外科手术工具
发明背景
技术领域
本发明一般涉及组织烧灼。更具体地,本发明涉及一种改进的用于组织烧灼的电极。
背景技术说明
在许多手术程序中为了许多目的需要切除组织和器官。所有组织切除手术程序中最关注的是止血,即停止出血。为即将切除的器官或组织供血的所有血管都必须封闭,通过缝合或烧灼以抑制在组织切除时出血。例如,当在子宫切除手术中切除子宫时,必须在被切除的子宫颈处,以及沿子宫旁路为子宫供血的血管处止血。类似地,当与肿瘤切除有关或为了其他目的,切除部分肝脏时,肝脏中的血管必须单独地封闭。肝脏是高度血管化的器官,因而血管的封闭是非常耗时的。在开放的手术程序和微创手术程序中实现止血是必要的。然而在后一种情况下,由于通过套管或其他小通路的有限进入,血管的封闭会更耗时和困难。
实现止血在腹腔镜和其他有限进入程序中尤其重要,这里器官和其他组织在切除前必须分碎。大多数器官过大不能通过套管或其他小通路被完整切除,因此在切除前需要将组织分碎,例如切割、研磨或以其他方式分成较小的碎片。可以理解的是,血管化组织的分碎会非常困难。
由于这些原因,需要提供改进的方法、系统和装置,用于实现与器官和组织切除程序有关的止血。具体地,需要提供这样的方法和系统,其利用易于获得的手术设备,例如以下讨论的射频电源,允许手术以具有实效性的方式实现止血,同时降低患者的风险和创伤。如果这些方法和系统适用于各种组织切除程序将更令人满意,至少包括子宫切除、肝组织切除、胆囊切除、前列腺切除、肺切除等。如果这些方法和系统能够提供对待切除组织的整个体积完全或基本完全的凝血和止血,以使例如随后的分碎等那些程序变得容易,将进一步令人满意。例如,分碎组织同时尽可能减少出血的能力将对腔腹镜和其他微创手术程序以及其他手术程序有巨大的好处。
利用射频(RF)能量使机体器官或其部分坏死是众所周知的。美国专利No.4,979,948描述了一种球囊电极,其在子宫内部膨胀,并用于施加RF能量以使子宫的血管内皮层坏死。美国专利No.3,845,771描述了一种在拇指和中指上具有柔性电极的手套。该手套旨在向传统的钳子、解剖刀等传导RF电流。美国专利No.4,972,846描述了用作直接用于心外膜上的除颤器导线的电极片对。美国专利No.5,178,618和5,078,736描述了可以通电以在机体内腔上施加RF能量的支架。Lorentzen et al.(1996)Min.Ivas.Ther.Allied Technol.5:511-516描述了一种可以在组织内旋转以离开组织体积的环形电极。
美国专利No.6,203,541公开了一种控制外科手术器械的自动电路,其具有一对双极性电极。该电路包括用于测量这对电极之间的电流的装置,与该电流测量装置电连通的阻抗检测电路,与该阻抗检测电路电连通的比较器,以及与该比较器电连接的控制器。该阻抗检测电路根据所测电流计算电极之间的阻抗,并产生指示所计算阻抗的第一信号。比较器处理该第一信号,如果所计算的信号落入阻抗值的预定范围,则产生激活信号,而如果计算的阻抗超过失活阈值,则产生失活信号。控制器接收激活和失活信号,将第一控制信号传递至射频能量输出级以激活电极来响应激活信号,而将第二控制信号传递至射频能量输出级以使电极失活来响应失活信号。
美国专利No.6,398,779教导了一种用于电外科学上封闭组织的方法,其总结的步骤为:将RF能量的初始脉冲施予该组织,该脉冲具有选定的特征以免明显地加热该组织;测量该组织的阻抗值并响应所施加脉冲;以及根据测得的阻抗值,确定第一RF能量脉冲期间使用的施予该组织的脉冲参数的初始设置。该发明教导了根据随后的RF能量脉冲期间产生的电瞬变的至少一个特征,改变随后的RF能量脉冲的个别的脉冲参数。当确定电瞬变不存在或者已经达到最小输出电压时,该方法停止产生随后的RF能量脉冲。
美国专利No.5,443,463教导了一种用于选择性地凝固血管或含有血管的组织的凝固钳。该方法包括将血管或含有血管的组织置于钳子的分叉之间,钳子的钳夹含有多个通过射频功率通电的电极。多个传感器与电极相连,并与血管或组织接触,以测量组织或血管的温度上升,并为射频功率提供反馈以控制加热来进行血管或组织的凝固。该发明也教导该装置的上面的分叉可分成两部分,这两个上面部分之间的切割刀片用于凝固之后切割凝固的血管。
发明概述
本发明提供有助于与各种手术程序下切除和移除病人组织等相关的组织烧灼的方法、系统和装置。该程序可能涉及完整器官的切除,如子宫切除、胆囊切除、前列腺切除、肺切除等。此外,该方法可能涉及部分器官或其他组织的切除,例如常常从高度血管化的器官如肝、肺等切除肿瘤。该方法通常包括两个步骤,其中首先利用射频能量使组织全部或部分坏死或烧灼。特别地,烧灼至少沿着组织内所需的切除面实行。然后将该组织沿着所述面切除。有利地,已经发现了在坏死或烧灼组织内的切除基本上使得由组织切除引起的出血最小化并且在某些情况下消除了该出血。优选地,组织烧灼是在组织的靶体积上实行,通常是在整个器官或其部分上,例如子宫、肝叶、肺段、前列腺等。通过实行靶组织体积的基本完全的烧灼,该组织的出血能力降低或消除,由此促进随后的分碎和组织切除。因此,大大促进了器官和组织切除,出血以及手术程序需要的时间显著减少。
在第一个具体方面,根据本发明的方法包括将至少第一电极结构和第二电极结构对组织块的间隔开的表面接合,通常是对组织块对置的表面。该第一和第二电极结构通常可具有相似的几何形状以便以对称的方式接触组织。或者,该电极结构可具有不相似的几何形状,例如一个电极结构可配置为插入天然的人体小孔的探针,而另一个电极结构配置接合与所述小孔间隔开的外部的组织表面。在一些情况下,可采用两个以上的电极结构,但至少两个电极结构(或单个电极的分开的区域)是以相反的极性通电,以为组织施加射频能量做准备。在一些其它情况下,电极结构可以是成为单个支撑结构(例如单个弹性管或壳)的一部分的不同区域,该支撑结构可放在器官或其他组织块上并且具有形成在其上的两个或多个电极表面。当然,当它们打算施加相反极性的高频能量时,不同的电极表面是相互隔离的。对于电极来说,如果它们是相同的极性,不相接触也是非常重要的。在另外一些情况下,单电极结构可能有多个导电区或电活动区,在此导电区可用相同或相反的极性供电。在另一些情况下,电极结构可设置有组织穿透元件以增强电极-组织接触并增大电极结构上的电极活动区的总可用面积,以将高频能量传递到组织。该组织穿透元件可在使用适应性的(conformable)或刚性的表面电极之外使用,也可替代它使用。在所有情况下,电极结构或其电活动区可配置为接合基本连续的组织表面的片段或部分,该片段或部分具有下文所述的最小区域。当使用组织穿透元件时,它们通常是以大体均一的方式分散在电极结构的电活动区。
将高频(通常射频)功率通过电极结构的电活动区施加给组织块,并且该功率施加足以使所述电极之间的组织烧灼或坏死(优选地至少沿着所需要的切除面)的一段时间和一定量。通常,大块的组织是通过分碎来切除,例如研磨、粉碎、切成小片等。靶组织体积的坏死大大促进这种分碎。对于坏死,指该组织的细胞已被杀死,并且该组织在随后的切除中的出血被基本上抑制。如上所述,通常沿着坏死组织块内的面切除该组织,出血最少。
电极结构的电活动区具有至少1cm2、更通长至少2cm2的面积,常常具有5cm2或更大的面积,更常常具有10cm2或更大的面积,甚至高达50cm2或更大。该电极可具有各种不同的特点,通常可以是刚性的、柔性的、弹性的、延展性的、可适应性的等。优选地,该电极是柔性的,以方便电极对接组织表面并与该组织表面相适应。在至少一些情况下,需要提供可适应组织或器官表面外周的柔性的、弹性的电极,在此,电极的弹性性质确保了稳固的接合和电极接触。然而,在其他情况下,电极可特别地配置以具有接合特定的组织表面所需要的几何形状。
施加到器官或组织上的高频能量一般设置在无线电频率(射频)上,但不限于从100kHz至10MHz,通常从200kHz至750kHz的范围。功率水平取决于正处理的组织的表面积和体积,但一般在10W至500W范围内,通常从25W至250W,更通常从50W至200W。功率通常是以1W/cm2至500W/cm2的水平施加,更通常为10W/cm2至100W/cm2。功率施加足够的时间以升高正处理的组织块中的组织温度超过烧灼或坏死所需的阈值水平,通常为超过至少60℃,更经常为超过70℃,且常常超过80℃,或更高。然而,能量的施加应是有限的,以便邻近的组织未被明显地加热或以其他方式损坏。相反的双极性电极的使用在这方面是尤其有利的,因为它集中了电极之间的能量通量并且限制了对未局限于相反电极中的邻近组织的影响。由此产生的坏死组织基本上可包括处理中的整个器官,或者在其他情况下可包括更窄的区域,例如平面区域。
在另一方面,本发明包括系统,包括至少多个电极,以及可与该电极连接的用于在它们之间施加诸如双极性、高频功率的电源。该电极通常可按如上所述配置,并且通常通过电外科探针携带以方便部署。该探针可具有多种构造,但一般包括至少一个轴和一个操作该轴的手柄。电极安装在轴的远端,并通常可从轴的近端操作,以便它们可以相对于彼此打开或关闭以接合和捕获它们之间的器官或其他组织。电极可具有如上所述的任何性质,并且尤其可包括金属的或金属化的网,该网能够弹性地接合并适应组织表面。电外科探针可以传统的双极性方式使用,即各个电极是以相反极性供电。或者,电极表面可以以与另一个电极或者用于实现该高频电路的电极相同的极性来供电。典型地,另一个电极是一个或多个探针的方式,其可以插入天然的人体小孔或内腔中,或者可被引入器官或其他组织块中。该探针可符合天然内腔,和/或可将含盐的或其他导电流体引入该内腔,以帮助建立导电路径。
在一种特定的实施方式中,电外科装置可包括单一的可适应的结构,例如弹性或非弹性膨胀的管状元件,如可膨胀的管状编织网。该电极是在可适应的支撑结构上的多个位置上形成,并且通常相互隔绝,例如通过采用绝缘或通过依赖该可适应的支撑结构固有的不导电性质。
附图简要说明
图1是本发明采用多个刚性的、板状电极的系统和方法的概念图;
图2显示包含电极结构配置的电外科探针,其中各个电极结构包括多个电隔离的活性表面;
图3是说明本发明的发电机的方框图;和
图4是示出根据本发明的用于电力调节的算法的流程图;和
图5A-5C提供本发明的电外科探针的侧视图,示出钳夹处于打开位置的探针(图5A),钳夹处于关闭位置的探针,其中钳口沿有基本上均匀厚度的组织夹紧(图5B),以及钳夹处于关闭位置的探针,其中钳夹沿着具有不均匀表面的组织夹紧(图5C);
图6是图5A-5C的电外科探针的详细示意图,示出根据本发明的刀片机构;和
图7A-7B提供本发明电外科探针的侧视图,其具有影响平行钳夹移动的机构,其中图7A示出处于打开位置的钳夹,图7B示出处于关闭位置的钳夹。
具体实施方式
本发明的方法、系统以及装置用于处理患者的多种器官、部分器官或者其他实体(solid)组织区域。器官或者其他组织块具有间隔开的组织表面,通常为相对的组织表面,其更易于接近电极结构,并且允许在所述表面之间施加射频功率。组织表面可以很容易地得到或可能需要预先处理得到,例如钝器解剖,使用常规外科手术技术切除小组织或者血管等等。可通过本发明处理的器官包括子宫、肝脏、前列腺、肾、肠、胰脏,肺、胸、肌肉等。
以双极射频功率针对靶组织区域处理器官和其他组织,该靶组织区域由间隔放置的电极结构限定。可通过在任何可接受的频率下,通常是上述范围内操作的常规通用的电外科电源提供射频功率。电源可采用常规的正弦或非正弦波形式,并且可以以固定或受控的功率水平操作,其中可选择电压、电流或二者同时选择。适宜的电源可从商业供应商获得,例如Valleylab、Aspen和Bovie。在一些情况下,在电源和电极之间使用阻抗匹配变压器,以提高能量传递效率是期望的。
电极可以以适于接合组织表面的任何方式进行配置。由此,电极可以是刚性的、柔性的、弹性的、无弹性的(不可伸展的)、平面的、非平面的等,并且可任选地使用组织穿透元件以加强电极结构与组织之间的电接触,以及增大电极面积。优选的电极配置是可适应性的(conformable)使得它们能对接各种不同的组织表面并符合该表面(如,参见US专利申请序列号11/371,988(代理人案号No.ARGA0003),在此将其整体引用引入本文),或者它们被特定地配置以具有接合特定的器官或组织几何形状的几何形状。在这两种情况下,电极结构可进一步设有组织穿透元件。下文中将讨论各个实例。
一种电极配置使用既灵活又有弹性的金属网。这种网适合用在可伸缩的电极上,例如用于微创手术的可伸缩的电极。该网可悬于更多刚性框架元件的上方或者在该元件中间,其中框架元件本身可膨胀或缩小以部署网电极。这种网还可用于制造可像短袜一样置于器官或组织块上的弹性管或壳。在这样的管状电极情况下,通常期望在单个网上形成两个或多个离散电极表面,在此电极表面是隔离的,通常因为网本身的材料性质,即它们是聚合的和非导电的。弹力网可以是织带或其他编织结构,如美国专利No.5,431,676、5,234,425和4,018,230中所述,在此将其整体引用引入本文。放射状能膨胀的编织结构的应用是期望的,因为容纳该组织的内腔直径可以通过轴向延长来控制。也就是说,该织带可以通过缩短它的长度来膨胀,并通过延伸它的长度来收缩。所有这种网和织带结构可以通过常规的化学电镀技术使其金属化。适合电镀的金属包括金、银、铜、不锈钢、及其组合和合金。适合的弹性网材料包括各种弹性体(elastomer)。适合的编织网材料包括尼龙和其他通常不可伸展的聚合物。
所有类型的电极结构可被配置为具有导电表面和非导电表面。这通常通过使一个表面作为暴露的金属表面,而电极另一表面被覆盖或绝缘来实现。在刚性电极的情况下,绝缘可以层压、包覆(涂覆)或以其他方式直接施用至相对的表面。就柔性和弹性电极来说,需要绝缘层也是弹性的,使得它可以随电极一起膨胀和缩小,而不丢失或者移走。在一些情况下,期望使用单独的一层材料,其可随电极一起膨胀并且覆盖期望为绝缘的表面。
现参考图1,根据本发明的系统10包括第一复合电极12,第二电极14,以及射频电源16。第一电极包括多个刚性板,该刚性板独立地与电源16的一个孔相连接,第二电极是连接到相对孔的刚性板。在其他实施方式中,第二电极可以是非刚性的,并且还可表示多个电极。实际上,在某些情况下优选多个回流电极。电极12和电极14可以对着组织块T接合以接合其对置的表面。然后通过形成电极12的多个刚性板的任何组合,选择性地将射频功率施加到该组织上(如下文更详细地讨论),以完全地烧灼在电极12和14之间捕获的组织块。在组织被烧灼后,可将其沿组织烧灼区域内的线进行切除。有利地,在烧灼组织内的切除使出血最少并简化止血。
对于用于烧灼(如子宫)组织来说,可将可适应性的电极置于子宫的相对的外表面上。通常如上所述,可由电源以共同的极性向电极供电,而不是施加相反极性的高频能量。探针可插入子宫腔,并以相反的极性供电。这样,该相对的组织表面一方面包含子宫腔的内部内层,另一方面是子宫的外表面。就子宫而言,通常期望基本上烧灼整个组织块,而可能将宫颈排除在外。然而,对于其他身体器官和组织块来说,可能只需要烧灼部分组织。通过选择电极的配置,高频能量可以针对组织限定的部分。
优选地,电极包括多个不同的导电区域,在此该区域可彼此电绝缘,或者可以彼此电耦合。单电极结构上可包含3、4、5以及多至10个或更多的离散的导电区域。这些电导区域通常由它们之间的电绝缘区或者结构来限定。当需要两个或更多的电导区域为电耦合时,可提供小的电连接,以桥接区域之间的绝缘部分。通常,电极结构上的至少一些隔离的导电区域是以相反的极性供电,在某些情况下,本发明的方法可以仅使用其上具有多个导电区域的单电极结构来完成。或者,可对位于单电极结构上的隔离的导电区域以相同的极性供电,在此不同的区域的主要目的是控制或者配置被传送到组织块的高能电子通量。例如,可能需要将高频电能传送到组织块的间隔开的区域内,而不灼烧位于待烧灼的区域之间或与待烧灼的区域相邻的其他区域。在这种情况下,电极结构可以通过导电区域的适当定位来配置。
图2显示了包括一对电极结构302和304的系统300。至少一个电极结构304包括多个独立的导电条310,导电条310是隔开的以便相互电隔离。在其他实施方式中,可通过电绝缘材料隔开导电条。导电条310可选择性地以不同极性以几乎任何模式来供电。通常,需要给导电条通电以使相邻的导电条具有相反的极性。本领域所属技术人员可以理解的是,电极可以是分离的,或者它们可通过如扫描、电镀等技术形成。
到目前描述为止,电极结构的导电表面通常包含具有连续的表面几何形状的刚性或者适应性的部件,即所选择的表面几何形状产生不间断的与组织表面接合的界面。在一些实施方式中,可能需要在电极结构上设置附加的结构或者部件以加强或者增加电极结构和组织表面之间的有效电接触面积。具体地,通常需要在电极结构上设置组织穿透元件,以加强电接触(即减少电极与组织之间的电阻抗)以及更重要地是增大电极与组织之间的总表面接触面积。组织穿透元件可以是针、钉、突起、通道等,但通常为具有尖锐的远端的针,以便它们能穿透组织表面并进入下面的组织块。钉可有0.1mm至5cm范围内的深度,通常为3mm至1cm。针的直径可以是0.1mm至5mm,通常为0.5mm至3mm。通常,钉均匀分布在电极结构的组织接触区域,钉密度为0.1pin/cm2至10pin/cm2的范围内,通常为0.5pin/cm2到5pin/cm2。通常,除了导电的适应性的或刚性的电极表面外,还设置针或其他组织穿透元件,但在一些情况下,该针可提供电极结构的总导电或活性区域。
包含多个电极对结构的系统可以包括隔离的导电条,例如,通过绝缘棒。然而,除此之外,可以沿各导电条设置组织穿透钉。应理解的是,沿每一导电条的长度设置多个钉。电极结构通常是弯曲的构造,以便它们可置于管状体结构或组织块上。然而,应理解的是,可由适应性的网形成该条,该网允许电极结构变平或者假定为其他各种构造。此外,绝缘结构也可由柔性或者适应性的材料形成,允许进一步重新构造电极结构。
导电条可以以一种交替极性配置来通电。最简单的是,相邻的条与单电源上相反的头连接。然而,重新排列电连接以几乎任何模式为这些条供电都是一个简单的问题。而且,也可能在电学上隔离各个条的不同区域,如No.1和2,以允许在不同的极性下对那些区域供电。
使用系统300,通过对不同的电极表面或者区域选择性地通电可以实现不同的组织烧灼模式。通过选择性地以双极形式为两个相邻的电极表面通电,同时使其他所有表面未通电,则有限的组织区域被烧灼。相反,通过给其他电极表面(如No.4、5、6和7)通电,则更大的区域被烧灼。根据电极表面极性的精确模式达到略有不同的模式。电极表面可以以交替模式的极性(+,-,+,-)来通电,以产生组织烧灼模式。(+,+,-,-);(+,-,-,+);(-,+,+,-)等模式也可用于产生有所不同的灼烧组织的模式。
图2显示电外科探针50,包括一对具有远端58和近端60的钳夹56。或者,该探针可包括一轴,该轴通常为圆筒大小,以便通过微创手术中使用的传统类型的套管引入。由此,该轴通常具有5mm至15mm的直径,通常为标称5mm、10mm或12mm,以与常规套管保持一致。该轴的长度通常是在10cm至30cm范围内,具体的范围取决于想要的手术。
电外科探针50包括连接在钳夹56的近端60的手柄组件62。该手柄包括杠杆组件64,该杠杆组件连接为在电极304部署后,启动该电极。该手柄还包括同轴连接器,用于将电极连接到如本文所述的电外科电源上,然而该电极也可通过常规的电源供电。
电外科探针50可用于烧灼和切除部分肝脏。例如,探针可通过套管引入,然后该电极推进并打开以便他们能捕获待除去的部分肝脏L。当电极针对肝脏的相对的表面关闭后,可如上所述施加射频能量。在该组织被完全烧灼后,可将其沿着坏死的组织块内的任意线切除。可选地,该电外科探针可用于烧灼彼此邻近的一系列组织块,以烧灼和切除比仅单一施加射频能量时可能的组织块更大的组织块。
在一个实施方式中,电极可用于,例如烧灼和切除子宫。子宫包括一主体,该主体具有从两侧延伸的输卵管。除输卵管外,通常从子宫的中线伸出几条大血管。电极可放在子宫的前表面和后表面上,输卵管保持连接并从电极结构之间向外伸出。根据手术程序,在一些情况下输卵管将包含在封闭、烧灼和解剖区域内,而在另一些情况下,可能不选择封闭和烧灼该输卵管。该决定是根据是否随子宫一起切除卵巢来做出。然后将射频功率施加到子宫,通常在10W/cm2至100W/cm2的功率水平内持续10sec至20min,直到子宫主体基本上完全坏死。因为电极的几何形状,坏死的子宫体沿着通常位于子宫宫颈端的线,以及沿着邻近输卵管的线终止。然后将子宫在烧灼的组织区内但邻近宫颈和输卵管处沿线切除。在子宫的烧灼区内的切除基本上使得出血最少并且便于止血。然后可移除子宫,在开放手术程序中抑或仍然完整。在微创手术中,可将子宫在移除之前可选地分碎(粉碎成小片)。
在本发明的一个实施方式中,沿该装置设置平行电极,因此防止相反的钳夹和电极相接触时引起正与负的接触。在该实施方式中,安装在相同钳夹上的相反电荷的电极必须以非导电材料安装以防止短路。
可以通过软压材料(例如泡沫橡胶)使钳夹形成分支,以防止电极接触,同时确保与所有中间组织接触。本发明的该实施方式可以适应不同的组织厚度,预计组织很可能超过5-10cm。
为了防止局部高阻抗区域沿整个电极影响总的系统阻抗,并因此当电压达到其最大容量时潜在地降低整个系统的功率输出,可以物理地串联定位多个电极。这些电极可同时供电或者以重复的顺序的或其他序列来供电。电极也可完全彼此独立地供电。以这种方式,如果一个区域已经完全封闭并由此达到高阻抗值,它不影响组织尚未封闭而处于较低阻抗的其他区域,即当封闭发生时阻抗上升,并且这可以限制功率传输。基于特定电极位点/位置上的组织的性质,各个电极或电极对可以有唯一的电源和能量传送概况。
从本说明书中应明显看出,在许多手术程序中使用较长的电外科电极或其他高能量封闭阻抗机构以节省手术时间是有好处的。例如,根据涉及的组织的修补(makeup)以及沿待烧灼的组织长度的厚度,可优化电外科钳夹和电源的几何变化以使部分或全部特定器官的外科手术切除变得容易。
例如,子宫的结缔组织或韧带是相对薄而且相对低阻抗的,即基于动物模型,在能量传递到该组织之前很多情况下小于三欧姆。然而,该阻抗沿烧灼的组织的长度以及在烧灼期间都不是恒定不变的。因此,电源,例如能量小于100伏的电源不足以充分地封闭和凝结所有组织和支撑该器官的血管,因为当封闭和烧灼过程进行时,通常有必要在初始施加电力以烧灼组织之后增加电压,以根据增长的阻抗保持功率水平。而且,对于较厚的组织和器官来说,例如肝脏、肺或肠、或对于较长的组织片段来说,很可能需要明显较高的电压。对于较精细的组织或位置,高压电源能量水平可能不安全。此外,由于这些器官和组织中某些有较高阻抗,电源必须具有足够的切断保护(cut-off),用于在封闭循环的最后中断向器官供电。因此,一旦电源确定了封闭循环的完成,电源应该自动终止通向组织的电流。虽然手动中断电力传送是一种选择,但这不太令人满意,因为这是主观的并且这不太可能包括对组织或器官状况的准确分析。这里公开的自动反馈系统防止过量加热或灼烧周围健康的组织和器官,而且使粘连在电极上的组织最少,同时保证充足的血管封闭。因此,本发明的电源具有多种调节设置,用户可以基于待处理的器官选择。基于时间、阻抗、电压、电流、温度或能量数据,或者对于各个特定器官来说它们的某些组合,各个器官的现有特征决定预设的电压极限和曲线,以及最后的关闭(端点)参数。因此,使用了对特定手术优化安全性和效率的过程。基于当前血管的血管化程度和尺寸,不同的组织和器官也可能需要不同的设置。
本发明的另一个实施方式在低的、安全的功率水平上运行了电流短暂(即小于5秒的时间)通过组织的爆裂测试。该时间段内产生的配置文件(profile)数据是快速的,即小于5秒,并基于测试期间确定的条件,自动地编入优化电压、能量、时间和/或功率传输的算法中,以安全且有效地封闭该组织或器官。
同样地,可优化钳夹/电极的几何形状以适合各种指示。优化钳夹和手柄部分的长度以适合组织的长度以及待封闭和解剖的位置。也优化由钳夹产生的力和/或最小压缩隙以适合选定的组织。需要最小的力以保证整个组织的长度之间的充分均匀的封闭。然而,过多的力可能导致对组织不必要的损坏并在封闭过程之前引起明显的出血。可预先确定最佳的压缩力以适合各个器官,或者设计压缩手柄以施加适合于特定器官的预定水平的力。在本发明的一个实施方式中,这是通过与转矩扳手类似的滑差离合器型机构,或者通过对钳夹的移动限制器(travel limiter)来控制。因此,存在设计用于每种用途的独立的装置,或者具有多重个别设置的一次装置,其被调整到预先确定的设置,该设置适合即将手术或切除的器官或器官的厚度。在一些实施方式中,通过感应沿着一个或两个钳夹的长度的力,可以自动且动态地调节力,该钳夹带有与其相连的一个或多个应变仪。
在其他实施方式中,可通过钳夹本身使用的材料来限制由钳夹施加的力。对于安全压缩及封闭组织所需的力很低的器官或组织来说,具有较低弯曲模量的材料可能更加适合,而对于在较高水平可以被安全地夹住以保证有效封闭的组织来说,可使用较高模量的材料。
在另一个实施方式中,钳夹的厚度通过用加压流体加压该钳夹内的中空腔室来调节。
装置的手柄和钳夹之间的角也可优化以适合应用。这主要通过手术环境中手术攻击的角度确定。该装置对某种应用可能具有温和或渐进的曲线,而不是生硬的角。
该过程的切割或解剖部分也可针对特定的器官进行优化。在通过锐利的刀片进行切割的情况下,刀片的宽度可基于待切除的组织或器官的厚度而变化。切割材料的厚度也可基于具体的厚度/组织切割的容易程度来优化。较坚韧的组织可能需要更多的拉锯运动或者较厚的或锯齿的刀片或剪刀机构,其也是为具体应用而预先确定的。如果将高能量系统用于解剖该组织,这些系统也可为应用而优化,如前在电源部分所述。
对于本发明教导的多电极算法,根据能量传输和RF循环监测、调制和终止可独立地处理各个电极。本发明该优选的实施方式中监测的参数是电流、电压、阻抗、能量、功率、时间和温度。也可监测这些参数的任何组合,以及其他参数的值。这些值可在数学模型中监测,该模型将它们组合在一个算法中,基于以前的经验分析确定RF封闭过程的质量。可调整能量和/或功率输出以在可能的最短时间内优化动脉和静脉封闭,优选地小于一分钟,并且期望地小于30秒,而没有过量的热传输,该热传输会损害周围的健康组织或产生能将组织结合到电极表面上的过量热。周期的优化可以基于发电机软件/固件内的算法程序,该程序调整该周期,并且当凭经验确定条件已经满足时最终终止该周期,以安全和重复地满足正进行的手术程序的条件。例如,达到一定的阻抗和/或温度值并且超出该点继续保持功率水平预定的时间,或一旦已经达到一定阻抗和压力或温度阈值时则降低(或反过来增加)功率水平。
一旦组织发生脱水,阻抗倾向于达到平稳状态并且封闭过程的质量的测量变少,其在干燥开始后发生。因此,仅有阻抗测量可能不是成功的血管/组织的准确决定因素。因此,提供多重调制、阶跃函数、或者功率、电压和/或能量的连续变化以优化该封闭周期(sealing cycle)。周期变化或调制可导致向上或向下的复杂的变量变化,以优化血管/组织封闭条件。结果,各个电极或电极对可具有不同的周期时间和功率、电流、电压和能量曲线,作为接触特定电极的组织的特定片段的反馈数据。调制/测定程序可以是基于监测多重变量并对预定条件的组合作出响应的复杂算法,以调节和终止该周期。
对于这些变量来说,以下是有代表性的:
功率10-1000瓦/通道或电极对,通常为100-500瓦/通道或电极对;
阻抗2-500欧姆,通常为2-200欧姆;
电压5-500伏特,通常为50-250伏特;
时间间隔1-1200秒,通常为5-30秒;和
能量1-30,000焦耳,通常为1,000-10,000焦耳。
在目前优选的实施方式中,发电机由恒定的输出功率设计组成,而不是恒定的电压或恒定的电流设计。在本发明的设计中,功率输出是基于该系统的负荷而显示。因此,如果系统经历非常高的阻抗负荷,电压将维持在合理水平上以避免电弧。在应用发电机中,即电烧灼,阻抗范围于组织烧灼期间可在例如2欧姆和150欧姆之间变化。通过施加恒定的功率,本发明电源以低阻抗提供巨大的电流,以在组织首先被烧灼时实现初始干燥,并且随着烧灼进行,以施加更高的电压以完成组织封闭过程。因此,本发明在烧灼过程开始时提供较大的电流和较小的电压,而在该过程的封闭阶段提供较高的电压和较小的电流。对这种发电机的控制只需要该系统监控功率。
在目前优选的实施方式中,电源设有用于设定所需功率的机构。这可以与配置文件(profile)或其他方式一致,如下所述。将脉宽调制与回扫变压器联合使用。该系统首先为回扫变压器充电并产生受调整的输出。第二步是调节,例如在15伏调节到需要的安培数值下,以产生需要的输出功率。基于该阶段,随着首先充电的脉冲宽度被确定,确定了功率曲线。因此,本发明首先在回扫变压器建立了一定水平的功率,并且在不考虑负荷(即组织)的阻抗的情况下,通过第二步提供相同的功率水平。
在本发明优选的实施方式中,发电机是电外科器械中的多电极的电力来源。因此,发电机设置有多个输出通道,每个都是独立可调的。图3中,提供了示出电外科器械300的框图,其包括如上所述联系图1和2的多个电极310。该电外科器械包括导电路径55,该导电路径通常包括多个导体,一个用于各个发电机输出通道,以便接收来自发电机16的电流,以及一用于为发电机提供接地路径和/或反馈的返回路径360,其可包括关于电流、电压、阻抗、能量、功率和温度的任何信息。电外科器械中设置合适的传感器。例如,可以将热阻器用于感应温度,同时可在任何两个或多个电极之间测量阻抗。或者,接地面可设置在电外科器械的一个钳夹上,而单个的电极可安置在该电外科器械的另一个钳夹上,使得从该电极通过返回电极提供一条路径和寻址该路径。因此,一个钳夹可为另一个钳夹上安置的电极建立接地面。此外,发电机可在它的正和/或负端与电极连接。因此,电力发电器内的电极可实时地在器械内重新分配极性和/或利用不同的终端310。例如,其中一个电极或终端可被保留作为阻抗传感元件。在本发明的其他实施方式中,该元件可致力于感应整个过程的阻抗。
发电机16包括具有多个输出的电源335,该输出由控制电子器件50控制,并由此通向电外科器械中的个别电极,如上所述。多个输出通过微处理器或其他控制机构330独立地操作并易于调节和分配。因此,输出可在烧灼周期操作中的某一点上分配给任何一个或多个电极元件,并可在其他时间点上动态地重新分配。例如,如果电源是四通道电源,电外科装置有16个电极,那么每个通道可支撑电外科装置中的四个电极。然而,可改变这种安排,使得一些通道比其他通道支撑更多的电极。
微处理器330可通过一系列配置文件340配置,以根据待执行的程序,用不同电极之间的功率曲线和功率分布操作该装置。因此,对于子宫切除手术来说,可为电外科器械建立一定的配置文件,而对于肝手术来说可建立不同的配置文件。此外,可提供智能卡阅读器365,其不但为该系统配置特定的手术程序,而且在该手术程序期间为电力发电器的操作的记录信息提供内存。例如,为各个通道施加的功率,感应的阻抗,感应的温度等都被捕获以记录该手术程序。
图4是示出本发明用于功率调节的算法的流程图。在进程开始时,用户确定即将应用于特定手术程序的配置文件(400)。例如,一些组织或手术程序可能需要较高的初始功率水平,然后在烧灼过程期间提供功率水平的降低。
将探针(电外科器械)定位(405),并且将供给电源的电力打开(410)。系统本身初始化(415),例如通过沿着电外科器械中的多个电极来获取初始阻抗读数从而为待烧灼的组织产生配置文件。初始化也可包括对初始温度读数、指示沿外科器械表面的组织厚度的应变压力读数,以及其他读数的获取。可通过电外科器械来传输导频信号以确定这些数值。例如,可提供初始低电压以测量阻抗。以这种方式,可为待烧灼的实际组织制定实时配置文件,该文件可用作对为具体手术程序而预先确定的配置文件的调整。因此,可能根据与待烧灼的组织相关的量度来修改为该程序建立的配置文件。
然后该系统设定确定何时接近端点的阈值(420)。这些阈值可通过测量例如阻抗、电流、电压、能量、功率和温度来确定。阈值也可与定时元件相连操作。因此,当达到阈值时,系统可继续操作一定的时间以保证达到合适的端点,使得烧灼完成。在一些实施方式中,可将分配给那些组织部分已经达到端点的电极的发电机通道重新分配给那些仍积极烧灼组织的电极,以为该过程提供额外的电力,并由此促进其完成。
将电力施加到电外科器械(425)上以开始烧灼。系统在该过程期间监测两个或多个参数并且确定何时达到阈值(430)。一旦达到阈值,就执行端点程序(435)。端点程序可以像逐步断电那样简单,或者它也可以包括设置计时器。重要的是要注意到,电力的施加,尽管在不同阻抗下都是恒定的,也可能在烧灼过程中调整,以便功率曲线适用于该手术程序。因为本发明为多个电极提供多个电力通道,一些电极可在其它电极之前达到端点。这种情形下,这些电极的电力终止而用于其它电极的电力继续。因此,各个电极可具有实时调整的不同的功率曲线。如果所有端点都没有达到(440),则该过程继续(445);否则该系统的电力关闭(450)并且程序结束。
电外科器械并入了传感器以便根据算法实时捕获多种过程参数。因此,可在选定的电极对或电极组之间测量阻抗;可沿器械表面联系一个或多个物理转变测量温度;而可用局部应变仪测量烧灼的效果,该应变仪沿着一个或两个探针钳夹的长度安置(在该实施方式中,应变仪也可用于预先计算烧灼曲线)。此时,各个电极可看作单独的装置,其沿着被探针钳夹接触的组织表面针对具体的区域独立地操作。
虽然本文中是参照优选的实施方式描述本发明,本领域的技术人员应该容易理解,在不背离本发明的精神和范围的情况下,本文提出的那些也可被其他应用替代。例如,在一些实施方式中,在烧灼周期开始的时候,通过测量任意的阻抗、压力或者这些和/或其他参数的任意组合,发电机感应组织是否存在于每个电极。如果对于任意电极对没有组织存在,那么该电极对是空闲的,并且将对该效果的指示提供给发电机操作器。发电机也可为各个电极对提供状态指示,指示各个电极对的封闭周期是活跃的或已完成。在该实施方式中,各个电极对可以包括模式状态指示器,例如LED,一旦烧灼周期开始,它将指示任意的空闲、活跃、或完成情况。
图5A-5C提供本发明的电外科探针的侧面示意图。具体地,根据本发明这一实施方式的电外科探针包括探针50,其具有一对相对的钳夹56。钳夹通常包含如上所述的一个或多个电极,手柄62包括手柄元件75、76。操作手柄元件,即通过将它们挤压在一起,使手柄元件75绕枢轴84旋转,从而促使手柄元件75的接合面85对着致动器77的配合面86。表面84、85的接合促使致动器77朝向探针的近端,从而影响杠杆机构64的移动,其反过来迫使钳夹56彼此相向移动。当钳夹与组织接合时,即处于封闭的位置,致动器78可用于推动切割刀片以切除夹在探针钳夹之间的组织。在下文联系图6进一步详细讨论切割机构的操作。
本发明该实施方式的关键元件涉及一个或两个钳夹中铰接(articulation)的设置。尽管图5A-5C显示了下钳夹中的铰接,所属领域的技术人员可以理解的是,铰接可以设置在上或下钳夹中,或者同时在两个钳夹中。此外,可将一个以上的铰接设置在任一个或者两个钳夹中。图5A-5C示出的铰接包含下钳夹72,其通过支点70固定在滑动臂71上。在该实施方式中,下钳夹包括可压缩的元件73,如上所述。本领域的技术人员可以理解,电极和/或具有弹性的、可压缩的元件可酌情设置在任一个或者两个钳夹中。本发明实施方式中的上钳夹74是固定的。如图5B所见,当被钳夹夹持的组织厚度均匀时,下钳夹以基本上与上钳夹相平行的方式夹持。然而,如图5C所示,当组织的厚度不均匀时,通过绕支点70移动,由下钳夹72作用的铰接使得下钳夹形成分支而适应组织厚度的差异。例如,图5C中数字指示符80表明,朝后朝向钳夹远端设置一缺口,在那里遇到较厚的组织。
本发明实施方式的又一方面在于钳夹56的实际支点是枢轴销87,其位于探针50中的钳夹的远端。这样,该钳夹被配置为三级杠杆。本发明的前述特征,即铰接的钳夹以及为钳夹安排的三级杠杆的设置都是重要的创新,其当两个钳夹夹到一起时提供了均匀的力。例如,通过将支点尽可能靠后置于探针的外壳内,而不是如现有技术一样使支点接近钳夹退出外壳处的点,钳夹的角度明显减小。该实施方式中的铰接的下钳夹容纳不均匀的组织,并使非平行关闭的影响减到最小。这样,实现了钳夹的基本上更加平行的操作,其沿着与组织接触的钳夹表面提供力的平均分布。因此,当钳夹在组织结构上关闭时,本发明的该方面提供了跨过与钳夹接触的组织结构的均匀分布的力。如发明相关的上述内容所讨论,这使得钳夹与组织有相当长的接触面。在同质的组织薄层的例子中,具有相当长的组织接触面的一对钳夹需要相当大的力,以提供沿着整个钳夹表面的对组织的夹持。然而,与钳夹的更远的末端相比,现有技术的夹紧装置将力更多地分布在钳夹的支点上。本发明中,通过将支点安置在钳夹的一个末端,与夹持结构64一起,更加朝向于钳夹的整个长度的中心。并且通过进一步纳入铰接的钳夹,例如下钳夹72,本发明提供了沿整个夹持面均匀分布的力,同时沿组织表面适应组织厚度的差异。
本发明中该实施方式的进一步优点在于,制造钳夹或者探针不需要使用重的和刚性的材料。而且,本发明允许探针的生产由更轻重量的材料制成。这种材料使得装置费用更少。
如上所讨论,本发明的实施方式可采用多种电极排列,如上所讨论,以及沿着钳夹的组织接触表面采用多种类型的适应材料。
图6是图5A-5C探针的详细视图,示出可与探针相连接的唯一的切割机构。因此,在图6中,致动器78用于沿电极载体/刀割轨道83移动刀片架81,由此推动刀片82跨过在探针钳夹72、74之间捕获的组织。沿着刀片架的突起,即凸轮88,与连锁机构(未示出)联合操作以防止刀片在钳夹处于开口位置时被推进。这样,除非当钳夹夹在一起时,刀片不会暴露,并且由于与暴露的刀片接触引起的受伤的可能性也被消除。因此,只有在钳夹夹紧并且捕获凸轮88的捕获机构解除,使得刀片架81可被致动器78推进时,才能使用刀片。
本发明的独特之处在于刀片82的形状,该刀片具有两个协同工作的锋利的边缘,以在刀片推进时切割组织的顶部与底部部分。这种刀片安排有助于将组织集中在切割点上。本领域的技术人员可以理解,其他切割安排可以制造用作刀片,然而,当刀片跨过在钳夹探针之间固定的组织推进时,可见带有两个切割面的刀片的安排,即如图6所示的设置成“V”构造的切割面89A、89B提供了更有利的切割。
本发明的另一个实施方式如图7A结合7B所示,其中通过致动器杠杆93运转四片交叉梁组件92(也称作四杆),以响应对用户对探针手柄90、91的驱动。当手柄挤在一起时,致动器93运转该四片交叉梁组件92以使钳夹94、95以平行的方式联合。以这种方式,完成了力沿钳夹的组织夹紧表面的均匀分布。图7A示出钳夹处于打开位置时的安排,而图7B示出钳夹处于关闭位置时的安排。从图7A、7B可以看出,钳夹本身延伸到探针的外壳内,并且是基本上平行的元件。设置四片交叉的梁组件92,使得当组织接触面钳夹被彼此相向或者彼此远离推进时,保持钳夹的平行排列。本领域的技术人员可以理解,这种设置也可整合本文描述的本发明的其他方面。例如,钳夹94、95中的任一个或两个可包括铰接的钳夹组件,如上面关于图5A-5C中所述。此外,提供的电极和/或多种有弹性、可适应性的材料可安置在图7A、7B中所示实施方式的钳夹上。
至于钳夹中铰接元件的设置,例如结合图5A-5C,一个实施方式在各个钳夹的多个铰接元件中每个上设置单个电极,或者在多个铰接元件中每个上设置电极阵列。各个这种元件进一步包括传感器,其可以是例如压力和/或温度传感器,以便各个铰接元件允许根据该元件遭遇的组织的厚度进行处理。因此,以具有不平厚度的组织层为例,由其自身的电极阵列组成的各个铰接元件处理该组织,直到该组织适当地脱水为止。在这个例子中,一些电极比其他电极运作更长一段时间,取决于它们下面的组织的厚度。
在本发明的一个实施方式中,各个铰接的元件包括压力传感器(loadcell),其为电极提供反馈给发电机。多个压力传感器沿多个铰接元件的排列,或者沿一个或多个探针钳夹与电极组相连,使该系统将更多的电能输入该组织最厚的区域,正如那些其中遭遇了最高压力的区域所示。因此,在一个实施方式中,压力传感器在一个或多个钳夹的分布,与一个或多个铰接元件、多个单独编址的电极、以及相对电极的适合的表面相结合,可适应具有不同厚度的组织层,并且基于该组织厚度在组织接触的各个点上提供最佳的处理程序。
在一个实施方式中,通过沉积或印刷型过程在弹性元件或弹性材料、或者其他适合的材料上形成电极。在该实施方式中,生产的成本大大降低,并且为这些电极建立了微间距,其允许进行更加精密的寻址、致动、以及能量传递方案。
因此,本发明应当仅由以下包含的权利要求书限定。