcctccttag101

<210>7

<211>23

<212>DNA

<213>人工的

<220>

<223>PCR引物

<400>7

ggatatgcccaccttgctgaagg23

<210>8

<211>25

<212>DNA

<213>人工的

<220>

<223>PCR引物

<400>8

cgcttagtttcaatcggggaaatgg25

<210>9

<211>99

<212>DNA

<213>人工的

<220>

<223>PCR引物

<400>9

cccagagccgtttacgcattgacgccaattttaaacgttttgtggatgaagaagttttac60

cgggaacagggctggacgccatatgaatatcctccttag99

<210>10

<211>99

<212>DNA

<213>人工的

<220>

<223>PCR引物

<400>10

cgcgtaaacgccaggcgtgtaataacggttcggtatagccgtttggctgtttcacgccga60

ggaagattaaatcgctggctgtaggctggagctgcttcg99

<210>11

<211>19

<212>DNA

<213>人工的

<220>

<223>PCR引物

<400>11

gccagcaaatggcgagtgc19

<210>12

<211>23

<212>DNA

<213>人工的

<220>

<223>PCR引物

<400>12

cgcagagtatcgttaagatgtcc23

<210>13

<211>24

<212>DNA

<213>人工的

<220>

<223>PCR引物

<400>13

ccgacagtaagacgggtaagcctg24

<210>14

<211>22

<212>DNA

<213>人工的

<220>

<223>PCR引物

<400>14

agcttagtaaagccctcgctag22

<210>15

<211>43

<212>DNA

<213>人工的

<220>

<223>PCR引物

<400>15

agctagctctcatgagaataaatttcgcacaacgcttttcggg43

<210>16

<211>38

<212>DNA

<213>人工的

<220>

<223>PCR引物

<400>16

gcatgcatcccgggtctctcctgtattcaattcccgcc38

<210>17

<211>103

<212>DNA

<213>人工的

<220>

<223>PCR引物

<400>17

gcgtcttgatggcgctttacccgatgtcgaccgcacatcggtactgatggcactgcgtga60

gcatgtccctggacttgagatcccatatgaatatcctccttag103

<210>18

<211>99

<212>DNA

<213>人工的

<220>

<223>PCR引物

<400>18

cgcgtaaacgccaggcgtgtaataacggttcggtatagccgtttggctgtttcacgccga60

ggaagattaaatcgctggctgtaggctggagctgcttcg99

<210>19

<211>20

<212>DNA

<213>人工的

<220>

<223>PCR引物

<400>19

ccaagacaaggtcacagagc20

<210>20

<211>23

<212>DNA

<213>人工的

<220>

<223>PCR引物

<400>20

cgcagagtatcgttaagatgtcc23

<210>21

<211>101

<212>DNA

<213>人工的

<220>

<223>PCR引物

<400>21

ttaagactgtaaataaaccacctgggtctgcagatattcatgcaagccatgtttaccatc60

tgcgccgccaataccggatttcatatgaatatcctccttag101

<210>22

<211>102

<212>DNA

<213>人工的

<220>

<223>PCR引物

<400>22

atgtcagtacccgttcaacatcctatgtatatcgatggacagtttgttacctggcgtgga60

gacgcatggattgatgtggtagtgtaggctggagctgcttcg102

<210>23

<211>31

<212>DNA

<213>人工的

<220>

<223>PCR引物

<400>23

tgcagcggcgcacgatggcgacgttccgccg31

<210>24

<211>31

<212>DNA

<213>人工的

<220>

<223>PCR引物

<400>24

cacgatgacgaccattcatgcctatactggc31

<210>25

<211>101

<212>DNA

<213>人工的

<220>

<223>PCR引物

<400>25

cgcacccattcccgcgaaacgcggcagaaaacccgccgttgccaccgcaccagcgactgg60

acaggttcagtctttaacgcgtgtaggctggagctgcttcg101

<210>26

<211>100

<212>DNA

<213>人工的

<220>

<223>PCR引物

<400>26

gcgcattccaccgtacgccagcgtcacttccttcgccgctttaatcaccatcgcgccaaa60

ctcggtcacgcggtcatcggcatatgaatatcctccttag100

<210>27

<211>26

<212>DNA

<213>人工的

<220>

<223>PCR引物

<400>27

cctttgaggtcgcatggccagtcggc26

<210>28

<211>33

<212>DNA

<213>人工的

<220>

<223>PCR引物

<400>28

gctttttaatagaggcgtcgccagctccttgcc33

<210>29

<211>102

<212>DNA

<213>人工的

<220>

<223>PCR引物

<400>29

cgcgcgagactcgctctgcttatctcgcccggatagaacaagcgaaaacttcgaccgttc60

atcgttcgcagttggcatgcggtgtaggctggagctgcttcg102

<210>30

<211>100

<212>DNA

<213>人工的

<220>

<223>PCR引物

<400>30

gcttagcgccttctacagcttcacgcgccagcttagtaatgcggtcgtaatcgcccgctt60

ccagcgcatctgccggaacccatatgaatatcctccttag100

<210>31

<211>29

<212>DNA

<213>人工的

<220>

<223>PCR引物

<400>31

gggtagactccattactgaggcgtgggcg29

<210>32

<211>24

<212>DNA

<213>人工的

<220>

<223>PCR引物

<400>32

ccacatgataccgggatggtgacg24

<210>33

<211>100

<212>DNA

<213>人工的

<220>

<223>PCR引物

<400>33

ccaacgcagaccgctgcctggcaggcactacagaaacacttcgatgaaatgaaagacgtt60

acgatcgccgatctttttgctgtaggctggagctgcttcg100

<210>34

<211>100

<212>DNA

<213>人工的

<220>

<223>PCR引物

<400>34

gcgccacgctttatagcggttaatcagaccattggtcgagctatcgtggctgctgatttc60

tttatcatctttcagctctgcatatgaatatcctccttag100

<210>35

<211>30

<212>DNA

<213>人工的

<220>

<223>PCR引物

<400>35

gcggggcggttgtcaacgatggggtcatgc30

<210>36

<211>30

<212>DNA

<213>人工的

<220>

<223>PCR引物

<400>36

cggtatgatttccgttaaattacagacaag30

<210>37

<211>100

<212>DNA

<213>人工的

<220>

<223>PCR引物

<400>37

cccagaatctcttttgtttcccgatggaacaaaattttcagcgtgcccacgttcatgccg60

acgatttgtgcgcgtgccagtgtaggctggagctgcttcg100

<210>38

<211>100

<212>DNA

<213>人工的

<220>

<223>PCR引物

<400>38

ggtgcgcgcgtcgcagttatcgagcgttatcaaaatgttggcggcggttgcacccactgg60

ggcaccatcccgtcgaaagccatatgaatatcctccttag100

<210>39

<211>20

<212>DNA

<213>人工的

<220>

<223>PCR引物

<400>39

gatgctggaagatggtcact20

<210>40

<211>18

<212>DNA

<213>人工的

<220>

<223>PCR引物

<400>40

gtgaatgaacggtaacgc18

通过发酵从可再生资源产生乙醇酸.pdf_第1页
第1页 / 共30页
通过发酵从可再生资源产生乙醇酸.pdf_第2页
第2页 / 共30页
通过发酵从可再生资源产生乙醇酸.pdf_第3页
第3页 / 共30页
点击查看更多>>
资源描述

《通过发酵从可再生资源产生乙醇酸.pdf》由会员分享,可在线阅读,更多相关《通过发酵从可再生资源产生乙醇酸.pdf(30页珍藏版)》请在专利查询网上搜索。

1、(10)授权公告号 (45)授权公告日 (21)申请号 200780021493.5 (22)申请日 2007.06.07 PCT/EP2006/063046 2006.06.09 EP C12N 15/55(2006.01) (73)专利权人 代谢探索者公司 地址 法国圣搏齐尔 (72)发明人 菲利普索凯尔 (74)专利代理机构 北京坤瑞律师事务所 11494 代理人 封新琴 WO 02068658 A1,2002.09.06, Hyungdon Yun et al.Stereospecific Synthesis of (R)-2-Hydroxy Carboxylic Acids Usin。

2、g Recombinant E. coli BL21 Overexpressing YiaE from Escherichia coli K12 and Glucose Dehydrogenase from Bacillus subtilis.Biotechnol. Prog. .2005, 第 21 卷 366-371. M. Felisa NUN et al.Biochemical characterization of the 2-ketoacid reductases encoded by ycdW and yiaE genes in Escherichia coli.Biochem.。

3、 J. .2001, 第 354 卷 707-715. (54) 发明名称 通过发酵从可再生资源产生乙醇酸 (57) 摘要 本发明提供在微生物中从可发酵碳源生物产 生乙醇酸的方法。 在发明的一个方面, 通过使用重 组生物体实现从葡萄糖到乙醇酸的转化的方法, 所述重组生物体包括宿主大肠杆菌 : 所述宿主大 肠杆菌经转化 i) 以削弱乙醛酸转化为除乙醇酸 以外的其它化合物的消耗途径, ii) 以使用 NADPH 乙醛酸还原酶将乙醛酸转化成乙醇酸, iii) 以削 弱所有乙醇酸代谢酶的水平和 iv) 增加乙醛酸途 径中的通量。 在本发明的另一个方面, 通过增加细 胞中 NADPH 的可用性而改进使用。

4、重组大肠杆菌从 可发酵碳源产生乙醇酸的方法。 任选地, 可以通过 聚合步骤将产生的乙醇酸纯化为至少乙醇酸二聚 物, 并通过从乙醇酸二聚物、 寡聚物和 / 或多聚物 解聚合而回收乙醇酸。 (30)优先权数据 (85)PCT国际申请进入国家阶段日 2008.12.09 (86)PCT国际申请的申请数据 PCT/EP2007/055625 2007.06.07 (87)PCT国际申请的公布数据 WO2007/141316 EN 2007.12.13 (51)Int.Cl. (56)对比文件 审查员 潘浩 (19)中华人民共和国国家知识产权局 (12)发明专利 权利要求书2页 说明书16页 序列表9页。

5、 附图2页 CN 101466841 B 2016.04.27 CN 101466841 B 1/2 页 2 1.通过在适当的培养基中培养大肠杆菌菌株的微生物而发酵产生乙醇酸, 并从培养 基回收乙醇酸的方法, 所述培养基包含能被所述微生物代谢的碳源, 所述方法包括如下步 骤 : a) 通过转化所述碳源来发酵所述微生物以产生乙醇酸, b) 浓缩所述微生物或培养基中的乙醇酸, 和 c) 从任选地以部分或全部量保留在终产物中的生物质和 / 或发酵液中分离乙醇酸, 其中所述微生物包含至少一个编码 NADPH 依赖性乙醛酸还原酶的基因, 所述至少一个 编码 NADPH 依赖性乙醛酸还原酶的基因是 ycd。

6、W, 而且其中通过缺失下述与乙醛酸代谢相关 的基因而修饰所述微生物以削弱从乙醛酸到除乙醇酸以外的其它产物的转化 : 编码苹果酸合成酶的 aceB 编码第二个苹果酸合成酶的 glcB, 和 编码乙醛酸醛连接酶的 gcl。 2.权利要求 1 中要求的方法, 其中通过聚合成至少乙醇酸二聚物的步骤分离乙醇酸。 3.权利要求2中要求的方法, 其中通过从乙醇酸二聚物、 寡聚物和/或多聚物解聚合而 回收乙醇酸。 4.权利要求 1 中要求的方法, 其中所述编码 NADPH 依赖性乙醛酸还原酶的基因是内源 的。 5.权利要求 1 中要求的方法, 其中所述编码 NADPH 依赖性乙醛酸还原酶的基因的表达 增加。 。

7、6.权利要求 1 中要求的方法, 其中所述微生物通过削弱选自下述与乙醇酸代谢相关的 基因的至少一个基因在所述微生物中的表达而被修饰使得其不能代谢乙醇酸 : 编码乙醇酸氧化酶的 glcDEF 编码乙醇醛脱氢酶的 aldA。 7.权利要求 1 中要求的方法, 其中所述微生物经过转化通过削弱异柠檬酸脱氢酶的活 性以增加乙醛酸途径的通量。 8.权利要求 1 中要求的方法, 其中所述微生物经过转化通过削弱下述基因中至少一个 基因在所述微生物中的表达以增加乙醛酸途径的通量 : 编码磷酸转乙酰酶的 pta 编码乙酸激酶的 ack 编码丙酮酸氧化酶的 poxB。 9.权利要求1中要求的方法, 其中所述微生物经。

8、过转化通过增加aceA的活性来增加乙 醛酸途径中的通量。 10.权利要求 9 中要求的方法, 其中通过削弱基因 iclR 或 fadR 的表达来增加 aceA 的 表达。 11.权利要求 9 中要求的方法, 其中通过在基因 aceA 的上游引入人工启动子来增加 aceA 的表达。 12.权利要求 1 中要求的方法, 其中通过削弱选自下述的基因中的至少一个基因在所 述微生物中的表达而增加了 NADPH 的可用性 : 编码 6- 磷酸葡萄糖异构酶的 pgi 权 利 要 求 书 CN 101466841 B 2 2/2 页 3 编码可溶转氢酶的 udhA 编码磷酸葡糖酸脱水酶的 edd。 13.权利。

9、要求 1 中要求的方法, 其中所述碳源是下述中的至少一种 : 葡萄糖或蔗糖。 14.权利要求 1 中要求的方法, 其中所述碳源是下述中的至少一种 : 单糖、 寡糖、 淀粉或 甘油。 15.一种大肠杆菌菌株, 其通过缺失下述与乙醛酸代谢相关的基因而被修饰以削弱从 乙醛酸到除乙醇酸以外的其它产物的转化 : 编码苹果酸合成酶的 aceB 编码第二个苹果酸合成酶的 glcB, 和 编码乙醛酸醛连接酶的 gcl 且其中所述大肠杆菌菌株包含至少一个编码 NADPH 依赖性乙醛酸还原酶的基因, 所述 至少一个编码 NADPH 依赖性乙醛酸还原酶的基因是 ycdW。 16.权利要求 15 的大肠杆菌菌株, 其。

10、中所述编码 NADPH 依赖性乙醛酸还原酶的基因是 内源的。 17.权利要求 15 的大肠杆菌菌株, 其中所述编码 NADPH 依赖性乙醛酸还原酶的基因的 表达增加。 18.权利要求 15 的大肠杆菌菌株, 其中所述大肠杆菌菌株通过削弱选自下述与乙醇酸 代谢相关的基因的至少一个基因在所述大肠杆菌菌株中的表达而被修饰使得其不能代谢 乙醇酸 : 编码乙醇酸氧化酶的 glcDEF 编码乙醇醛脱氢酶的 aldA。 19.权利要求 15 的大肠杆菌菌株, 其中所述大肠杆菌菌株经过转化通过削弱异柠檬酸 脱氢酶的活性以增加乙醛酸途径的通量。 20.权利要求 19 的大肠杆菌菌株, 其中所述大肠杆菌菌株经过转。

11、化通过削弱下述基因 中至少一个基因在所述大肠杆菌菌株中的表达以增加乙醛酸途径的通量 : 编码磷酸转乙酰酶的 pta 编码乙酸激酶的 ack 编码丙酮酸氧化酶的 poxB。 21.权利要求15的大肠杆菌菌株, 其中所述大肠杆菌菌株经过转化通过增加aceA的活 性来增加乙醛酸途径中的通量。 22.权利要求 21 的大肠杆菌菌株, 其中通过削弱基因 iclR 或 fadR 的表达来增加 aceA 的表达。 23.权利要求21的大肠杆菌菌株, 其中通过在基因aceA的上游引入人工启动子来增加 aceA 的表达。 24.权利要求 15 的大肠杆菌菌株, 其中通过削弱选自下述的基因中的至少一个基因在 所述。

12、大肠杆菌菌株中的表达而增加了 NADPH 的可用性 : 编码 6- 磷酸葡萄糖异构酶的 pgi 编码可溶转氢酶的 udhA 编码磷酸葡糖酸脱水酶的 edd。 权 利 要 求 书 CN 101466841 B 3 1/16 页 4 通过发酵从可再生资源产生乙醇酸 发明领域 0001 本发明包括通过需氧生长的微生物从可发酵碳源生物转化成乙醇酸 (glycolic acid) 的方法。 0002 发明背景 0003 乙醇酸 (HOCH2COOH) 是羧酸的 - 羟基酸家族中的第一个成员。乙醇酸具有双重 官能度, 在非常小的分子上具有醇和中等强度的酸官能团。这导致了独特的化学属性以及 典型的酸和醇化学。

13、。 0004 乙醇酸使用羟基和羧酸基团与多价金属形成五元环复合物 ( 螯合物 )。这种金属 离子复合能力在分解坚硬的水垢和防止沉积中有用, 特别是在酸清洁设备中, 在所述设备 中良好的清洗能力是关键的因素。乙醇酸与有机醇和酸经过反应形成酯。低分子量的烷基 乙醇酯具有特别的溶解性质, 可以用作正丙醇和异丙醇、 乙二胺、 苯酚、 m- 甲酚、 2- 乙氧基 乙酸乙酯(2-ethoxyethyl acetate), 和乳酸乙酯和乳酸甲酯的替代物。 更高分子量的烷基 酯能用于个人护理产品配制物中。乙醇酸能与自身反应形成二聚的乙交酯、 头尾相连的聚 酯寡聚物, 和长链聚合物。可以与其它 - 羟基酸如乳酸。

14、形成共聚物。聚酯聚合物在含水 环境中以可控制的速率逐渐水解。这种性质使它们在生物医药应用中有用, 如可分解的缝 合线, 而且在需要酸的控制释放以降低 pH 的应用中有用。目前在美国每年消耗多于 15000 吨的乙醇酸。 0005 乙醇酸的生物产生 ( 在图 1 中显示 ) 要求形成乙醛酸 (glyoxylate) 作为中 间物, 其通过由基因 ycdW 编码的 NADPH 依赖性氧化还原酶还原成乙醇酸 (Nunez 等, (2001)Biochemistry, 354, 707-715)。乙醛酸是乙醛酸循环 ( 三羧酸循环和乙醛酸旁 路,在 Neidhardt, F.C.( 主 编 ), R.。

15、Curtiss III, J.L.Ingraham, E.C.C.Lin, K.B.Low, B.Magasanik, W.S.Reznikoff, M.Riley, M.Schaechter 和 H.E.Umbarger( 编 ).1996. Escherichia coli and Salmonella : Cellular and MolecularBiology.American Society for Microbiology 中进行了总结 ) 的中间物。在这个循环中, 将异柠檬酸切割成琥珀酸和 乙醛酸, 反应由异柠檬酸裂合酶催化, 所述酶由 aceA 基因编码。琥珀酸直接进入柠檬酸。

16、循 环, 并转化成草酰乙酸。通过合并源自乙酸的一分子乙酰 -CoA, 乙醛酸转化成苹果酸, 反应 由 aceB 和 gclB 编码的两个苹果酸合成酶的同工酶催化。在转录和后转录水平调控碳进入 乙醛酸支路。转录调控通过 IclR 抑制子对 aceBAK 操纵子进行。AceBAK 分别编码苹果酸 合成酶、 异柠檬酸裂合酶和异柠檬酸激酶 / 磷酸酶。iclR 基因进行负向的自调控并由 FadR 蛋白激活。由 icd 基因编码的异柠檬酸脱氢酶的活性受到后转录调控。异柠檬酸脱氢酶和 异柠檬酸裂合酶竞争共同的底物异柠檬酸。 因为异柠檬酸裂合酶反应对于异柠檬酸的Km值 明显更高, 所以进入乙醛酸途径部分依赖。

17、于异柠檬酸脱氢酶的调控。异柠檬酸脱氢酶活性 受到由 AceK 催化的其磷酸化和去磷酸化的调节。磷酸化降低 Icd 的活性, 而去磷酸化重新 活化 Icd 酶。AceK 作为激酶还是磷酸酶起作用取决于几种代谢产物的存在。耗尽异柠檬酸 和 3- 磷酸甘油酸刺激激酶的活性, 丙酮酸和 AMP 的存在抑制激酶的作用, 从而有利于磷酸 酶活性 ( 也参见 Neidhard)。乙醛酸可以通过由 gcl 编码的乙醛酸醛连接酶 (glyoxylate 说 明 书 CN 101466841 B 4 2/16 页 5 carboligase) 转化成羟基丙二酸半醛 (tartronate semidldahyde。

18、), 并通过 eda 编码的 2- 酮 -3- 脱氧葡糖酸 6- 磷酸醛缩酶 (2-keto-3-deoxygluconate 6-phosphate aldolase) 转化成 2- 酮 -4- 羟基戊二酸 (2-keto-4-hydroxy glutarate), 而乙醇酸可以通过 aldA 编 码的依赖 NAD+的乙醇醛脱氢酶还原成乙醇醛, 或通过 glcDEF 编码的依赖 NAD +的乙醇酸氧 化酶氧化成乙醛酸。 0006 本发明要解决的问题是从廉价的底物, 如葡萄糖或其它糖, 生物产生乙醇酸。 对于 乙醇酸产生的工业可行方法, 生物化学步骤的数目和代谢途径的复杂性需要使用代谢工程 改。

19、造的全细胞催化剂。 0007 发明概述 0008 申请人已经解决了上述的问题, 本发明提供从可发酵碳源直接生物转化成乙醇酸 的方法。葡萄糖用作模式底物, 而重组大肠杆菌用作模式宿主。在本发明的一个方面, 通 过将编码苹果酸合成酶 (aceB 和 glcB)、 乙醛酸醛连接酶 (gcl) 和 2- 酮 -3- 脱氧葡糖酸 6- 磷酸醛缩酶 (eda) 的基因失活, 构建不能将乙醛酸代谢成除乙醇酸以外的其它化合物的 重组大肠杆菌。 在本发明的另一个方面中, 通过使用内源的编码基因, 如ycdW或yiaE, 使用 NADPH依赖性乙醛酸还原酶活性将有毒的乙醛酸还原成乙醇酸。 在本发明的另外的方面, 。

20、缺 失了编码乙醇酸代谢酶、 乙醇酸氧化酶 (glcDEF) 和乙醇醛脱氢酶 (aldA) 的基因。此外, 通 过下述方法增加乙醛酸途径中的通量 : i) 通过失活 iclR 基因或直接增加 aceA 的表达而增 加 aceA 的水平, ii) 失活编码异柠檬酸脱氢酶的基因 (icd) 或降低表达水平, 和 iii) 失活 编码丙酮酸氧化酶 (poxB) 和乙酸途径 (ack, pta) 的基因。在本发明的最后方面, 通过失活 编码 6- 磷酸葡萄糖异构酶 (pgi)、 6- 磷酸葡糖酸脱水酶 (edd) 和可溶性转氢酶 (udhA) 的 基因, 增加 NADPH 的可用性, 从而获得乙醇酸产生。

21、的更好的得率 (yield)。本发明通常可以 应用于包括易于转化成乙酰 -CoA 的任何碳底物。 0009 因此, 本发明的目的是提供用于产生乙醇酸的重组生物体, 其包含 : (a) 至少失 活所有苹果酸合成酶、 乙醛酸醛连接酶和 2- 酮 -3- 脱氧葡糖酸 6- 磷酸醛缩酶编码基 因 ; (b) 编码具有 NADPH 依赖性乙醛酸还原酶活性的多肽的至少一个基因, 和 (c) 至少失 活编码 NAD+依赖性从乙醇酸氧化成乙醛酸的基因。任选地, 重组生物体可以包含 i) 失 活在选自下组的内源基因中的突变 : (a) 编码乙醛酸途径的抑制子的基因, (b) 编码具 有 6- 磷酸葡萄糖异构酶活。

22、性的多肽的基因, (c) 编码具有可溶性转氢酶活性的多肽的基 因, (d) 编码具有 6- 磷酸葡糖酸脱水酶活性的多肽的基因, (e) 编码具有磷酸 - 转乙酰酶 (phospho-transacetylase) 和乙酸激酶活性的多肽的基因, (f) 编码丙酮酸氧化酶活性的 基因, (g) 编码乙醇醛脱氢酶活性的基因 ; ii) 增加编码异柠檬酸裂合酶的基因的水平, 和 iii) 失活编码具有异柠檬酸脱氢酶活性的多肽的基因, 或降低活性。 0010 在另一个实施方案中, 本发明提供从重组生物体产生乙醇酸的方法, 所述方法包 括 : (a) 使本发明的生物体接触选自下组的至少一种碳源 : 单糖、。

23、 寡糖、 多糖和能产生乙醇 酸的单碳底物 ; 任选地, (b) 通过聚合为至少乙醇酸二聚体的步骤和 (c) 通过解聚合从乙醇 酸二聚体、 寡聚体和 / 或多聚体中回收乙醇酸来回收 (a) 中产生的乙醇酸。 0011 附图简述 0012 合并入本说明书和构成本说明书一部分的附图例示了本发明, 并且与描述一起用 来解释本发明的原理 (principle)。 说 明 书 CN 101466841 B 5 3/16 页 6 0013 图 1 描述在从碳水化合物至乙醇酸的产生系统的开发中, 糖酵解、 TCA 循环和乙醛 酸途径的基因工程。 0014 图 2 是显示构建载体 pME101-ycdW 的图。。

24、 0015 发明详述 0016 如本文所使用的, 下述术语可以用于解释权利要求和说明书。 0017 术语 “突变菌株” 指非野生型菌株。 0018 术语 “微生物” 指所有种类的单细胞生物, 包括原核生物, 如细菌, 和真核生物, 如 酵母。细菌具体包括 : 肠杆菌科 (Enterobacteriaceae)、 芽孢杆菌科 (Bacillaceae)、 链霉 菌科(Streptomycetaceae)和棒杆菌科(Corynebacteriaceae)。 肠杆菌科具体包含但是不 专指埃希氏菌属 (Escherichia)、 克雷伯氏菌属 (Klebsiella)、 沙门氏菌属 (Salmonel。

25、la) 和泛菌属 (Pantoea)。 0019 术语 “转化” 或 “转染” 指在合并外源核酸后, 在细胞中获得新基因。术语 “转化子” 指转化的产物。术语 “遗传改变的” 指通过转化或突变改变遗传物质的过程。 0020 术语 “削弱 (attenuation)” 指降低基因的表达或降低蛋白 ( 即, 基因产物 ) 的活 性。本领域的技术人员知道大量手段以获得这种结果, 例如 : 0021 - 将突变引入基因中, 降低这个基因的表达水平, 或所编码的蛋白质的活性水平。 0022 - 用低强度启动子替换基因的天然启动子, 导致较低的表达。 0023 - 使用使相应的信使 RNA 或蛋白质去稳定。

26、化的元件。 0024 - 如果不需要表达则缺失基因。 0025 术语 “表达” 指从基因转录并翻译成蛋白质 ( 即, 基因的产物 )。 0026 本文所使用的术语 “质粒” 或 “载体” 指经常携带基因且通常为环状双链 DNA 分子 形式的染色体外元件, 所述基因不是细胞中心代谢的部分。 0027 术语 “碳底物” 或 “碳源” 表示能由微生物代谢的任何碳源, 其中底物包含至少一 个碳原子。作者特别指可再生的、 廉价的和可发酵的碳源, 如单糖、 寡糖、 多糖、 单碳底物, 和多羟基化合物, 如甘油。单碳底物定义为只包含一个碳原子的含碳分子, 如甲醇。化学 式为 (CH2O)n的单糖也称作碳水化。

27、合物 (ose) 或 “简单糖 (simple sugar)” ; 单糖包括蔗糖 (saccharose)、 果糖、 葡萄糖、 半乳糖和甘露糖。 其它包含多于一个单糖的碳源称作二糖、 三 糖、 寡糖和多糖。 二糖包括蔗糖(sucrose)、 乳糖和麦芽糖。 淀粉和半纤维素是多糖, 也称作 “复杂糖” 。因此术语 “碳源” 表示上述任何产物, 及它们的混合物。 0028 术语 “ATCC” 代表美国典型培养物保藏中心, 12301 Parklawn Drive, Rockville, Md.20852, U.S.A。 0029 术语 “乙醛酸” (glyoxylate) 和 “乙醛酸” (gly。

28、oxylic acid) 可以互换使用。 0030 术语 “乙醇酸” (glycolate) 和 “乙醇酸” (glycolic acid) 可以互换使用。 0031 在本发明的描述中, 通过酶的比活性鉴定酶。因而这种定义包括也存在于其它生 物体中, 更具体在其它微生物中的具有限定的比活性的所有多肽。经常通过分类于某些定 义为 PFAM 或 COG 的家族来鉴定具有相似活性的酶。 0032 PFAM( 比对和隐藏的 Markov 模型的蛋白质家族数据库 ; http:/www.sanger. ac.uk/Software/Pfam/) 代表蛋白质序列比对的大的集合。每个 PFAM 可能显示多个。

29、比对, 看到蛋白域, 评价在生物体中的分布, 访问其它数据库, 并显示已知的蛋白结构。 说 明 书 CN 101466841 B 6 4/16 页 7 0033 通过比较来自 43 个完全测序的基因组的蛋白质序列获得 COGs( 蛋白质的正向同 源(orthologous)组的簇 ; http:/www.ncbi.nlm.nih.gov/COG/), 所述基因组代表30个主 要的种系发生系 (phylogenic line)。从至少三个系定义每个 COG, 这允许鉴定以前的保守 域。 0034 鉴定同源序列及其百分比同源性的方法为本领域的技术人员所熟知, 具体包括 BLAST 程序, 其可以从。

30、网站 http:/www.ncbi.nlm.nih.gov/BLAST/, 以该网站上指示的默 认参数来使用。然后可使用, 例如, 程序 CLUSTALW(http:/www.ebi.ac.uk/clustalw/) 或 MULTALIN(http:/prodes.toulouse.inra.fr/multalin/cgi-bin/multalin.pl), 以 这 些 网站上指示的默认参数来利用 ( 例如比对 ) 获得的序列。 0035 使用 GenBank 上对于已知基因给出的参考, 本领域的那些技术人员能确定其它生 物体、 细菌菌株、 酵母、 真菌、 哺乳动物、 植物等中的等同基因。使用。

31、共有序列可以有优势地 完成这种常规工作, 所述共有序列可以通过下述步骤确定 : 用源自其它微生物的基因进行 序列比对, 并设计简并探针以克隆另一种生物体中的相应基因。这些分子生物学的常规方 法为本领域的那些技术人员所熟知, 并在例如 Sambrook 等 (1989 Molecular Cloning:a Laboratory Manual.2nded.Cold Spring Harbor Lab., Cold Spring Harbor, New York.) 中描述。 0036 本发明提供通过在适当的培养基中培养微生物, 发酵产生乙醇酸、 其衍生物或前 体并从培养基回收乙醇酸的方法, 所述。

32、培养基包含碳源。 0037 本发明的另一个实施方案提供方法, 其中微生物经过修饰以具有低的除产生乙醇 酸以外的乙醛酸转化能力, 原因是削弱了编码消耗乙醛酸 ( 乙醇酸的关键前体 ) 的酶的基 因 : 编码苹果酸合成酶的aceB和gclB基因, 编码乙醛酸醛连接酶的gcl和编码2-酮-3-脱 氧葡糖酸 6- 磷酸醛缩酶的 eda。 0038 在本发明的另一个实施方案中, 微生物包含编码催化乙醛酸转化成乙醇酸的多肽 的至少一个基因。 0039 具体地, 在需氧条件下, 编码 NADPH 依赖性乙醛酸还原酶的基因可以将有毒的乙 醛酸中间物转化成低毒性的终产物乙醇酸。基因可以是外源或内源的, 并可以为。

33、染色体表 达的或染色体外表达的。可以从大肠杆菌 MG1655 的基因组中的 ycdW 或 yiaE 基因中选择 NADPH 依赖性乙醛酸还原酶编码基因。在优选的实施方案中, 增加至少一种所述基因的表 达。如果需要的话, 可以通过使用基因组上的一个或几个拷贝, 从染色体定位的基因获得 高水平的 NADPH 依赖的乙醛酸还原酶活性, 所述基因组上的拷贝可以通过本领域的专家已 知的重组方法引入。对于染色体外的基因, 可以使用因为复制起点不同从而细胞中拷贝数 不同的不同类型质粒。对应于具有严紧复制的低拷贝数质粒 (pSC101、 RK2), 低拷贝数质粒 (pACYC、 pRSF1010)或高拷贝数质。

34、粒(pSK bluescript II), 它们可以作为1-5个拷贝, 大约 20 或高达 500 个拷贝存在。可以使用不同强度的启动子表达 ycdW 或 yiaE 基因, 所述启动 子需要或者不需要由诱导子分子诱导。实例是启动子 Ptrc、 Ptac、 Plac、 启动子 cI 或本 领域专家已知的其它启动子。也可以通过使相应的信使 RNA(Carrier 和 Keasling(1998) Biotechnol.Prog.15, 58-64) 或蛋白质 ( 例如, GST 标签, Amersham Biosciences) 稳定化 的元件促进 (boost) 基因的表达。 0040 在本发明。

35、的另一个实施方案中, 以这样的方式修饰微生物使得其基本上不能代谢 说 明 书 CN 101466841 B 7 5/16 页 8 乙醇酸。可以通过削弱编码消耗乙醇酸的酶的基因 ( 编码乙醇酸氧化酶的 glcDEF 和编码 乙醇醛脱氢酶的 aldA) 中的至少一个而实现这种结果。可以通过用低强度的启动子或用使 相应的信使 RNA 或蛋白质去稳定化的元件替代天然的启动子, 来削弱基因。如果需要的话, 也可以通过缺失相应的 DNA 序列来实现基因的完全削弱。 0041 在另一个实施方案中, 转化本发明的方法中使用的微生物以增加乙醛酸途径通 量。 0042 可以通过不同的手段增加乙醛酸途径中的通量, 。

36、具体为 : 0043 i) 降低异柠檬酸脱氢酶 (Icd) 的活性, 0044 ii) 通过削弱基因而降低下述酶中至少一种的活性 : 0045 磷酸 - 转乙酰酶, 由 pta 基因编码 0046 乙酸激酶, 由 ack 基因编码 0047 丙酮酸氧化酶, 由 poxB 基因编码 0048 iii) 增加异柠檬酸裂合酶的活性, 其由 aceA 基因编码。 0049 可以通过引入驱动 icd 基因 ( 其编码异柠檬酸脱氢酶 ) 表达的人工启动子, 或者 通过在 icd 基因中引入降低蛋白的酶活性的突变, 来降低异柠檬酸脱氢酶的水平。 0050 因为通过磷酸化降低蛋白质Icd的活性, 所以还可以通。

37、过引入突变的aceK基因控 制其活性, 所述基因与野生型的 AceK 酶相比, 具有增加的激酶活性或降低的磷酸酶活性。 0051 可以通过削弱编码乙醛酸途径抑制子的 iclR 或 fadR 基因的水平, 或通过刺激 aceA 基因的表达, 例如通过引入驱动基因表达的人工启动子, 或通过在 aceA 基因中引入增 加编码蛋白的活性的突变, 来增加异柠檬酸裂合酶的活性。 0052 本发明的实施方案通过增加对NADPH依赖性乙醛酸还原酶的NADPH可用性而提供 乙醇酸产生的更好的得率。 可以通过削弱选自下组的基因中的至少一种获得对微生物性质 的这种修饰 : 编码 6- 磷酸葡萄糖异构酶的 pgi, 。

38、编码可溶性转氢酶的 udhA 和编码 6- 磷酸 葡糖酸脱水酶活性的 edd。具有这些遗传修饰, 所有 6- 磷酸葡萄糖将必须通过磷酸戊糖途 径进入糖酵解, 而且每代谢一个 6- 磷酸葡萄糖将产生 2 个 NADPH。 0053 在另一个实施方案中, 本发明提供从重组生物体发酵产生乙醇酸的方法, 所述方 法包括 : (a) 用本发明的重组生物体接触选自下组的至少一种碳源 : 葡萄糖、 蔗糖、 单糖、 寡 糖、 多糖、 淀粉或其衍生物、 甘油和可产生乙醇酸的单碳底物。 任选地, 该方法包括将细菌或 培养基中的乙醇酸浓缩的步骤和从从任选地以部分或全部量 (0-100 ) 保留在终产物中 的生物量和。

39、 / 或发酵培养液 (broth) 中分离乙醇酸的步骤。任选地, 该方法包括通过聚合 为至少乙醇酸二聚体和 (b) 通过解聚合从乙醇酸二聚体、 寡聚体和 / 或多聚体中而回收乙 醇酸的步骤来回收步骤 (a) 中产生的乙醇酸。 0054 本领域的技术人员能定义根据本发明的微生物的培养条件。具体地, 在 20-55, 优选在25-40的温度发酵细菌, 而且更特定地, 对谷氨酸棒杆菌为约30, 对大肠杆菌为约 37。 0055 通常在发酵罐中进行发酵, 所述发酵罐中具有适合于所用细菌的已知确定组成的 无机培养基, 其包含至少一种简单碳源, 而且如果需要的话, 包含用于产生代谢物所必需的 共同底物 (。

40、co-substrate)。 0056 本发明还涉及如前所述的微生物。优选地, 这种微生物选自下组 : 大肠杆菌、 谷氨 说 明 书 CN 101466841 B 8 6/16 页 9 酸棒杆菌或酿酒酵母。 0057 实施例 1 0058 构建除将乙醛酸还原成乙醇酸以外不能代谢乙醛酸的菌株 : MG1655aceB gcl glcB 0059 要缺失 aceB 基因, 使用由 Datsenko & Wanner(2000) 描述的同源重组策略。这个 策略允许插入氯霉素或卡那霉素抗性盒, 同时缺失大多数有关的基因。为此使用下述寡核 苷酸 : 0060 DaceBF(SEQ ID NO 1) 00。

41、61 ggcaacaacaaccgatgaactggctttcacaaggccgtatggcgagcaggagaagcaaattcttactgc cgaagcggtagCATATGAATATCCTCCTTAG 0062 具有 0063 - 与基因 aceB( 网站 http:/genolist.pasteur.fr/Colibri/ 上的参考序列 ) 的 序列 (4213068-4213147) 同源的区域 ( 小写字母 ), 0064 - 用 于 扩 增 氯 霉 素 抗 性 盒 (Datsenko, K.A.& Wanner, B.L., 2000, PNAS, 97 : 6640-6645。

42、 中的参考序列 ) 的区域 ( 大写字母 ), 0065 DaceBR(SEQ ID NO 2) 0066 ggcggtagcctggcagggtcaggaaatcaattaactcatcggaagtggtgatctgttccatcaagcgtg cggcatcgtcTGTAGGCTGGAGCTGCTTCG 0067 具有 0068 - 与基因 aceB( 网站 http:/genolist.pasteur.fr/Colibri/ 上的参考序列 ) 的 序列 (4214647-4214569) 同源的区域 ( 小写字母 ), 0069 - 用 于 扩 增 氯 霉 素 抗 性 盒 (Datsen。

43、ko, K.A.& Wanner, B.L., 2000, PNAS, 97 : 6640-6645 中的参考序列 ) 的区域 ( 大写字母 )。 0070 使用寡核苷酸 DaceBF 和 DaceBR 从质粒 pKD3 扩增氯霉素抗性盒。然后通过电穿 孔将获得的 PCR 产物引入菌株 MG1655(pKD46) 中, 其中表达的 Red 重组酶允许进行同源重 组。然后选择具有氯霉素抗性的转化子, 并通过用下面定义的寡核苷酸 aceBF 和 aceBR 通 过 PCR 分析来确认抗性盒的插入。将保留的菌株命名为 MG1655 aceB:Cm。 0071 aceBF(SEQ ID NO 3) :。

44、 cgttaagcgattcagcaccttacc( 与 4212807 至 4212830 的序 列同源 )。 0072 aceBR(SEQ ID NO 4) : ccagtttctgaatagcttcc( 与 4215327 至 4215308 的序列同 源 )。 0073 然后, 通过转导缺失 MG1655 aceB:Cm 菌株中的 gcl 基因。 0074 首先用下面的寡核苷酸, 使用如前述的同样方法构建 MG1655 gcl:Km 菌株 : 0075 DgclF(SEQ ID NO5) 0076 ggcaaaaatgagagccgttgacgcggcaatgtatgtgctggaga。

45、aagaaggtatcactaccgccttcgg tgttccgggagcTGTAGGCTGGAGCTGCTTCG 0077 具有 0078 -与基因gcl(网站http:/genolist.pasteur.fr/Colibri/上的参考序列)区域 的序列 (533142-533224) 同源的区域 ( 小写字母 ), 说 明 书 CN 101466841 B 9 7/16 页 10 0079 - 用于扩增卡那霉素抗性盒 (Datsenko, K.A.& Wanner, B.L., 2000, PNAS, 97 : 6640-6645 中的参考序列 ) 的区域 ( 大写字母 ), 0080 。

46、DgipR(SEQ ID NO 6) 0081 gcgttacgttttaacggtacggatccatccagcgtaaaccggcttccgtggtggtttggggtttatatt cacacccaacccCATATGAATATCCTCCTTAG 0082 具有 0083 -与基因gcl(网站http:/genolist.pasteur.fr/Colibri/上的参考序列)区域 的序列 (535720-535640) 同源的区域 ( 小写字母 ), 0084 - 用 于 扩 增 卡 那 霉 素 抗 性 盒 (Datsenko, K.A.& Wanner, B.L., 2000, PNAS。

47、, 97:6640-6645 中的参考序列 ) 的区域 ( 大写字母 )。 0085 使用寡核苷酸 DgclF 和 DgipR 从质粒 pKD4 扩增卡那霉素抗性盒。然后通过电穿 孔将获得的 PCR 产物引入菌株 MG1655(pKD46) 中。然后选择具有卡那霉素抗性的转化子, 并通过用下面定义的寡核苷酸 gclF 和 gipR 通过 PCR 分析来确认抗性盒的插入。将保留的 菌株命名为 MG1655 gcl:Km。 0086 gclF(SEQ ID NO 7) : ggatatgcccaccttgctgaagg( 与从 532795 至 532817 的序列 同源 )。 0087 gipR。

48、(SEQ ID NO 8) : cgcttagtttcaatcggggaaatgg( 与从 536114 至 536090 的序 列同源 )。 0088 为了将缺失gcl:Km转移, 使用噬菌体P1转导的方法。 分两步进行下面的规程, 制备菌株 MG1655 gcl:Km 的噬菌体裂解物, 然后转导入菌株 MG1655 aceB:Cm。菌株 的构建如上所述。 0089 噬菌体裂解物 P1 的制备: 0090 -用菌株MG1655 gcl:Km的100l过夜培养物接种10ml LB+Km 50g/ml+葡 萄糖 0.2 +CaCl2 5mM。 0091 - 在 37振荡培育 30 分钟。 009。

49、2 -向菌株MG1665中加入制备的100l噬菌体裂解物P1(约1 109个噬菌体/ml)。 0093 - 在 37振荡 3 小时, 直至所有细胞裂解。 0094 - 加入 200ul 氯仿并漩涡振荡。 0095 - 在 4500g 离心 10 分钟以去除细胞碎片。 0096 - 将上清液转移至无菌试管并加入 200ul 氯仿。 0097 - 在 4储存裂解物。 0098 转导 0099 - 在 1500g 将菌株 MG1655 aceB:Cm 在 LB 培养基中的 5ml 过夜培养物离心 10 分钟。 0100 - 在 2.5ml 10mM MgSO4, 5mM CaCl2中悬浮细胞沉淀。 0101 - 对照试管 : 100l 细胞 0102 菌株 MG1655 gcl:Km 的 100l 噬菌体 P1 0103 - 测试试管 : 100l 细胞 + 菌株 MG1655 gcl:Km 的 100l 噬菌体 P1。 0104 -30不振荡地培育 30 分钟。 说 明 书 CN 101466841 B 10 8/16 页 11 0105 - 在每个试管中加入 100l 1M 柠檬酸钠并漩涡。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 化学;冶金 > 生物化学;啤酒;烈性酒;果汁酒;醋;微生物学;酶学;突变或遗传工程


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1