生产宽分子量分布的聚烯烃用的 催化剂体系和生产这种聚烯烃的方法 本申请是1994年4月12日申请的美国专利申请08/226600号的部分继续申请,该美国专利申请是1994年2月3日申请的美国专利申请08/192223号的部分继续申请,该08/192223号美国专利申请是1991年7月23日申请的共同未决的07/734853号美国专利申请的部分继续申请。在本说明书中参考引用所有这些专利申请的内容。
本发明涉及烯烃聚合。更准确地说,本发明涉及用金属茂催化剂体系进行的烯烃聚合。更进一步准确地说,本发明涉及适合于生产有用的宽分子量分布的聚烯烃的金属茂催化剂体系和适合于生产这种聚烯烃的方法。
许多金属茂催化剂特有的性能之一是,它们能生产窄分子量分布的聚烯烃。虽然在一些应用中窄分子量分布有一些好处,但是,对于另外一些应用,往往需要宽分子量分布的聚烯烃产品。例如,虽然窄分子量分布地聚合物往往适用于注射模塑并且可能适用于纤维的生产,但是,人们往往发现另外一些应用,例如热成型、挤塑、吹塑以及泡沫或薄膜的生产,最好用较宽分子量分布的聚合物进行。
过去已经有一些专利提出用金属茂混合物生产宽分子量分布的聚合物。这些专利的例子包括美国专利4530914和美国专利4937299。虽然这两篇专利至少提出用宽范围的金属茂混合物产生宽分子量分布,但是,这些专利的所有的实施例只涉及到使用未桥连的金属茂。本申请人最近的研究已经发现,很多未桥连的金属茂对氢的存在特别敏感。因此,在氢的存在下用来产生宽分子量分布时的未桥连的金属茂的一些组合,所生产出的聚合物具有如此低的分子量,以致它们不适用于许多用途。
本发明的目的是提供一种混合的金属茂催化剂体系,该体系在宽范围的聚合条件下能产生宽分子量分布,上述聚合条件包括用于宽范围的氢含量的情况下的聚合。特别优选的一些实施方案产生的聚合物产品的分子量分布大于8,甚至更优选大于30。
本发明的另一方面是提供能产生异乎寻常的共聚物的催化剂体系,在这些共聚物中,共聚单体的加入主要是加入在分子量分布的高分子量一端。
本发明的又一方面是提供能形成宽分子量分布的乙烯共聚物的催化剂体系,这些共聚物具有高的抗环境致裂性。
本发明提供的催化剂体系适用于制备宽分子量分布的聚烯烃,即,烯烃或烯烃混合物的Mw/Mn大于3。本发明的催化剂体系包括(1)至少第一种金属茂和第二种不同的金属茂,以及(2)适合于这些金属茂的助催化剂;其特征在于,第一种金属茂是含有芴基的桥连的金属茂,第二种金属茂是未桥连的金属茂;其特征还在于,如果在相同的聚合条件下用作单一的金属茂时,与第二种金属茂相比,第一种金属茂产生较高的分子量。
本发明还提供生产聚烯烃的方法,该方法包括,在适合的聚合条件下使至少一种烯烃与本发明的催化剂体系接触。
本发明的另一个方面是通过用本发明的催化剂体系聚合烯烃所产生的聚合物。
本说明书中所用的术语“桥连的金属茂”是指通过桥连结构连接其中的两个环戊二烯基类基团的金属茂。环戊二烯基类基团是指含有环成二烯基结构的有机基团,例如环戊二烯基、芴基、茚基、四氢茚基、苯并芴基、八氢芴基和它们的取代的变异。本发明中所用的桥连的金属茂是含芴基的金属茂。除了另外特别说明之外,芴基是通过芴基上的9位连接到桥上。这样的含芴基的金属茂包括通式(Z)—R’—(Z’)MeQk的化合物,其中R’是连接Z和Z’的有机基团,Z是取代或未取代的芴基,Z’是取代或未取代的芴基、取代或未取代的茚基、取代或未取代的环戊二烯基、四氢茚基或八氢芴基。Z和Z’上的取代基通常可以选自不妨碍金属茂所具有的所需活性的任何取代基。Me是选自元素周期表的IVB、VB或VIB族元素的过渡金属元素。每个Q可以相同或不同,并且可以选自以下一价基团:氢、卤素、含有1—20个碳原子的烃基、含有1—20个碳原子的烷氧基、可被或不被达两个含有1—20个碳原子的烃基取代的氨基、含有1—20个碳原子的含磷的烃基、含有1—20个碳原子的含硅的烃基、以及含有1—20个碳原子的含铝的烃基。在比较优选的实施方案中,Z和Z’都与Me结合。这往往称为夹层式连接。
桥连基团的一些例子包括烃基亚烷基、二价的二烃基锗基、二价的二烃基甲硅烷基、二价的烃基膦基、二价的烃基胺基、以及二价的二烃基锡基。在美国专利5087677的第5栏第10—45行中还提供了另外一些例子。在美国专利4975403的第4栏第15—26行和美国专利5132381的第2栏第41—65行中还公开了其它一些例子。
在欧洲专利申请公开524624中公开了这样的桥连的含芴基的金属茂和制备它们的方法的许多列子。其中Me是锆并且每个Q是盐酸根的夹层式连接的桥连的含芴基的金属茂的一些具体的例子包括:
1)1—(芴基)—1—(环戊二烯基)甲烷·二氯合锆,
2)1—(芴基)—1—(茚基)甲烷·二氯合锆,
3),1—(2,7—二—叔丁基芴基)—1,1—(二甲基)—1—(环戊二烯基)甲烷·二氯合锆,
4)1—(2,7—二溴芴基)—1,1—(二甲基)—1—(环戊二烯基)甲烷·二氯合锆,
5)1—(2,7—二甲基芴基)—1,1—(二甲基)—1—(环戊二烯基)甲烷·二氯合锆,
6)1—(2,7—二苯基芴基)—1,1—(二甲基)—1—(环戊二烯基)甲烷·二氯合锆,
7)1—(2,7二苯基芴基)—1,1—(二苯基)—1—(环戊二烯基)甲烷·二氯合锆,
8)5—(芴基)—5—(环戊二烯基)—1—亚己基·二氯合锆,
9)1—(2,7—二叔丁基芴基)—1,1—(二苯基)—1—(环戊二烯基)甲烷·二氯合锆,
10)1—(芴基)—1—(环戊二烯基)—1—(正丁基)—1—(甲基)甲烷·二氯合锆
11)1—(2,7—二氯芴基)—1,1—(二苯基)—1—(环戊二烯基)甲烷·二氯合锆,
12)1—(芴基)—1—(环戊二烯基)环戊烷·二氯合锆,
13)1—(芴基)—1—(环戊二烯基)—1—(3—环己烯基)甲烷·二氯合锆,
14)1—(芴基)—1—(2—烯丙基环戊二烯基)—1,1—(二甲基)甲烷·二氯合锆,
15)1—(2,7—二甲基乙烯基芴基)—1—(环戊二烯基)—1,1—(二甲基)甲烷·二氯合锆,
16)1—(芴基)—1—(2—三甲基甲硅烷基环戊二烯基)—1,1—(二甲基)甲烷·二氯合锆,
17)1—(芴基)—1—(环戊二烯基)—1—(对甲氧基苯基)甲烷·二氯合锆,
18)双(1—甲基芴基)甲烷·二氯合锆,
19)1—(芴基)—1—(环戊二烯基)—1—(苯基)甲烷·二氯合锆,
20)7—(芴基)—2—(环戊二烯基)—(金刚烷基)·二氯合锆,
21)1—(2,7—二基芴基)—1—(环戊二烯基)—1,1—(二甲基)甲烷·二氯合锆,
22)1—(2—苯基芴基)—1,1—(二甲基)—1—(环戊二烯基)甲烷·二氯合锆,
23)1—(2,7—二甲氧基芴基)—1,1—(二苯基)—1—(环戊二烯基)甲烷·二氯合锆,
24)1—(2,7—二基芴基)—1—(环戊二烯基)环戊烷·二氯合锆,
25)1—(2,7—二苯基芴基)—1—(环戊二烯基)—1—(苯基)甲烷·二氯合锆,
26)1—(3,4—二甲基芴基)—1—(环戊二烯基)—1—(苯基)甲烷·二氯合锆,
27)1—(芴基)—2—(茚基)乙烷·二氯合锆,还称为1—(芴基)—2—(茚基)亚乙基·二氯合锆,
28)1—(4—甲基芴基)—2—(1—甲基芴基)乙烷·二氯合锆,
29)1—(芴基)—2—(环戊二烯基)乙烷·二氯合锆,
30)1—(芴基)—3—(环戊二烯基)丙烷·二氯合锆,
31)1—(芴基)—1—(环戊二烯基)—1,1—(二苯基)锗基·二氯合锆,
32)1—(芴基)—1—(环戊二烯基)—1,1—(二甲基)亚甲硅烷基·二氯合锆,
33)1,1—双(芴基)—1,1—(二甲基)亚甲硅基·二氯合锆,有时还称为双(芴基)—二甲基甲硅烷基·二氯合锆或者双(芴基)(二甲基)硅烷·二氯合锆,
34)1—(芴基)—1—(环戊二烯基)—1—(甲基)铝·二氯合锆,
35)双(1—甲基芴基)—(二甲基)锡·二氯合锆,
36)双(1—甲基芴基)—(二苯基)锡·二氯合锆,
37)双(1—甲基芴基)—(二甲基)亚甲硅基·二氯合锆,
38)1,2—二(3,4—苯并芴基)乙烷·二氯合锆,和
39)1—(3,4—苯并芴基)—1—(环戊二烯基)—1,1—(二甲基)甲烷·二氯合锆。
桥连的含芴基的金属茂的其它一些例子包括欧洲专利申请公开574258中公开的那些,在本说明书中参考引用该篇文献公开的内容。另外一些桥连的含芴基的金属茂包括加拿大专利申请公开2069602中通式Ia的那些含芴基的金属茂以及美国专利5281679中公开的那些,在本说明书中参考引用这两篇文献公开的内容。另外一些例子包括与美国专利5324800的第4栏第23—25行中公开的通式表示的那些相似的化合物,其中的那些金属茂在至少一个(C5R’m)是含芴基的基团方面有差别。术语“桥连的金属茂”还包括含有金属茂的聚合物,这种聚合物是用欧洲专利申请公开586167中公开的那类方法,由具有可聚合的不饱和部分的、桥连的含芴基的金属茂产生的,在本说明书中参考引用上述这篇专利文献。一种特别优选的含金属茂的聚合物是将5—(芴基)—5—(环戊二烯基)—1—亚己基·二氯合锆与乙烯共聚所产生的聚合物。使用含有含金属茂的聚合物的催化剂体系,也是在本发明的范围内,这种聚合物是将具有可聚合的不饱和部分的、桥连的含芴基的金属茂与具有可聚合的不饱和部分的、未桥连的金属茂在另外的共聚单体例如乙烯的存在或不存在下共聚产生的。
本说明书中所用的术语“未桥连的金属茂”是指不含有通过桥连结构相互连接的两个环戊二烯基类基团的那些金属茂。两个环戊二烯基通过金属茂的过渡金属元素的结合,在本说明书中不被看做桥连结构。人们已经研究出了生产这样的金属茂的各种技术。在上述美国专利5324800和5281679以及欧洲专利申请公开524624中,公开了一些例子,在此参考引用这些专利文献公开的内容。
所谓未桥连的卤化锆金属茂的一些具体例子包括:
1)(芴基)(环戊二烯基)·二氯合锆,
2)双(正丁基环戊二烯基)·二氯合锆,
3)(9—甲基芴基)(环戊二烯基)·二氯合锆,
4)(1—丙—2—烯基茚基)(环戊二烯基)·二氯合锆,
5)(茚基)(五甲基环戊二烯基)·二氯合锆,
6)(芴基)(环戊二烯基)·二氯合锆,
7)(芴基)(五甲基环戊二烯基)·二氯合锆,
8)双(叔丁基环戊二烯基)·二氯合锆,
9)双(异戊基环戊二烯基)·二氯合锆,
10)双(异丙基环戊二烯基)·二氯合锆,
11)双(3,4—苯并芴基)·二氯合锆,
12)(3,4—苯并芴基)(环戊二烯基)·二氯合锆,
13)(2,3:6,7—二苯并芴基)(环戊二烯基)·二氯合锆,
14)(2,7—二甲基芴基)(五甲基环戊二烯基)·二氯合锆,
15)(2,7—二叔丁基芴基)(五甲基环戊二烯基)·二氯合锆,
16)双(1—甲基芴基)·二氯合锆,
17)双(甲基环戊二烯基)(2,7—二甲基芴基)·二氯合锆,
18)(9—苯基芴基)(环戊二烯基)·二氯合锆,
19)(9—环己基芴基)(环戊二烯基)·二氯合锆,
20)(9—异丙基芴基)(环戊二烯基)·二氯合锆,
21)双(9—丙—2—烯基芴基)·二氯合锆,
22)(9—(3—环戊—1—烯基)芴基)(环戊二烯基)·二氯合锆,
23)双(1—丁—3—烯基茚基)·二氯合锆,
24)双(9—己—5—烯基芴基)·二氯合锆,和
25)(9—叔丁基芴基)(环戊二烯基)·二氯合锆。
通常,桥连的和未桥连的金属茂的一些优选的特定组合包括:
1)(9—甲基芴基)(环戊二烯基)·二氯合锆加双(9—芴基)二甲基甲硅烷基·二氯合锆,
2)双(正丁基环戊二烯基)·二氯合锆加1,2—双(9—芴基)乙烷·二氯合锆,
3)双(正丁基环戊二烯基)·二氯合锆加双(9—芴基)二甲基甲硅烷基·二氯合锆,
4)(环戊二烯基)(芴基)·二氯合锆加双(9—芴基)二甲基甲硅烷基·二氯合锆,
5)(环戊二烯基)(芴基)·二氯合锆加1—(环戊二烯基)—1—(9—芴基)甲烷·二氯合锆,
6)(环戊二烯基)(芴基)·二氯合锆加1—(茚基)—2—(9—芴基)乙烷·二氯合锆,
7)(9—甲基芴基)(环戊二烯基)·二氯合锆加1—(环戊二烯基)—1—(9—芴基)甲烷·二氯合锆,
8)(9—甲基芴基)(环戊二烯基)·二氯合锆加1—(2,7—二苯基芴基)—1—(环戊二烯基)—1,1—二苯基甲烷·二氯合锆,
9)(环戊二烯基)(芴基)·二氯合锆加1—(2,7—二苯基芴基)—1—(环戊二烯基)—1,1—(二苯基)(甲烷)·二氯合锆,
10)(9—甲基芴基)(环戊二烯基)·二氯合锆加双(9—芴基)(二苯基)甲硅烷基·二氯合锆,
11)双(正丁基环戊二烯基)·二氯合锆加1—(茚基)—2—(9—芴基)乙烷·二氯合锆,和
12)(环戊二烯基)(芴基)·二氯合锆加1—(茚基)—2—(9—芴基)乙烷·二氯合锆。
随想要的特定结果和特定的聚合条件(这些金属茂将在该条件下被使用)而定,未桥连的金属茂与桥连的金属茂的摩尔比可以在很宽的范围内变化。桥连的含芴基的金属茂与未桥连的金属茂的摩尔比典型地将是约1000/1至约1/1000,或者更典型地将是99/1至1/99。一般通过考虑催化剂的相对活性和确定希望由每种金属茂提供的贡献程度,来决定桥连的与未桥连的金属茂的摩尔比。在一个特别优选的实施方案中,所选用的桥连的和未桥连的金属茂与如果在没有其他一种金属茂的情况下使用时在同样条件下它们的任何一种会产生的分子量分布相比,产生更宽的分子量分布。另外,在另一个优选实施方案中,所选择的桥连的和未桥连的金属茂能产生非常不同的重均分子量,结果当这两种金属茂一起使用时,将有明显的双峰分子量分布。
可以将所得到的桥连的含芴基的金属茂与未桥连的金属茂的组合与烯烃单体聚合的适合的助催化剂一起使用。
适合的助催化剂的例子通常包括过去已经与含过渡金属元素的烯烃聚合催化剂一起使用过的那有机金属助催化剂的任何一种。一些典型的例子包括元素周期表中IA、IIA和IIIB族中金属的有机金属化合物。这样的化合物的例子有包含有机金属卤化物的化合物、有机金属的氢化物、以及甚至金属的氢化物。一些具体的例子包括三乙基铝、三异丁基铝、二乙基铝的氯化物、二乙基铝的氢化物等等。已知的助催化剂的其它一些例子包括例如美国专利5155080中公开的稳定的非配位抗衡阴离子技术的使用,例如使用三苯基碳鎓四(五氟苯基)硼酸盐。另一个例子是例如由Zambelli等人在Macromolecules,22,2186(1989)中公开的,使用三甲基铝和二甲基氟铝的混合物。在这样的方法中,可以将金属茂或助催化剂在固体的不溶的载体上使用。
目前最优选的助催化剂是铝氧烷。这样的化合物包括具有以下通式的重复单元的那些化合物其中R是一般含有1—5个碳原子的烷基。
铝氧烷,有时还称为聚(烃基铝氧化物),在这一技术领域中是众所周知的,通常它是通过将烃基铝化合物与水反应制成的。在美国专利3242099和4808561中公开了这种制备方法,在此参考引用这两篇专利文献。目前优选的铝氧烷助催化剂是由三甲基铝或三乙基铝制备的,有时它们分别被称为聚(甲基铝氧化物)和聚(乙基铝氧化物)。与三烷基铝一起使用铝氧烷,例如象美国专利4794096中公开的那样,也是在本发明的范围内,在此参考引用这篇专利文献。
在某些情况下聚合将在其中催化剂和助催化剂都是可溶的均匀体系中进行,但是,在固体状催化剂和/或助催化剂的存在下以淤浆、气体或溶液相的聚合方式进行聚合,是在本发明的范围内。
有机铝氧助催化剂中的铝与金属茂中的过渡金属元素的摩尔比通常约为1∶1至100000∶1,优选约为5∶1至15000∶1。作为一个一般的规则,聚合应该在对催化剂体系没有不利影响的液体稀释剂的存在下进行。这样的液体稀释剂的例子包括丙烷、丁烷、异丁烷、戊烷、己烷、庚烷、辛烷、环己烷、甲基环己烷、甲苯、二甲苯等。聚合温度可以在很宽的范围内变化,一般应该约为-60℃至300℃,优选约为20℃至160℃。压力一般应该约为1至500个大气压或者更大。
根据本发明产生的聚合物有很宽范围的用途,根据各种聚合物的物理性能,对该领域技术熟练的那些人来说,这些用途是显而易见的。
在一个特别优选的实施方案中,将金属茂的混合物与固体的有机铝氧烷共同使用,这种有机铝氧烷在粒状聚合条件下基本上不溶于聚合稀释剂。在足以产生固体的条件下将有机铝氧烷溶液与有机环硼氧烷接触,可以制得这样的固体铝氧烷。制备不溶的有机铝氧烷的另一种方法包括象美国专利4990640中所述的那样,使有机铝氧烷溶液与水或活性氢化合物接触。
另一种方法包括象1993年6月22日申请的待批准的美国专利申请08/080899号中所述的那样,使有机铝氧烷与不含酸式氢的有机硼烷化合物接触,现在该申请已被允许,在此参考引用该申请所述的内容。还有另一种方法包括象1993年7月1 4日申请的待批准的美国专利申请08/092143号中所述的那样,使有机铝氧烷与含有硼酸官能度(即,—BOH)的有机硼化合物接触,在此参考引用该申请所述的内容。目前,制备固体的有机铝氧助催化剂的优选方法包括,象1993年2月12日申请的共同未决的美国专利申请08/017207号中所述的那样,使不是必须含有三烷基铝的有机铝氧烷的有机溶液与适合的有机环硼氧烷接触,在此参考引用该申请所述的内容。
在该领域中各种环硼氧烷是已知的。在这里使用的术语“有机环硼氧烷”是指通式(RBO)的化合物,其中每个R是相同的或不同的不含羟基(HO—)或巯基(HS—)的有机基团。R基团可以包括象以下这些基团这样的一些基团,这些基团是甲基、乙基、异丙基、叔丁基、2—乙基亚乙基、三正丁基甲基、邻甲苯基、苯基、邻三氟甲基苯基、邻氯苯基、2,6—二甲基苯基、C2H5—S—CH2CH2CH2—、CH2=CH—CH2—、α—萘基、β—萘基等等。R基团还可以是R’O—、R’S—、R’2N—、R’2P—和R’3Si—,其中每个R’都是烃基。每个R基团通常含有大约1—25个碳原子,比较典型地含有大约1—10个碳原子。特别优选的是烃基环硼氧烷和烃氧基环硼氧烷。烃基环硼氧烷的例子包括三甲基环硼氧烷、三乙基环硼氧烷、三正丙基环硼氧烷、三丁基环硼氧烷、三环己基环硼氧烷、三苯基环硼氧烷、甲基·二乙基环硼氧烷、二甲基·乙基环硼氧烷等等。目前优选的烃基环硼氧烷是三甲基环硼氧烷和三乙基环硼氧烷。术语“烃氧基环硼氧烷”是指通式((R’O)BO)的化合物,其中每个R’可以是相同的或不同的烃基,通常含有大约1—10个碳原子。目前优选的是三烷氧基环硼氧烷。三甲氧基环硼氧烷是一个例子。
可以以任何适合的方法进行环硼氧烷与铝氧烷的反应。一种特别理想的方法简单地包括在适合的液体稀释剂中使这两种反应剂接触。一种优选的方法包括使铝氧烷的烃溶液与环硼氧烷的烃溶液接触。另一种方法包括,使铝氧烷的烃溶液与反萃溶剂接触,形成含有可溶的铝氧烷和不溶的铝氧烷微粒的淤浆,然后将形成的淤浆与环硼氧烷溶液接触。在微粒状稀释剂的存在下进行环硼氧烷和铝氧烷的反应,结果使不溶的产物沉积在微粒状稀释剂上,这也是在本发明的范围内。典型的微粒状稀释剂应包括象二氧化硅、氧化铝、磷酸铝、二氧化硅一氧化铝、二氧化钛、高岭土、煅制的二氧化硅等这样的无机物。
制备本发明的微粒状有机铝氧组合物,然后将该组合物与三烷基铝化合物,例如三甲基铝或上述的这类其它化合物的溶液混合,然后将形成的淤浆与外加的上述那类环硼氧烷接触,这也是在本发明的范围内。我们认为这种方法可以提供一种进一步增加微粒状铝氧组合物的分子量的方法,这种组合物是最初使铝氧烷与环硼氧烷接触产生的。显然,为了得到特定的用途所要求的想要的程度的分子量、粒径、堆积密度或者其它特性,可以将这样的方法重复数次。
随想要的微粒状产物而定,相对于铝氧烷所用的环硼氧烷的量可以在很宽的范围内变化。已经用于本发明中的反映出环硼氧烷与铝氧烷的比值的方法包括,对铝氧烷溶液中铝氧的铝的量使用计算的量。在此所用的术语“计算的铝”是通过以下方法得到的值:用真空除去已知体积的铝氧烷溶液中的溶剂,称取回收到的固体的重量,将每毫升固体的重量除以铝氧单元的平均分子量,对于甲基铝氧烷来说该平均分子量为58,结果由此得出了要与环硼氧烷反应的每单位体积铝氧烷溶液的铝分子数的计算值。据推测在除去溶剂时除去了铝氧烷溶液中任何游离三烃基铝的相当大的部分。因此,我们不认为存在于真空提取后回收的固体中的任何三烃基铝,对计算的铝值有显著的影响。通过用这种方法,得出环硼氧烷中硼与所用的铝氧烷的铝氧单元中计算的铝的原子比范围将是大约1/20至1/3,优选大约1/15至1/5,更优选大约1/7。如上所述,除了铝氧单元以外,市售的铝氧烷溶液通常还含有至少一些三烃基铝。通常,三烃基铝占溶液中铝的重量的大约0.1—35%。通常,优选的是以环硼氧烷对三烃基铝的摩尔比至少约为0.3334/1这样的量,使用环硼氧烷。
本发明的混合的金属茂催化剂体系对于含有2—10个碳原子的单不饱和的脂族α—烯烃的聚合是特别有用的。这样的烯烃的例子包括乙烯、丙烯、丁烯—1、戊烯—1、3—甲基丁烯—1、己烯—1、4—甲基戊烯—1、3—乙基丁烯—1、庚烯—1、辛烯—1、癸烯—1、4,4—二甲基—1—戊烯、4,4—二乙基—1—己烯、3,4—二甲基—1—己烯等,以及它们的混合物。该催化剂体系对制备乙烯或丙烯的共聚物特别有用,该共聚物中较少的量通常为较高分子量烯烃的约20%摩尔或更少,更一般地约15%摩尔或更少,更典型地为低于约10%摩尔。
随所用的微粒状金属茂和想要的产物而定,可以在很宽范围的条件下进行聚合。可将金属茂在该条件下用在烯烃聚合中的典型条件的例子包括,例如在美国专利3242099,4892851和4530914中公开的那些条件,在这里参考引用这些专利文献。我们认为通常在现有技术中和基于任何过渡金属元素的催化剂体系一起使用的任何一种聚合方法,都可以和本发明的含芴基的金属茂共同使用。
通过阅读以下的具体实施例,将进一步理解本发明、其目的和优点。
对聚合物和聚合的各种特性进行说明。在各种情况下测定聚合物的各种特性的例子包括:以克/毫升为单位的密度(ASTMD1505—68);以聚合物克数/10分钟190℃为单位的高载荷熔体指数(ASTM D1238,条件E);以聚合物克数/10分钟190℃为单位的熔体指数(ASTMD1238,条件E);由尺寸排阻色谱法测得的分子量,即,重均分子量在这里叫做Mw,数均分子量在这里叫做Mn;由Mw除以Mn求出的不均匀性指数。用能分析在聚烯烃如聚乙烯中看到的宽范围的分子量的线性色谱柱,进行尺寸排阻色谱分析(SEC)。
实施例I制备和评价载体型的未桥连的金属茂
将承载在沉淀的固体状有机铝氧烷上的双(正丁基环戊二烯基)·二氯合锆用于以下聚合中。
通过使7.2磅甲基铝氧烷(MAO)溶液与6加仑己烷在室温下浆料化,将由Schering获得的MAO以10%重量的MAO甲苯溶液沉淀。搅拌1小时后,在搅拌下在为期1小时的时间里滴加含有32克的〔(MeO)BO〕3的300毫升甲苯溶液到浆料中。然后过滤出由此产生的有机铝氧固体并将其干燥。将该方法重复三次,并且合并所产生的固体。
在0℃,在搅拌的同时,使溶于二乙醚中的3克(24.6毫摩尔)正丁基环戊二烯与溶于己烷中的15.4毫升(24.6毫摩尔)正丁基锂反应3小时,由此来制备双(正丁基环戊二烯基)·二氯合锆。然后在强烈搅拌下在20分钟内分批加入2.86克(12.3毫摩尔)Zrcl4。在室温下将形成的浆料搅拌2小时,然后在真空下除去二乙醚。用两份100毫升的己烷萃取残余物,然后过滤。将形成的棕色溶液冷却至10℃。在放置过夜后,收集无色沉淀的金属茂,并在真空下将其干燥。
然后在室温下将60克(1.03毫摩尔)环硼氧烷沉淀的MAO和含0.835克(0.00207摩尔)双(正丁基环戊二烯基)·二氯合锆的100毫升己烷溶液在500毫升己烷中搅拌3小时。过滤和干燥由此产生的固体状有机铝氧载体型金属茂。将用同样的反应物和以同样的比例产生的第一批产物与上述固体产物合并,将合并了的固体产物用作以下聚合中的催化剂体系。
然后对于乙烯的均聚评价制得的未桥连的金属茂/固体的有机铝氧催化剂体系。聚合是在一个1加仑的装有搅拌器的高压釜反应器中进行的。在环境压力、逆流乙烯下,在该反应器中使大约0.0431克分子的金属茂/固体铝氧催化剂体系与2升异丁烷混合。还向反应器中充入己知量的氢气,这个量是借助于从300立方厘米的压力容器中压力下降20磅/英寸2来确定的。将反应器升温到约80℃的聚合温度,并保持该温度约30分钟。反应器总压约为450磅/英寸2表压。然后使反应器放气并除去异丁烷,回收干绒毛状的聚合物。该聚合的产率为每小时每克分子金属茂/固体铝氧催化剂体系出产6719克分子聚合物。聚合物的熔体指数为2.5,剪切响应值,即高载荷熔体指数/熔体指数为36.5。用尺寸排阻色谱法测定分子量分布。重均分子量为79630,数均分子量为10220,不均匀性指数为7.8。分子量分布显示出只有一个主峰。这个不均匀性指数符合用未桥连的金属茂所常看到那种比较窄的分子量分布。
用未桥连的金属茂/固体铝氧催化剂体系进行相似的聚合。在这种情况中,所用的催化剂体系的量为0.0379克分子。加入的氢气较少,即,从300厘米3压力容器中压力下降6.4磅/英寸2。反应温度为90℃。在这种情况下,聚合进行约1小时。其它的聚合条件是上一段中所述的那些条件。聚合已经进行1小时后,除去异丁烷稀释剂,回收并测定固体的聚合物。这次聚合的产率为每小时每克未桥连的金属茂/固体铝氧催化剂体系出产3720克分子的聚合物。聚合物的熔体指数为2.46,剪切响应值为24.4。重均分子量为83210,不均匀性指数为4.3。这个分子量分布也显示出只有一个单峰,并且该分子量分布比上一次聚合产生的聚合物的分子量分布还要窄一些。
实施例II制备和评价桥连的催化剂溶液
用欧洲专利申请公开524624中所概括叙述的那类方法制备桥连的金属茂,1,2—双(9—芴基)乙烷·二氯合锆。然后将43毫克桥连的含芴基的金属茂与从Ethyl Corporation得到的甲基铝氧烷的49毫升10%重量的甲苯溶液混合,结果形成桥连的金属茂/甲基铝氧烷催化剂溶液,由此制备上述这种桥连金属茂的溶液。
然后通过乙烯的均聚来评价制成的桥连的金属茂/甲基铝氧催化剂溶液。所用的条件与实施例I中所列的那些条件相似。具体地说,用2升异丁烷作为稀释剂。使用由300厘米3容器的压力下降来确定的10磅/英寸2的氢气。用2毫升催化剂溶液和450磅/英寸2表压的总压进行聚合。在约90℃下开始聚合,在约1小时后使聚合终止。回收的聚合物总量为102克分子。聚合物的熔体指数为0,其高载荷熔体指数为1.1。这说明与实施例1中所用的未桥连的金属茂相比,桥连的金属茂产生分子量高得多的物质。
实施例III桥连的/未桥连的催化剂体系
在这个实施例中,用实施例I的催化剂体系和实施例II的催化剂体系的混合物进行聚合。聚合涉及乙烯的均聚。在这种情况中加入的氢气量是3 00厘米3容器中压力下降25磅/英寸2。聚合温度为约90℃。所用的实施例I的未桥连的催化剂体系的量为0.0392克分子。用18毫升甲苯稀释约2毫升实施例II的催化剂体系,然后将2毫升这种稀释过的催化剂体系与未桥连的催化剂体系混合。象前面的其它实施例所述的那样回收和评价形成的聚合物。聚合物的熔体指数为4.46。剪切响应值为46.4。分子量分布说明了明显的多种形式的分布,即,这是两个不同的峰。重均分子量为264000,不均匀性指数为21。这种分子量分布清楚地说明了桥连的和未桥连的金属茂两者对聚合物产物所产生的影响。这进一步表明,桥连的金属茂必然将较高的分子量成分引入到最终的产品聚合物中。
实施例IV用未桥连的金属茂共聚
用未桥连的金属茂(9—甲基芴基)(环戊二烯基)·二氯合锆进行一系列的共聚。可以象上述共同未决的美国专利申请08/226600所述的那样,制备这种金属茂。未桥连的金属茂是与固体的有机铝氧产物一起使用的,这种固体的有机铝氧产物是通过将甲氧基环硼氧烷与甲基铝氧烷的甲苯溶液反应而产生的。
将6加仑己烷加入到10加仑的装有搅拌器的反应器中,制备固体的有机铝氧助催化剂。然后加入7.3磅Ethyl Corporation的10%重量的MAO甲苯溶液。然后搅拌该混合物约1小时。将48.7克分子甲氧基环硼氧烷与300毫升甲苯混合,制备甲氧基环硼氧烷的甲苯溶液。在1小时时间里,缓慢地将这种溶液加入到搅拌的反应器中。然后搅拌该混合物约6小时。然后关掉搅拌器,倒掉上面的清液。然后将得到的固体与2加仑已烷混合和洗涤。在过滤器上收集固体,并将其真空干燥。
然后进行4次聚合反应,这些聚合反应都涉及乙烯与己烯的共聚,每次都是在90℃,在搅拌的1加仑高压釜中进行,时间约1小时。在每次聚合中,将已知量的固体的环硼氧烷沉淀的甲基铝氧烷加入到高压釜中,然后加入1毫克未桥连的金属茂的甲苯溶液。然后加入2升异丁烷。加入相当于从30厘米3容器压力下降115磅/英寸2的已知量的氢气。然后用乙烯使聚合容器加压到450磅/英寸2表压,并加入30克分子的己烯。在表I中总结了结果。
表I 试验 编号 固体 MAO 的克数产量(克)活性以每克催化剂每小时所产聚乙烯的克数计熔体指数高载荷熔体指数 剪切响 应值密度克/毫升Mw/1000Mn/1000不匀均性指数1 0.1488 77.17 519 8280 -- -- 0.9689 113 2.42 4.72 0.1724 90.09 523 2070 -- -- 0.9640 13.6 2.64 5.23 0.1603 72.93 455 8280 -- -- 0.9646 11.0 2.15 5.14 0.1597 86.70 543 20.5 636.9 31 0.9599 49.3 5.57 8.9
表I中有关活性的那一栏指的是每克总催化剂体系每小时所产生的聚乙烯的克数,这个总催化剂体系包括金属茂和固体的环硼氧烷沉淀的甲基铝氧烷这两者。
这些结果说明,未桥连的金属茂所产生的聚合物具有比较窄的分子量分布,即,不均匀性指数范围为4.7—8.9。分子量分布只由一个可以识别出的窄的主峰组成。获得高密度的聚合物说明,未桥连的金属茂在引入共聚单体方面不是特别有效。
实施例V桥连的载体型催化剂体系
在这种催化剂的制备中所用的金属茂是双(9—芴基)(二甲基)甲硅烷基·二氯合锆。催化剂的制备包括,向反应器中加入含有30克的商品名为Cab—O—Sil L—90的煅制二氧化硅的800毫升己烷,用氮气冲洗反应器,然后将6加仑己烷加到反应器中。然后向反应器中加入从Ethyl Corporation得到的7.2磅10%重量的甲基铝氧烷甲苯溶液。将混合物搅拌1小时。将47.5克分子环硼氧烷溶于300毫升甲苯中,制备甲氧基环硼氧烷的甲苯溶液。然后向反应器中加入这种三甲氧基环硼氧烷溶液。将形成的浆料搅拌3小时。将形成的固体移至5加仑carboxy中,倒掉上面的液体。然后3加仑己烷将该固体洗涤几次,将这些固体加到一个干净的反应器中。然后加入0.5加仑己烷。将精细地磨碎的双(芴基)(二甲基)甲硅烷基·二氯合锆与300毫升己烷混合,制备桥连的金属茂的浆料。然后将制成的这种浆料加到反应器中。将这种混合物搅拌4小时,再将它放置76小时。使反应器冷却至10℃,然后加入乙烯到反应器中,使反应器压力升至40磅/英寸2,将形成的混合物搅拌约1小时。然后回收形成的预聚合的固体催化剂,将其过滤和用真空进行干燥。制成的固体被认为是约25%重量的乙烯预聚物。
实施例VI评价桥连的载体型催化剂体系
用实施例V中制备的固体的预聚合的桥连的催化剂体系进行一系列的聚合。在一些聚合中,在没有任何未桥连的金属茂的情况下使用固体的桥连的催化剂体系,在其它试验的聚合中,还使用了实施例IV的未桥连的金属茂的混合物。用与实施例IV中所述的同样的方法进行聚合。在表II中提供了本实施例所涉及的变量和总结的结果。
表II试验编号桥连的催化剂克数未桥连的催化剂克数己烯的克数总表压磅/英寸2 产量, 克活性熔体指数高载荷熔体指 数剪切响应值密度 Mw/ 1000 Mn/ 1000不均匀性指数 5 0.1500 0.0000 30 450 55.06 367 0.00 0.85 -- 0.0249 180 7.83 23.0 6 0.1530 0.0000 30 450 37.37 244 0.00 1.59 -- 0.9218 163 6.73 24.2 7 0.1560 0.0000 30 450 42.15 270 0.01 2.22 281 0.9230 234 7.95 29.4 8 0.1440 0.0010 30 450 41.31 287 0.19 104.81 559 0.9318 186 2.94 63.3 9 0.1380 0.0010 30 450 44.29 321 0.46 276.00 601 0.9412 -- -- -- 10 0.1460 0.0020 30 450 36.15 248 6.66 690.00 104 0.9463 121 2.4 50.4 11 0.1400 0.0010 30 450 64.74 462 0.45 460.00 1018 0.9453 199 3.08 64.6 12 0.1220 0.0005 15 450 22.47 184 0.00 5.75 0.9372 198 3.15 62.9 13 0.1460 0.0010 15 450 32.12 220 0.20 111.89 563 0.9442 153 2.56 59.8 14 0.3974 0.0005 30 550 107.47 270 0.02 8.50 483 0.9401 290 3.95 73.4 15 0.4259 0.0010 30 550 69.67 164 0.03 10.16 308 0.9460 227 3.11 73.0 16 0.3933 0.0015 30 550 111.79 284 0.07 25.63 360 0.9478 248 3.75 66.1
试验5—6说明,与实施例IV的未桥连的催化剂体系所产生的产物相比,固体的预聚合的桥连的催化剂体系产生较高分子量的产物。另外,那些结果说明,就象大约0.92的密度所反映出的那样,与未桥连的催化剂体系相比,在引入己烯方面固体的桥连的催化剂体系要有效得多。分子量分布比用实施例IV的未桥连的催化剂体系产生的聚合物的分子量分布宽,即,不均匀性指数的范围为23—29。分子量分布的主峰位于高分子量末端,在分子量分布的低分子量末端有两个稍微小一些的峰,其中最小的峰是在分子量分布的最低的分子量末端。
表II中记录的活性是基于对于催化剂体系的固体的未桥连部分扣除预聚物的催化剂体系的总重量的活性。与只用桥连的催化剂体系产生的聚合物相比,用混合的催化剂体系制造的聚合物具有宽得多的分子量分布,即,不均匀性指数范围为50—73。
试验8—13中产生的聚合物显示出具有两个可识别的峰的多种形式的分子量分布,其中较大的峰是在低分子量末端。用混合的催化剂产生的聚合物的密度明显地低于只用未桥连的催化剂产生的那些聚合物的密度,这说明有共聚单体引入。鉴于未桥连的成分的低催化剂引入效率,可以使大多数单体的引入发生在聚合物产物的较高的分子量部分。
用比上述那些批次含量高的氢气进行试验14—16,具体来说试验14和16用大约两倍的氢气,试验15用大约三倍的氢气。此外,在这些批次中,在催化剂体系中用了较多的桥连的固体金属茂。与试验8—13中产生的聚合物相比,试验14—16中产生的聚合物每个都具有稍微宽一些的分子量分布。此外,分子量以双峰形式分布,其中最强的峰是在高分子量末端。测定试验14—16产生的聚合物的抗环境致裂性〔条件B(10%Igepal)〕。所有这三种聚合物的抗环境致裂值都超过1000小时。这清楚地说明,本发明的聚合物具有特别好的抗环境致裂性。这个数据进一步说明,混合的金属茂催化剂体系能产生适合于吹塑模塑、管材和高分子量薄膜用途的树脂。
实施例VII
为了比较混合的催化剂的效果,进行一系列的聚合,用未桥连的金属茂双(正丁基环戊二烯基)·二氯合锆与桥连的金属茂双(芴基)(二甲基)甲硅烷基·二氯合锆和双(芴基)(二苯基)甲硅烷基·二氯合锆制备上述混合的催化剂体系。
以每毫升含有0.2毫克双(正丁基环戊二烯基)·二氯合锆的己烷溶液的形式使用未桥连的金属茂。在只用未桥连的金属茂的对比批次中,将这种金属茂与固体的有机铝氧产物共同使用,这种固体的有机铝氧产物是通过用甲氧基环硼氧烷沉淀甲基铝氧烷产生的。
通过将金属茂承载在与未桥连的金属茂的对比试验中被用作助催化剂的相同的固体铝氧产物上形成一种产物,以这种产物的形式使用桥连的催化剂。
将6加仑己烷加到一个10加仑的搪瓷反应器中,然后加入7.25磅得自Ethyl Corporation的甲基铝氧烷的10%重量的甲苯溶液,制备固体的有机铝氧助催化剂。将这种混合物搅拌1小时,然后在搅拌下,在1小时的时间里加入含有32克甲氧基环硼氧烷的300毫升甲苯溶液。然后将形成的浆料搅拌6个小时。使形成的固体放置过夜。倒掉大约5加仑的上面的液体。然后在搅拌下用1加仑己烷洗涤固体1小时。然后倒掉大部分上面的液体。
评价各种催化剂在乙烯和己烯的共聚中的效力。聚合条件与实施例IV中所述的那些条件相似。
表III中概括了涉及到的变量和得到的结果。
表 III试验编号桥连的催化剂的毫克数未桥连的催化剂的毫升数固体MAO的克数H2,表压下降的磅/英寸2数己烷的克数熔体指数高载荷熔体指数密度Mw/1000不均匀性指数 17 -- 1.7 54.6 15 15 26.43 685.0 0.9566 55.69 3.083 18 -- 5.0 14.4 50 45 1.1878 22.64 0.9379 100.63 4.684 19 165.4 -- -- 50 45 0 .0619 0.9155 465.07 10.008 20 103.9 2 -- 50 45 2.94 119.13 0.9492 135.49 10.21 21 92.1 2 -- 100 15 2.47 122.69 0.9582 91.36 13.77 22 86.7 3.2 -- 100 15 2.27 115.77 0.9559 102.5 18.68 23 158.7 -- -- 50 45 0 0.6121 0.9213 288.78 8.970 24 153.4 5 -- 50 30 0.3758 21.41 0.9452 167.17 8.305 25 151.4 5 -- 50 15 0.3616 43.04 0.9554 92.53 8.265
试验17和18是在没有任何本发明的桥连的金属茂的情况下用未桥连的金属茂进行的共聚。试验19是用载附的桥连的金属茂双(芴基)(二苯基)甲硅烷基·二氯合锆的助催化剂进行的。试验20—22包括使用载体型桥连的金属茂和未桥连的金属茂这两者。试验23只用载附的桥连的金属茂双(芴基)(二甲基)甲硅烷基·二氯合锆的助催化剂。试验24和25使用载体型双(芴基)(二甲基)甲硅烷基·二氯合锆和未桥连的金属茂的混合物。
对比试验18和对比试验23的比较显示出,根据获得的聚合物的密度的不同所反映出的情况,在引入共聚单体方面未桥连的金属茂没有桥连的金属茂那样有效。同样,与未桥连的金属茂相比,在引入共聚单体方面双(芴基)二苯基·二氯合锆是比较有效的。
对比试验19与对比试验23的比较显示出,与(二甲基)甲硅烷基桥连的金属茂相比,(二苯基)甲硅烷基·二氯合锆产生较高分子量的聚合物。试验18和20的比较说明,与只用未桥连的催化剂产生的聚合物相比,混合催化剂产生的聚合物具有稍微高一点的密度。我们还注意到,与只用未桥连的金属茂产生的聚合物相比,本发明的试验20—22产生的聚合物具有宽得多的分子量分布。分子量和密度的结果说明,未桥连的和桥连的金属茂这两者都影响聚合物的生产。
对比试验19中产生的聚合物的分子量分布显示出一个在分子量分布的高分子量末端的主峰和在低分子量末端的一个较小的峰。这个较小的峰低于四分之一的主峰高度。在本发明的试验20中产生的聚合物的分子量分布显示出一个峰,这说明低分子量聚合物数量明显地增加,超过了对比试验19中获得的聚合物中存在的低分子量聚合物的数量。本发明的试验21中产生的聚合物具有的分子量分布显示出两个峰,主峰是在高分子量末端,较小的峰在低分子量末端,较小的峰差不多有高分子量峰高度的一半那样高。本发明的试验22中产生的聚合物显示出与本发明试验21中得到的聚合物相似的分子量分布。但是,在这种情况中,在产生的聚合物的分子量方面两个峰的区别是更容易识别的而且区别更大。
试验23—25中产生的聚合物具有表现为一个主峰的分子量分布,但是,试验24和25中产生的聚合物说明的未桥连的金属茂产生的聚合物的分子量分布是在分子量分布的低分子量末端,比对比试验23产生的聚合物更为显著。
这些数据说明,取决于所用催化剂的特定比例、所用共聚单体的数量和所用氢气的量,可以用本发明的混合催化剂生产具有很宽范围性能的聚合物。