蜂窝结构体.pdf

上传人:Y94****206 文档编号:831138 上传时间:2018-03-14 格式:PDF 页数:24 大小:1.13MB
返回 下载 相关 举报
摘要
申请专利号:

CN200880019842.4

申请日:

2008.05.20

公开号:

CN101678349A

公开日:

2010.03.24

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效IPC(主分类):B01J 35/04申请日:20080520|||公开

IPC分类号:

B01J35/04; B01D53/86; B01J29/76

主分类号:

B01J35/04

申请人:

揖斐电株式会社

发明人:

大野一茂; 国枝雅文; 井户贵彦

地址:

日本岐阜县

优先权:

专利代理机构:

北京三友知识产权代理有限公司

代理人:

丁香兰

PDF下载: PDF下载
内容摘要

本发明提供一种蜂窝结构体,其具有蜂窝单元,该蜂窝单元包含沸石和无机粘结剂,且具有沿着蜂窝单元的长度方向从一侧端面延伸至另一侧端面的多个孔道被孔道壁隔开而形成的形状,所述蜂窝结构体的特征在于,所述蜂窝单元的单位表观体积的沸石含量为230g/L以上,所述孔道壁的整个气孔的孔隙率为40%以下,所述孔道壁的气孔径在0.005μm~0.02μm的范围的气孔的孔隙率为5%以上,所述孔道壁的气孔径在0.05μm~0.2μm的范围的气孔的孔隙率为17.5%以上。

权利要求书

1、  一种蜂窝结构体,其具有蜂窝单元,该蜂窝单元包含沸石和无机粘结剂,且具有沿着蜂窝单元的长度方向从一侧端面延伸至另一侧端面的多个孔道被孔道壁隔开而形成的形状,所述蜂窝结构体的特征在于,
所述蜂窝单元的单位表观体积的沸石含量为230g/L以上,
所述孔道壁的整个气孔的孔隙率为40%以下,
所述孔道壁的气孔径在0.005μm~0.02μm的范围的气孔的孔隙率为5%以上,
所述孔道壁的气孔径在0.05μm~0.2μm的范围的气孔的孔隙率为17.5%以上。

2、
  根据权利要求1所述的蜂窝结构体,其特征在于,
所述孔道壁的气孔径在0.005μm~0.02μm的范围的气孔占整个气孔的13%~41%,
所述孔道壁的气孔径在0.05μm~0.2μm的范围的气孔占整个气孔的46%~76%。

3、
  根据权利要求1或2所述的蜂窝结构体,其特征在于,所述蜂窝单元的开口率在50%~65%的范围。

4、
  根据权利要求1至3中的任意一项所述的蜂窝结构体,其特征在于,所述孔道壁的厚度在0.15mm~0.35mm的范围。

5、
  根据权利要求1至4中的任意一项所述的蜂窝结构体,其特征在于,所述沸石包含β型沸石、Y型沸石、镁碱沸石、ZSM-5型沸石、丝光沸石、八面沸石、A型沸石或L型沸石中的至少任意一种沸石。

6、
  根据权利要求1至5中的任意一项所述的蜂窝结构体,其特征在于,在所述沸石中,二氧化硅和氧化铝的摩尔比(二氧化硅/氧化铝之比)在30~50的范围。

7、
  根据权利要求1至6中的任意一项所述的蜂窝结构体,其特征在于,所述沸石使用Fe、Cu、Ni、Co、Zn、Mn、Ti、Ag或V中的至少任意一种元素进行了离子交换。

8、
  根据权利要求1至7中的任意一项所述的蜂窝结构体,其特征在于,所述蜂窝单元包含氧化铝颗粒、二氧化钛颗粒、二氧化硅颗粒、氧化锆颗粒以及这些物质的前体中的至少任意一种颗粒。

9、
  根据权利要求1至8中的任意一项所述的蜂窝结构体,其特征在于,所述无机粘结剂包含氧化铝溶胶、二氧化硅溶胶、二氧化钛溶胶、水玻璃、海泡石溶胶和绿坡缕石溶胶中的至少任意一种材料。

10、
  根据权利要求1至9中的任意一项所述的蜂窝结构体,其特征在于,所述蜂窝单元包含无机纤维。

11、
  根据权利要求10所述的蜂窝结构体,其特征在于,所述无机纤维包含氧化铝纤维、二氧化硅纤维、碳化硅纤维、硅铝纤维、玻璃纤维、钛酸钾纤维和硼酸铝纤维中的至少任意一种纤维。

12、
  根据权利要求1至11中的任意一项所述的蜂窝结构体,其特征在于,多个所述蜂窝单元通过粘结材料结合在一起。

说明书

蜂窝结构体
技术领域
本发明涉及一种蜂窝结构体。
背景技术
关于汽车废气的净化,已经开发了很多技术,但由于交通量也在增加,因此还很难说已经采取了充分的对付废气的方法。无论在日本国内还是在世界范围内,都在进一步加强对汽车废气的控制。其中,对于柴油废气中的NOx的控制要求,正在变得非常严格。以往,通过控制发动机的燃烧系统来谋求减少NOx,但仅此不能完全对付废气。作为对应于这种课题的柴油NOx净化系统,已经提出了一种将氨作为还原剂来使用的还原NOx的NOx还原系统(被称作SCR(选择性催化还原)系统)。
作为应用于这种系统的催化剂担载体,众所周知的有蜂窝结构体。在专利文献1(国际公开第2005/063653号小册子)中公开的蜂窝结构体中揭示了一种蜂窝催化剂,该蜂窝催化剂由将γ氧化铝、二氧化铈、氧化锆、沸石等以及无机纤维和无机粘结剂进行混合,然后将其成型为蜂窝形状后进行烧成而制得的蜂窝单元构成。
在专利文献2(日本特开平08-229412号公报)中公开了一种用于除去NOx的蜂窝状催化剂,在该蜂窝状催化剂中,在孔道壁的气孔中气孔径处于0.01μm~0.03μm范围内的气孔容积占整个气孔容积的50%~80%,气孔径处于0.8μm~4μm范围内的气孔容积占整个气孔容积的10%~30%。并且,该蜂窝状催化剂的催化剂成分为含有钛的氧化物或复合氧化物。
在如专利文献1中公开的蜂窝结构体中,为了在SCR系统中使用而使用沸石作为主原料制作蜂窝单元时,有时气孔结构没有得到充分研究,从而不能提高NOx净化性能。
在如专利文献2中公开的蜂窝催化剂中,即使简单地将含有钛的氧化物替换为沸石,有时也不能得到足够的净化性能。沸石结晶大多在晶体结构中具有0.005μm~0.01μm左右的气孔,大部分反应活性点存在于该晶体结构中的气孔表面上。为此,在使用沸石的情况下,即使只指定0.01μm以上的气孔,也能推定出会存在不能成为具有充分的反应活性点的NOx净化催化剂的情况。
发明内容
本发明是为了解决上述问题而提出的,其目的在于提供一种蜂窝结构体,该蜂窝结构体使用使其具有优越功能的沸石来作为汽车废气的NOx净化催化剂,可以发挥高效的NOx净化性能。
下面记载解决本发明课题的手段。
本发明所提供的蜂窝结构体,其具有蜂窝单元,该蜂窝单元包含沸石和无机粘结剂,且具有沿着蜂窝单元的长度方向从一侧端面延伸至另一侧端面的多个孔道被孔道壁隔开而形成的形状,所述蜂窝单元的单位表观体积的沸石含量为230g/L以上,所述孔道壁的整个气孔的孔隙率为40%以下,所述孔道壁的气孔径在0.005μm~0.02μm的范围的气孔的孔隙率为5%以上,所述孔道壁的气孔径在0.05μm~0.2μm的范围的气孔的孔隙率为17%以上。
在本发明的蜂窝结构体中,所述孔道壁的气孔径在0.005μm~0.02μm的范围的气孔最好占整个气孔的13%~41%,所述孔道壁的气孔径在0.05μm~0.2μm的范围的气孔最好占整个气孔的46%~76%。
在本发明的蜂窝结构体中,所述蜂窝单元的开口率最好在50%~65%的范围。
在本发明的蜂窝结构体中,所述孔道壁的厚度最好在0.15mm~0.35mm的范围。
在本发明的蜂窝结构体中,所述沸石最好包含β型沸石、Y型沸石、镁碱沸石、ZSM-5型沸石、丝光沸石、八面沸石、A型沸石或L型沸石中的至少任意一种沸石。
在本发明的蜂窝结构体中,在所述沸石中,二氧化硅和氧化铝的摩尔比(二氧化硅/氧化铝之比)最好在30~50的范围。
在本发明的蜂窝结构体中,所述沸石最好使用Fe、Cu、Ni、Co、Zn、Mn、Ti、Ag或V中的至少任意一种元素进行了离子交换。
在本发明的蜂窝结构体中,所述蜂窝单元最好包含氧化铝颗粒、二氧化钛颗粒、二氧化硅颗粒、氧化锆颗粒以及这些物质的前体中的至少任意一种颗粒。
在本发明的蜂窝结构体中,所述无机粘结剂最好包含氧化铝溶胶、二氧化硅溶胶、二氧化钛溶胶、水玻璃、海泡石溶胶和绿坡缕石溶胶中的至少任意一种材料。
在本发明的蜂窝结构体中,所述蜂窝单元最好包含无机纤维。
在本发明的蜂窝结构体中,所述无机纤维最好包含氧化铝纤维、二氧化硅纤维、碳化硅纤维、硅铝纤维、玻璃纤维、钛酸钾纤维和硼酸铝纤维中的至少任意一种纤维。
在本发明的蜂窝结构体中,最好通过粘结材料将多个所述蜂窝单元接合起来。
根据本发明,可以提供一种蜂窝结构体,该蜂窝结构体使用使其具有优越功能的沸石来作为汽车废气的NOx净化催化剂,具有高的NOx净化性能。
附图说明
图1(a)、图1(b)为本发明的蜂窝结构体的立体图,其中,图1(a)表示由多个蜂窝单元构成的蜂窝结构体,图1(b)表示由一个蜂窝单元构成的蜂窝结构体。
图2为表示构成图1(a)、图1(b)所示的蜂窝结构体的蜂窝单元的立体图。
图3为表示在构成实施例3中的蜂窝结构体的蜂窝单元的孔道壁中形成的气孔的气孔构造的曲线。
主要符号说明:
1为蜂窝结构体,2为蜂窝单元,3为孔道,4为孔道壁,5为粘结材料,6为涂布材料层。
具体实施方式
本发明的蜂窝结构体具有一个或多个蜂窝单元,该蜂窝单元包含沸石和无机粘结剂,且具有沿着长度方向从一侧端面延伸至另一侧端面的多个孔道被孔道壁隔开的形状。图1(a)中示出蜂窝结构体的一个例子的立体图。图1(a)中示出的蜂窝结构体1由多个蜂窝单元2借助粘结材料5结合而构成。在各蜂窝单元2中,孔道3以沿着蜂窝单元的长度方向平行排列的方式形成。在此,为了保持强度,最好用涂布材料层覆盖蜂窝结构体1的侧面(孔道没有开口的面)。如图2的立体图所示,构成蜂窝结构体1的蜂窝单元2具有沿蜂窝单元2的长度方向延伸的多个孔道3,并由隔开各孔道3的孔道壁4构成蜂窝单元2。
在本发明的蜂窝结构体的蜂窝单元中,蜂窝单元的单位表观体积的沸石含量最好在230g/L以上,优选在245g/L~270g/L的范围。如果蜂窝单元的单位表观体积的沸石含量小于230g/L,则NOx净化性能下降。并且,如果沸石含量超过270g/L,则当作为NOx净化催化剂用蜂窝单元而形成必要的开口时,有时不能保持蜂窝单元的强度,进而不能保持蜂窝结构体的强度。
(蜂窝单元的孔道壁的气孔结构)
本发明的蜂窝结构体中的蜂窝单元的特征在于孔道壁的气孔结构上,孔道壁的整个气孔的孔隙率(气孔容量相对于孔道壁的单位体积的比率)为40%以下,所述孔道壁的气孔径在0.005μm~0.02μm的范围的气孔的孔隙率为5%以上,所述孔道壁的气孔径在0.05μm~0.2μm的范围的气孔的孔隙率为17.5%以上。并且,孔道壁的气孔径在0.005μm~0.02μm的范围的气孔的气孔容积占整个气孔的气孔容积的13%~41%,在气孔径0.05μm~0.2μm的范围的气孔的气孔容积最好占整个气孔的气孔容积的46%~76%。在此,可以通过水银压入法来测定整个气孔的孔隙率以及对应于各气孔径的气孔的孔隙率。
如图3所示,孔道壁的气孔结构具有0.005μm以下到数十微米以上的气孔,在这些气孔中,大多数是气孔径在0.05μm~0.2μm的范围的气孔和气孔径在0.005μm~0.02μm的范围的气孔(下面,将孔道壁中的气孔径在0.005μm~0.02μm范围的气孔称为微孔,将气孔径在0.05μm~0.2μm的范围的气孔称为大孔)。在对沸石和除沸石之外的无机颗粒等进行烧成时,可以认为该烧成体是形成有主要来源于一次粒子(特别是沸石的结晶结构等)的气孔和主要来源于二次粒子之间进行结合时生成的间隙的气孔的物体。
当将具有这种气孔的蜂窝单元作为废气的NOx净化催化剂而使用时,就废气的净化性能而言,作为氨的吸附点(site)和NOx净化的反应点(site)的气孔和作为使废气浸透到孔道壁内部的微孔中的气体流通通道的气孔之间的平衡变得非常重要。如果考虑废气的净化性能,当增加微孔(孔道壁的气孔径在0.005μm~0.02μm的范围的气孔)时,反应点增加,也容易提高NOx净化性能。并且,当增加大孔(孔道壁的气孔径在0.05μm~0.2μm的范围的气孔)时,废气难以浸透到孔道壁的内部,可以谋求提高NOx净化速度。根据定量分析,当微孔的孔隙率小于5%时,缺乏有效的反应点,不能维持NOx净化性能;当大孔的孔隙率小于17.5%时,NOx气体向整个孔道壁的微孔的反应点浸透的速度变慢,不能维持与反应点的NOx净化速度相称的NOx净化性能。
另外,如果考虑到作为蜂窝单元的结构体的实际强度和大小的限制,增加整个气孔会存在限度。当孔道壁的整个气孔的孔隙率超过40%时,孔道壁的体积密度变得过小,作为结构体得不到足够的强度。并且,在催化剂量相同的情况下,会导致蜂窝单元的体积变大,这在使用中是所不期望的。
此外,如果考虑到孔道壁的整个气孔的孔隙率、微孔的孔隙率以及大孔的孔隙率之间平衡,微孔的孔隙率和大孔的孔隙率相对于孔道壁的整个气孔的孔隙率最好分别为13%~41%和46%~76%。当微孔的孔隙率比例小于13%时,由于反应点少,因此即使增加大孔的气孔比例,也不能充分提高NOx净化性能。当大孔的孔隙率比例小于46%时,废气很难浸透到孔道壁的内部,结果即使增加微孔的孔隙率的比例,也不能充分提高NOx净化性能。并且,在制作蜂窝单元时,如果将大孔的气孔比例设定为46%以上,且将微孔的气孔比例设定为大于41%,则其制造技术会变得不容易。同样,在制作蜂窝单元时,如果将微孔的孔隙率的比例设定为13%以上,且将大孔的孔隙率的比例设定为大于76%,则其制造技术会变得不容易。
(蜂窝单元)
如图2所示,本发明的蜂窝结构体中的蜂窝单元构成具有平行于蜂窝单元的长度方向的多个贯通孔即孔道3的所谓的蜂窝结构。蜂窝单元中的各孔道3的截面形状并没有被特别限制。图2中示出了具有正方形孔道3的截面形状的例子,但是孔道3的截面形状还可以为大致三角形和大致六边形、圆形、或四边形和八边形的组合等。
蜂窝单元的孔道壁的孔隙率最好为40%以下,优选为25%~40%。根据定量分析,当孔隙率小于25%,尤其小于20%时,废气难以充分地浸透到孔道壁的内部,可能导致NOx净化率不够。并且,当孔隙率超过40%时,可能导致孔道壁的强度下降。
蜂窝单元的垂直于孔道的长度方向的截面(多个孔道开口的面)上,开口部的面积比率即开口率最好在50%~65%的范围。从不会使压力损失大的观点考虑,蜂窝单元的开口率最好为50%以上,从确保发挥净化作用的孔道壁的观点考虑,蜂窝单元的开口率最好为65%以下。
蜂窝单元的孔道壁的厚度最好在0.15mm~0.35mm的范围,优选在0.15mm~0.27mm的范围。当孔道壁的厚度小于0.15mm时,可能不能保持蜂窝单元的强度。并且,当孔道壁的厚度超过0.35mm时,有时废气难以浸透到孔道壁的内部,可能导致NOx净化性能下降。
本发明的蜂窝结构体中的蜂窝单元包含沸石和无机粘结剂,还可以包含除沸石以外的无机颗粒和无机纤维。
(沸石)
蜂窝单元中的沸石由沸石颗粒被无机粘结剂结合在一起而构成。作为沸石,例如有β型沸石、Y型沸石、镁碱沸石(ferrierite)、ZSM-5型沸石、丝光沸石(mordenite)、八面沸石(faujasite)、A型沸石(zeolite A)和L型沸石(zeolite L)等。这些沸石可以使用一种或多种。
并且,可以适当地使用包含对上述沸石进行离子交换的离子交换沸石的沸石。离子交换沸石可以使用事先进行了离子交换的沸石而形成蜂窝单元,也可以在形成蜂窝单元之后对沸石进行离子交换。作为离子交换沸石,最好使用例如由Fe、Cu、Ni、Co、Zn、Mn、Ti、Ag及V中的至少一种金属种进行离子交换的沸石。这些离子交换沸石可以使用一种或多种金属种。
作为沸石,二氧化硅和氧化铝的摩尔比(二氧化硅/氧化铝之比)最好在30~50的范围。
蜂窝单元中单位表观体积的沸石含量最好为230g/L以上,优选在245g/L~270g/L的范围内。从其它方面考虑,蜂窝单元中的沸石的含有率(混合比率)最好在60质量%~80质量%。由于沸石有助于NOx净化,因此沸石在蜂窝单元中的含量越多越好。但是,如果只增加沸石含量,则不得不减少其它构成物质(例如,无机纤维或无机粘结剂)的含量,这导致作为烧成体的蜂窝单元的强度降低。并且,如果为了增加沸石的含量而过度减小蜂窝单元的开口率,则在NOx净化反应中,废气的流通阻力可能变得过大。
沸石含有二次粒子,沸石的二次粒子的平均粒径最好在0.5μm~10μm的范围内。在此,二次粒子的平均粒径可以使用沸石颗粒进行测量,该沸石颗粒是通过烧成而制成蜂窝单元之前的、形成二次粒子的颗粒状的原料。
(无机粘结剂)
因为蜂窝单元是烧成物,蜂窝单元中无机粘结剂中的水分等被蒸腾,只残留固体成分,因此当提及到蜂窝单元中的无机粘结剂时,指该无机粘结剂中的固体成分。作为原料阶段的无机粘结剂,例如可以例举无机溶胶和粘土系粘结剂等。其中,作为无机溶胶,例如有氧化铝溶胶(alumina sol)、二氧化硅溶胶(silica sol)、二氧化钛溶胶(titania sol)、海泡石溶胶(sepiolite sol)、绿坡缕石溶胶(attapulgite sol)和水玻璃(liquid glass)等。作为粘土系粘结剂,例如有白土(terra alba)、高岭土(kaolin)、蒙脱土(montmonrillonite)、复链结构型粘土(multiple chain structureclay)(海泡石、绿坡缕石)等。这些无机溶胶和粘土系粘结剂可以使用一种或混合两种以上来使用。
(无机颗粒)
在本发明的蜂窝结构体中,蜂窝单元可以包含除沸石颗粒以外的无机颗粒。除沸石颗粒以外的无机颗粒有助于提高蜂窝单元的强度。在本发明的蜂窝结构体中,对包含在蜂窝单元中的除沸石颗粒以外的无机颗粒并没有特殊限制,例如可以使用氧化铝颗粒、二氧化硅颗粒、氧化锆颗粒、二氧化钛颗粒、二氧化铈颗粒、莫来石(mullite)颗粒以及这些物质的前体,最好使用氧化铝颗粒或氧化锆颗粒,可以适当地使用γ氧化铝颗粒或软水铝石(boehmite)。在此,可以包含一种或两种以上这些无机颗粒。
本发明的蜂窝结构体中的除沸石颗粒以外的无机颗粒,在烧成之前的原料无机颗粒的阶段存在羟基,正如可以在工业上利用的大多数无机化合物颗粒一样,不管是本发明的蜂窝结构体中的烧成之前的原料无机颗粒中,还是在原料沸石颗粒中,都存在羟基。在通过烧成而制成蜂窝单元时,这些羟基引起脱水缩合反应,具有加强颗粒间的结合的作用。尤其,以氧化铝颗粒为首的原料无机颗粒通过烧成时的脱水缩合反应而被牢固地结合。
在本发明的蜂窝结构体中,作为原料而使用的无机颗粒的二次粒子的平均粒径最好在沸石的二次粒子的平均粒径以下。尤其,无机颗粒的平均粒径最好为沸石的平均粒径的1/10~1/1。据此,可以通过平均粒径小的无机颗粒的结合力来提高蜂窝单元的强度。
包含在蜂窝单元中的除沸石以外的无机颗粒的含量最好在3~30质量%的范围内,优选在5~20质量%的范围内。当除沸石以外的无机颗粒的含量小于3质量%时,对提高强度所起的作用小。当除沸石以外的无机颗粒的含量超过30质量%时,由于有助于NOx净化的沸石的含量相对减少,因此导致NOx净化性能下降。
(无机纤维)
在本发明的蜂窝结构体中,可以在蜂窝单元中包含无机纤维。对包含在蜂窝单元中的无机纤维没有进行特殊限制,例如可以举出从氧化铝纤维、二氧化硅纤维、碳化硅纤维、硅铝纤维、玻璃纤维、钛酸钾纤维和硼酸铝纤维中选择的一种或两种以上无机纤维。这些无机纤维可以在原料阶段与沸石和无机粘结剂进行混合,经成型和烧成而成为蜂窝单元。无机纤维有助于提高蜂窝单元的强度。需要说明的是,作为无机纤维,除了长纤维以外,还可以包含诸如晶须(whisker)的短纤维。
无机纤维是具有大长径比(纤维长度/纤维直径)的无机材料,对弯曲强度的提高特别有效。无机纤维的长径比最好在2~1000的范围内,优选在5~800的范围内,更优选在10~500的范围内。当无机纤维的长径比小于2时,对增强蜂窝结构体的强度所起的作用小,当无机纤维的长径比超过1000时,在成型蜂窝单元时,有时容易在成型用模具中引起网眼堵塞等,导致成型性下降。并且,在进行挤压成型等成型时,有时会导致无机纤维被折断,长度出现不齐,从而蜂窝单元的强度下降。这里,当无机纤维的长径比分布不均时,可以取其平均值来表示。
包含在蜂窝单元中的无机纤维的含量最好在3质量%~50质量%的范围内,优选在3质量%~30质量%的范围内,更优选在5质量%~20质量%的范围内。当无机纤维的含量小于3质量%时,对提高蜂窝结构体的强度所起的作用会下降,当无机纤维的含量超过50质量%时,因为起到NOx净化作用的沸石的量相对减少,因此导致蜂窝结构体的NOx净化性能下降。
(催化剂成分)
在本发明的蜂窝结构体的蜂窝单元的孔道壁上可以进一步担载催化剂成分。对于催化剂成分没有特殊限制,例如可以是贵金属、碱金属化合物、碱土金属化合物等物质。作为贵金属,例如有从铂、钯和铑中选择的一种或两种以上物质;作为碱金属化合物,例如有从钾、钠等中选择的一种或两种以上化合物;作为碱土金属化合物,例如有钡等的化合物。
(蜂窝单元的制造)
下面对本发明的蜂窝结构体中的蜂窝单元的制造方法的一个例子进行说明。首先,制作作为主成分而包含上述沸石及无机粘结剂的原料浆,通过挤压成型等将其制作为蜂窝单元成型体。在该原料浆中,除了上述物质之外,还可以适当地包含上述无机纤维、无机颗粒、有机粘结剂、造孔剂、分散介质以及成型助剂等。对有机粘结剂没有进行特殊限制,例如可以是从甲基纤维素(methylcellulose)、羧甲基纤维素(carboxymethylcellulose)、羟乙基纤维素(hydroxyethylcellulose)、聚乙二醇(polyethylene glycol)、酚醛树脂(phenolic resin)和环氧树脂(epoxy resin)等中选择的一种或两种以上有机粘结剂。相对于原料整体的固体成分的合计100质量份,有机结合剂的混合量最好为1~10质量份。作为造孔剂可以使用丙烯酸系树脂、聚烯烃系树脂、聚苯乙烯系树脂、聚酯系树脂等树脂粉末。有机粘结剂和造孔剂对挤出成型和蜂窝单元的孔隙率的调整很重要,可以根据所期望的孔隙率来增减造孔剂。对分散介质没有进行特殊限制,例如可以有水、有机溶剂(甲苯等)和醇(甲醇等)等。对成型助剂没有进行特殊限制,例如可以有乙二醇、糊精(dextrin)、脂肪酸皂(fatty acid soap)及多元醇(polyalcohol)等。
对于原料浆没有特殊限制,最好进行混合和混炼,例如可以使用搅拌机(mixer)或磨碎机(attritor)等进行混合,也可以使用捏合机(kneader)等充分地进行混炼。对原料浆进行成型的方法并没有特殊限制,例如最好通过挤压成型等,将原料浆成型为具有预定的孔道密度和开口率的形状。
然后,对所得到的蜂窝单元成型体进行干燥。对用于干燥的干燥装置没有进行特殊限制,可以使用微波干燥装置、热风干燥装置、高频烘干装置、减压干燥装置、真空干燥装置和冷冻干燥装置等。对进行了干燥的成型体最好进行脱脂。对脱脂条件没有进行特殊限制,根据成型体中所包含的有机物的种类和量来适当地进行选择,最好在约400℃脱脂2小时左右。并且,对进行干燥、脱脂后的蜂窝单元成型体进行烧成。对烧成条件没有进行特殊限制,最好在600℃~1200℃的范围,优选在600℃~1000℃的范围。当烧成温度小于600℃时,有时不能进行沸石等的烧结,从而不能加强蜂窝单元的强度。当烧成温度大于1200℃时,有时会破坏沸石结晶或过度烧结而不能制作具有适当的孔隙率的多孔质的蜂窝单元。
(蜂窝结构体)
本发明的蜂窝结构体具有一个或多个蜂窝单元。在具有多个蜂窝单元的蜂窝结构体中,配置的各蜂窝单元以其中的孔道的贯通孔朝向相同的方向的方式进行堆积。图1(a)、1(b)的立体图表示蜂窝结构体的例子。图1(a)中示出的蜂窝结构体1通过粘结材料5结合多个蜂窝单元2而构成。各蜂窝单元2中,孔道3以沿着蜂窝单元的长度方向平行排列的方式形成。图1(b)中示出蜂窝结构体1是由一个蜂窝单元2构成的例子。如此,蜂窝结构体1可以由一个蜂窝单元2构成,也可以由多个蜂窝单元2构成。在此,为了保持强度,在蜂窝结构体1的侧面(指平行于孔道的长度方向的面,下面仅称为侧面)最好覆盖涂布材料层6。
虽然图1(a)、1(b)中示出的蜂窝结构体的截面为圆形,但是在本发明的蜂窝结构体中,截面可以形成为正方形、长方形、六边形和扇形等。蜂窝结构体的截面可以根据使用状态来决定,但是在蜂窝单元的长度方向上,最好形成为相同的截面面积。并且,可以对蜂窝结构体的外周进行切削加工,也可以不进行切削加工。
(蜂窝结构体的制造)
第一,说明由多个蜂窝单元构成的如图1(a)所示的蜂窝结构体的制造方法。在由上述方法所得到的蜂窝单元的侧面涂布粘结材料后,依次进行结合。对所结合的蜂窝单元的接合体进行干燥固化,制造出预定大小的蜂窝单元接合体。对蜂窝单元接合体的侧面进行切削加工而制作为所期望的形状。
对粘结材料没有进行特殊限制,例如可以使用在无机粘结剂中混合无机颗粒的物质、在无机粘结剂中混合无机纤维的物质或在无机粘结剂中混合无机颗粒和无机纤维的物质等。并且,还可以在这些粘结材料中添加有机粘结剂。对有机粘结剂没有进行特殊限制,例如可以是从聚乙烯醇(polyvinyl alcohol)、甲基纤维素(methylcellulose)、乙基纤维素(ethylcellulose)和羧甲基纤维素(carboxymethylcellulose)等中选择的一种或两种以上有机粘结剂。
将多个蜂窝单元接合起来的粘结材料层的厚度最好在0.5mm~2mm的范围内。所接合的蜂窝单元的数量可以根据蜂窝结构体的大小而适当地确定。并且,通过粘结材料接合蜂窝单元而成的蜂窝接合体,可以根据蜂窝结构体的形状适当地进行切削、研磨等。
在蜂窝结构体的与孔道的贯通孔平行的外周面(侧面)涂布涂布材料后进行干燥固化,以形成涂布材料层。通过该工序,可以保护蜂窝结构体的外周面并提高强度。对涂布材料没有进行特殊限制,可以使用与粘结材料相同的材料,也可以使用不同的材料。并且,涂布材料可以采用与粘结材料相同的混合比,也可以采用不同的混合比。对涂布材料层的厚度没有进行特殊限制,最好在0.1mm~2mm的范围内。在蜂窝结构体中,可以形成涂布材料层,也可以不形成涂布材料层。
在由粘结材料接合多个蜂窝单元之后,最好进行加热处理。当设有涂布材料层时,最好在形成粘结材料层和涂布材料层之后进行脱脂处理。当粘结材料层和涂布材料层中包含有机粘结剂等时,通过脱脂处理可以脱脂而除去有机粘结剂。脱脂条件可以根据所包含的有机物种类和量来适当地确定,最好为约700℃、2个小时左右。
作为蜂窝结构体的一个例子,图1(a)中示出接合了垂直于贯通孔的长度方向的截面为正方形且形成为长方体的多个蜂窝单元2并将外形形成为圆柱状的蜂窝结构体1的示意图。在该蜂窝结构体1中,通过粘结材料5结合蜂窝单元2,然后将外周部切削成圆柱状之后,由涂布材料形成了涂布材料层6。在此,例如可以制作截面为扇形和正方形的形状的蜂窝单元,然后通过接合这些蜂窝单元而形成预定形状的蜂窝结构体,以此可以省略切削、研磨工序。
第二,说明由一个蜂窝单元构成的如图1(b)所示的蜂窝结构体的制造方法。图1(b)的蜂窝结构体除了由蜂窝单元构成之外,可以与图1(a)的蜂窝结构体同样地制作。可以采用在上述提及的由多个蜂窝单元构成的蜂窝结构体的制造方法中说明的方法相同的方法,可以根据需要对蜂窝单元进行切削、研磨等形成为圆柱状,然后使用与上述提及的粘结材料相同的粘结材料,在其侧面形成涂布材料层,再进行脱脂。据此,可以制作出如图1(b)所示的由一个蜂窝单元构成的蜂窝结构体。
[实施例]
下面说明在各种条件下制作的蜂窝结构体的实施例,但本发明并不限定于这些实施例。
(实施例1)
(蜂窝单元的制作)
在成型用混合组合物制作用容器中投入并混合2400质量份的Fe离子交换的β型沸石(Fe离子交换3质量%、二氧化硅/氧化铝之比40、比表面积110m2/g、平均粒径2μm(平均粒径为二次粒子的平均粒径,下同))、2600质量份的氧化铝溶胶(固体浓度为20质量%)、780质量份的氧化铝纤维(平均纤维直径6μm、平均纤维长度100μm)、作为有机粘结剂的410质量份的甲基纤维素。并且,添加少量的增塑剂、表面活性剂以及润滑剂,一边加水调整粘度,一边进行混合、混炼,得到成型用混合组合物。然后,通过挤压成型机对该混合组合物进行挤压成型,得到蜂窝成型体。
使用微波干燥装置及热风干燥装置对所得到的蜂窝成型体进行充分干燥,在400℃条件下进行脱脂2小时。然后,在700℃保持2小时进行烧成,制作出孔道形状为四边形(正方形)、方柱状蜂窝单元(截面35mm×35mm×长度150mm)。所制作的方柱状蜂窝单元的开口率为65%,孔道密度为63个/cm2,壁厚为0.25mm,整个气孔的孔隙率为38%,微孔的孔隙率为12.0%(相对于整个气孔的孔隙率的比例为32%),大孔的孔隙率为21.5%(相对于整个气孔的孔隙率的比例为57%),蜂窝单元的单位表观体积的沸石含量为236g/L。在此,Fe离子交换型沸石使用了将沸石颗粒浸渍在硝酸铁铵溶液(ferric nitrate ammonium solution)中而进行了Fe离子交换的物质。离子交换量使用ICPS-8100(岛津制作所制作)进行IPC发光分析来求出。
表1中分别示出了制作蜂窝单元时所使用的沸石颗粒的种类和粒径、烧成温度、蜂窝单元的沸石含量、以及整个气孔的孔隙率、微孔的孔隙率及其比例、大孔的孔隙率及其比例。

(蜂窝结构体的制作)
将粘结材料制成浆后,将其涂布到所制作的方柱状蜂窝单元(截面35mm×35mm×长度150mm)的侧面,使得干燥后的粘结材料层的厚度为1mm,然后在120℃进行干燥固化而制作出将蜂窝单元接合为使孔道的长度方向相互平行的四排四列的大致长方体的蜂窝接合体。粘结材料浆通过混合29质量%的氧化铝颗粒(平均粒径2μm)、7质量%的氧化铝纤维(平均纤维径6μm、平均纤维长度100μm)、34质量%的氧化铝溶胶(固体浓度20质量%)、5质量%的羧甲基纤维素以及25质量%的水来制作。
使用金刚石切割器将所制作的蜂窝接合体的侧面切割成圆柱形状,然后在形成为圆柱状的侧壁部分的外表面上,将上述粘结材料浆作为涂布材料(与粘结材料相同的物质)浆而涂布0.5mm的厚度,制作了与图1(a)中示出的蜂窝结构体相同形状的圆柱状蜂窝接合体。在120℃下,对该圆柱状蜂窝接合体进行干燥固化之后,在700℃保持2小时对粘结材料层和涂布材料进行脱脂,得到了圆柱状(直径约144mm×长度150mm)的蜂窝结构体。
(实施例2~5、比较例1、2)
如表1所示,在实施例2的蜂窝单元的制作条件中,除了对沸石种类及其二次粒子径、以及烧成温度进行变更之外,其它条件与实施例1相同,以此制作实施例2~5、比较例1、2的蜂窝单元。表1中示出了所制作的蜂窝单元的沸石含量、整个孔隙率、微孔的孔隙率及其比例、大孔的孔隙率及其比例。图3的曲线是将形成在实施例3中蜂窝单元的孔道壁上的气孔的气孔结构作为本发明的一例而示出的。在图3的曲线中,横轴表示气孔径(μm)、纵轴表示log微分气孔容积(mL/g)。
(NOx净化率的测定)
从实施例1~5、比较例1、2中制作的蜂窝单元中截取直径为30mm、长度为50mm的圆柱状蜂窝而作为蜂窝结构体的评价用样本。对所得到的评价用样本在700℃加热48小时而进行模拟老化之后,将其保持在300℃,将具有表3中示出的组成成分的汽车废气的模拟气体加热到300℃后,以SV(空间速度)=35000导入该模拟气体,然后将通过评价用样本之前和之后的模拟气体中的NO成分的减少率(%)作为NOx净化率(%)进行测定。表1中示出了NOx净化率(%)的结果。
[表2]

  气体  组成  N2  余量  CO2  5体积%  O2  14体积%  NO  350ppm  NH3  350ppm  H2O  5体积%  SV  35000/小时

(评价结果)
从表1中示出的结果可知,实施例1~5的评价用样本的NOx净化率为84%~98%,而相对于该NOx净化率,微孔或大孔超过本发明的特定范围的比较例1、2的评价用样本的NOx净化率仅为70%、74%。
由此可知,实施例1~5中示出的蜂窝单元适合用于汽车废气的净化。
[工业实用性]
由于本发明的蜂窝结构体的NOx净化率高,因此可以作为以小型轻量化为目标的汽车废气净化用的催化剂来使用。尤其,适合作为使用沸石催化剂的SCR系统(例如,使用氨的废气净化系统)用的NOx净化催化剂。

蜂窝结构体.pdf_第1页
第1页 / 共24页
蜂窝结构体.pdf_第2页
第2页 / 共24页
蜂窝结构体.pdf_第3页
第3页 / 共24页
点击查看更多>>
资源描述

《蜂窝结构体.pdf》由会员分享,可在线阅读,更多相关《蜂窝结构体.pdf(24页珍藏版)》请在专利查询网上搜索。

本发明提供一种蜂窝结构体,其具有蜂窝单元,该蜂窝单元包含沸石和无机粘结剂,且具有沿着蜂窝单元的长度方向从一侧端面延伸至另一侧端面的多个孔道被孔道壁隔开而形成的形状,所述蜂窝结构体的特征在于,所述蜂窝单元的单位表观体积的沸石含量为230g/L以上,所述孔道壁的整个气孔的孔隙率为40以下,所述孔道壁的气孔径在0.005m0.02m的范围的气孔的孔隙率为5以上,所述孔道壁的气孔径在0.05m0.2m的范。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 作业;运输 > 一般的物理或化学的方法或装置


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1