用于制氢的超临界方法、反应器和系统.pdf

上传人:00062****4422 文档编号:814697 上传时间:2018-03-13 格式:PDF 页数:23 大小:958.48KB
返回 下载 相关 举报
摘要
申请专利号:

CN200780021165.5

申请日:

2007.04.09

公开号:

CN101528336A

公开日:

2009.09.09

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效|||公开

IPC分类号:

B01J8/00

主分类号:

B01J8/00

申请人:

查特股份有限公司

发明人:

贾志军; 劳伦斯·A·斯特赖克; 道格拉斯·E·德克尔

地址:

美国俄亥俄州

优先权:

2006.4.7 US 60/790,137

专利代理机构:

北京市柳沈律师事务所

代理人:

巫肖南

PDF下载: PDF下载
内容摘要

本发明提供了一种用于制氢的反应器、系统和方法,其特征在于该反应器含有加热流通道、氢通道和位于二者之间的反应通道。传热片分隔加热流通道和反应通道,且多孔支撑板分隔反应通道和氢通道。由钯、钒、铜或其合金构成的膜覆盖了多孔支撑板。加热流通道接收加热流,从而通过传热片向反应通道供热。催化剂位于反应通道中,且反应通道接收包含超临界水和烃燃料的混合物的反应流,由此氢在反应通道内产生并通过膜进入氢通道中。或者,可以在不同于该反应器的分离装置内经由膜或变压吸附来实现氢分离。

权利要求书

1.  一种用于制氢的反应器,其包括:
a)外壳,其包含加热流通道、氢通道和位于二者之间的反应通道;
b)传热片,其分隔加热流通道和反应通道;
c)多孔支撑板,其分隔反应通道和氢通道;
d)膜,其位于反应通道和氢通道之间;
e)所述加热流通道适于接收加热流,从而通过传热片向反应通道供热;和
f)催化剂,其位于所述反应通道中,且所述反应通道适于接收包含超临界水和烃燃料的混合物的反应流,由此氢在反应通道中产生并通过膜进入所述氢通道。

2.
  如权利要求1所述的反应器,其中所述催化剂包括位于所述传热片上的涂层。

3.
  如权利要求1所述的反应器,其中所述催化剂是填充床催化剂。

4.
  如权利要求3所述的反应器,其中所述催化剂是载体上的催化剂。

5.
  如权利要求3所述的反应器,其中所述催化剂是无载体催化剂。

6.
  如权利要求1所述的反应器,其中所述反应通道垂直于所述加热流通道和所述氢通道。

7.
  如权利要求1所述的反应器,其中所述膜固定在所述多孔板一侧以使其位于所述反应通道中。

8.
  如权利要求1所述的反应器,其中所述膜选自钯、钒、铜及其合金。

9.
  如权利要求1所述的反应器,其中所述烃燃料是选自天然气、天然气组分及其它气态烃的气体。

10.
  如权利要求1所述的反应器,其中所述烃燃料是选自汽油、航空煤油、柴油、原油及其它液体燃料的液体。

11.
  如权利要求1所述的反应器,其中所述烃燃料是选自煤和生物质的固体。

12.
  如权利要求1所述的反应器、其中所述催化剂选自镍、铂、钌、铑、铜及其合金。

13.
  如权利要求1所述的反应器,其中所述加热流通道包含燃烧催化剂,由此在接收到加热流时在其中发生燃烧。

14.
  如权利要求1所述的反应器,其中所述加热流通道包括辅助电加热设备。

15.
  一种用于制氢的系统,其包括:
a)反应器,其包括适于接收反应流的反应通道,所述反应流包含超临界水和烃燃料的混合物;
b)催化剂,其位于所述反应通道中,由此当所述混合物与该催化剂接触时,在所述反应通道中通过反应产生含氢产物流;和
c)分离器,其接收所述产物流并从其中分离氢。

16.
  如权利要求15所述的系统,其中所述反应器包括通过传热片来与所述反应通道分隔的加热流通道,所述加热流通道适于接收加热流,从而通过所述传热片向所述反应通道供热。

17.
  如权利要求16所述的系统,其中所述加热流通道包括燃烧催化剂,由此在接收到加热流时在其中发生燃烧。

18.
  如权利要求17所述的系统,其中所述分离器产生含烃的剩余流,且所述剩余流用作加热流。

19.
  如权利要求16所述的系统,其中所述催化剂包括位于所述传热片上的涂层。

20.
  如权利要求16所述的系统,其中所述加热流通道包括辅助电加热设备。

21.
  如权利要求15所述的系统,其中所述分离器包括位于所述反应器内部的氢通道和分隔所述氢通道与所述反应通道的多孔板,所述所述多孔板用膜覆盖,由此来自所述产物流的氢通过所述膜进入所述氢通道。

22.
  如权利要求15所述的系统,其中所述分离器是独立于所述反应器的部件。

23.
  如权利要求22所述的系统,其中所述分离器包括用于分离氢的膜。

24.
  如权利要求22所述的系统,其中所述分离器是变压吸附装置,且使用变压吸附来分离氢。

25.
  如权利要求22所述的系统,其中所述分离器产生富含CO2的气流,且所述系统进一步包括接收该富含CO2的气流的气体分离器,由此产生气流和水流。

26.
  如权利要求15所述的系统,其进一步包括脱硫装置,该脱硫装置具有适于接收反应流的进口和与所述反应器连通的出口,由此向所述反应器提供脱硫的反应流。

27.
  如权利要求26所述的系统,其中所述脱硫装置包括除硫段。

28.
  如权利要求15所述的系统,其中所述反应器是紧凑型反应器。

29.
  如权利要求15所述的系统,其中所述反应器是管式反应器。

30.
  如权利要求29所述的系统,其进一步包括限定内腔的外壳,且其中所述管式反应器位于所述外壳的内腔内,所述内腔适于接收加热流以便向所述管式反应器供热。

31.
  如权利要求30所述的系统,其中所述外壳的内腔包括燃烧催化剂,由此在接收到加热流时在其中发生燃烧。

32.
  如权利要求31所述的系统,其中所述分离器产生含烃的剩余流,且所述剩余流用作加热流。

33.
  一种用于制氢的方法,其包括如下步骤:
a)将水加热到超临界状态;
b)将所述超临界水与烃燃料混合,形成混合物;
c)在反应器中使所述混合物与催化剂和热接触,由此发生反应并产生含氢的产物流;和
d)由所述产物流分离氢。

34.
  如权利要求33所述的方法,其进一步包含在步骤c)所述的使所述混合物与所述催化剂接触之前的将所述混合物脱硫的步骤。

35.
  如权利要求33所述的方法,其中d)步骤也在步骤c)所述的反应器中进行。

36.
  如权利要求33所述的方法,其中步骤d)使用膜来进行。

37.
  如权利要求36所述的方法,其中所述膜选自钯、钒、铜及其其合金。

38.
  如权利要求33所述的方法,其中步骤d)使用变压吸附来进行。

39.
  如权利要求33所述的方法,其中所述烃燃料是选自天然气,天然气组分及其它气态烃的气体。

40.
  如权利要求33所述的方法,其中所述烃燃料是选自汽油、航空煤油、柴油、原油及其它液体燃料的液体。

41.
  如权利要求33所述的方法,其中所述烃燃料是选自煤和生物质的固体。

42.
  如权利要求33所述的方法,其中所述催化剂选自镍、铂、钌、铷、铜及其合金。

43.
  如权利要求33所述的方法,其中所述反应器是紧凑型反应器。

44.
  如权利要求33所述的方法,其中所述反应器是管式反应器。

45.
  如权利要求33所述的方法,其中所述热通过所述反应器加热流通道中加热流和燃烧催化剂的燃烧来供应。

说明书

用于制氢的超临界方法、反应器和系统
优先权要求
本申请要求于2006年4月7日提交的美国临时专利申请第60/790,137号。
技术领域
本发明大体上涉及制氢,更具体的说,涉及一种利用超临界水和烃源的制氢方法及相关的反应器和系统。
背景技术
氢是多种方法和多种技术所需的原料。这样的方法和技术的例子包括氢化、合成氨和燃料电池。
水是可以由其获得氢的最普通的物质。然而,甲烷蒸汽重整(MSR)仍然是经济学上可操作且商业上可行的仅有的由水制氢的现有技术。MSR方法需要甲烷或者天然气源,该方法昂贵且复杂。对于MSR方法,高温(例如800℃以上)时的温度控制和催化剂失活都是技术上的困难领域。因此需要经济上可行的可以使用不同于MSR方法的工艺来由水制氢的系统和方法。
经由燃料电池通过电化学来从氢提取能量是一种特别干净和有效的能源提供方法。因此,积极开发用于各种应用的燃料电池。燃料汽车(powering automobiles)就是这种应用的一个例子。在美国,政府对车辆有害燃料最大允许排放量的要求迫使汽车生产者设计以不同于汽油和柴油燃料的燃料运行的车辆或者考虑替代引擎如电动引擎。这导致使用以纯氢运行的燃料电池的车辆设计。当纯氢经由汽车中的燃料电池与氧混合时,产生水、热和电,并且从理想上来说没有排放对空气或环境有害的其它化学物质。
另外,以氢运行的燃料电池系统可以是紧凑(compact)和轻质的(lightweight),并且没有主要的活动件。因为燃料电池没有活动件,在理想条件下其可以实现极高的可靠性和尽可能少的停机时间。因此,燃料电池也可用作遥远距离的场所中的能源,例如在宇宙飞船、遥远地区的气象站、大型公园、效外地区中和在某些军队应用中。
电流燃料电池技术需要高纯度的氢来成功运行。政府已经指示,燃料电池车辆依靠用于加燃料的固定式氢分配站,但是尚未建立用于氢分配的基本设施。而且,在尝试开发用于其它汽车用途的车载制氢系统的过程中已经遭遇了许多技术困难。因此,需要可以在汽车上车载使用或在固定式设备中使用的简单、轻质和紧凑的制氢系统和方法。
附图说明
图1是说明本发明一个实施方式中的紧凑型反应器的内部构造的示意图。
图2是说明图1的紧凑型反应器的部分外观的示意图。
图3是说明本发明第二实施方式中的紧凑型反应器和分离器的示意图;
图4是说明本发明第三实施方式中的管式或者通道式反应器、内腔(chamber)和分离器的示意图;
图5是说明对于不同停留时间来说每摩尔甲苯得到的氢摩尔数的图表;
图6是说明温度对气态产物产率的影响的图表;
图7是说明根据本发明构造的制氢系统的流程图。
具体实施方式
在优选实施方式中,本发明使用了超临界方法和用于处理超临界水与烃燃料的混合物以制氢的反应器。生成的氢的分离优选在反应器中通过膜来完成,所述膜例如钯、钒、铜或其合金(合金是两种或更多种元素的均匀混合物,所述两种或更多种元素中的至少一种为金属,且所得材料具有金属特性)或聚合物。在本发明的另一种可选实施方式中,分离可以通过独立于反应器的分离器装置来进行,该分离器装置可以使用用于氢收集的膜或变压吸附(PSA)工艺。
本发明的反应器的一个实施方式的一部分的示意图在图1中的10处大致标明。如图1所示,该反应器的特征在于多个反应通道12a-12d。虽然在图1中图示了四个反应通道,但该反应器也可以具有更多或更少个反应通道,甚至具有一个反应通道。各反应通道在一侧上被氢通道14a和14b限制(bounded),且在另一侧上被燃烧或加热流通道16a和16b限制。每个反应通道与加热流通道被优选由金属构成的传热片20a-20d分割,在所述传热片的反应侧涂有脱氢催化剂如镍、铂、钌、铑、铜或其它贵金属或者它们的合金。每个反应通道与氢通道被包含钯、钒或聚合物的膜22a-22d所分隔,所述膜22a-22d被固定在多孔支撑板24a-24d的反应侧上。
加热流通道可以通过热传递而从流经该加热流通道的热气流向反应通道供热。或者,如以下更详细地描述的,燃烧催化剂可以被选择性地填充或涂布在加热流通道中,如图1中在21处所图示的用于加热流通道16a的燃烧催化剂,由此燃烧反应在加热流通道中发生。由燃烧反应产生的热加热反应通道。第三种选择是通过在加热流通道中设置辅助电加热设备来加热流经该加热流通道的流体,例如,如图1中在23处以虚线描绘的用于加热流通道16b的电阻元件。
反应流通过其中使用了涂布催化剂的各反应通道。反应器的反应流进料部分由超临界水和烃燃料的混合物组成。水的临界点在压力为221bar时为374℃的温度,因此其是用于反应流进料部分的最低温度和压力。在每个反应通道的另一侧,支撑在多孔材料上的膜用于从反应流中提取氢。在各反应通道中生成的氢渗透通过膜,然后在位于该膜另一侧的氢通道之一中被收集。包含钯或钒的膜具有独特的性质,即排他性地允许氢渗透通过其结构,而其它气体的分子过大以致不能通过该膜。高纯度的氢可以在膜的另一侧被收集,而其它气体可被循环或在反应后由反应通道出口被单独收集。
如图1所示,可以包含蒸汽、惰性气体或液体的加热流流经各加热流通道,并向反应通道供热(Q)以用于超临界方法。如果燃烧催化剂被涂布、填充或以其它方式存在于加热流通道中,则空气或氧与烃混合的混合物可以用作加热流进料,从而在加热流通道中发生燃烧,并向反应通道供热Q。
图1简略地显示了没有管线的反应器10外部的一部分,接头或歧管如图2所示。该反应器的特征在于外壳30,其包含加热流通道16a、反应通道12b和氢通道14a[除了包括图1中所示的那些在内的反应器的其它通道之外]。尽管为容易解释起见,加热流通道、氢通道和反应通道在图1中示意性地图示为平行运行,但加热流通道和氢通道可以垂直于反应通道来运行,或者相对于反应通道以任何其它角度来运行。在图2的实施方式中,反应流的超临界进口和出口部分分别标为32和34(也参见图1的34)。加热流进口和出口部分分别标为36和38(也参见图1的36)。氢出口流在图1和2中均标为42。
对于燃烧催化剂存在于反应器30的加热流通道中的情况,反应流出口34可以作为加热流进口36,因为反应流出口包含剩余烃,或在燃烧电池之后出口流包含剩余氢。
适合用作图1和2的反应器的反应器在本领域中是已知的。这种反应器的例子是Chart Industries,Inc.的SHIMTEC反应器,其如美国专利6,510,894和6,695,044所述,上述美国专利的内容通过引用并入本文。这种紧凑型热交换反应器具有在使用超临界水的方法所需的高温和高压下运行的能力。另外,其提供了充足的热交换表面积以控制反应温度来增加氢的生产,还在小型装置中提供了充足的膜表面积以生产更多的氢。
虽然图1和2的实施方式的特征在于作为涂层或无载体催化剂的催化剂,但催化剂可以以各种可选形状来安装,例如含有在载体上的催化剂或无载体催化剂的填充床催化剂,在内腔的一个或多个壁上产生薄膜的洗涤涂布催化剂(wash coated catalyst)或初始湿润浸渍催化剂,或者无电镀催化剂。催化剂可以来自多种金属,包括但不限于镍、铂、钌、铑、铜或其合金。催化剂用于破坏反应流中的碳-碳键和碳-氢键。
虽然图1和2说明了可以在其中将氢从反应流中去除的紧凑型反应器,但另外可选地,从反应流中去除氢可以在反应器外进行。在反应器外部从流中分离氢的方法是公知的,且装置是市售的。例如,如图3所示,反应和分离可以在通过通路(例如管路、管道或导管)连接的两个独立装置52和54中进行以便简化反应器结构。在这种配置中,第一装置52可以是紧凑型反应器,例如在图1和2中图示和描述的紧凑型反应器,但是没有膜22a-22d和多孔板24a-24d(图1)和氢通道。反应器52在超临界条件中用于制氢,而分离器装置54用于从通过连接反应器和分离器的通路离开第一反应器的产物流56中分离氢。对于图1和2的实施方式,反应流进口部分58和反应器52的加热流通道可以具有374℃以上的温度和221bar以上的压力。
分离器54的条件取决于装置内的膜和支撑材料。例如,如果分离器54的特征在于通过涂有钯的多孔金属来分隔开的通道,如图1的22a-22d和24a-24d所示,则氢分离的操作温度可以低于374℃,且操作压力可以低于221bar。离开分离器54的氢流在图3中62处图示,而剩余流(其相当于图2中的反应流出口部分34)在64处图示。
在本发明的另一个可选实施方式中,分离器54可以使用变压吸附(PSA)来代替膜从产物流56中分离氢。PSA装置的结构是本领域公知的。根据氢的分子特征和对吸附材料的亲和力,PSA装置54在压力下从产物流气体56中分离氢。装置周期是:首先在高压下将氢吸附在吸附材料上,然后降低压力使氢解吸。氢收集发生在低压周期期间。使用两个吸附剂容器允许接近连续地制氢。当离开被减压的容器的气体用于对第二容器部分增压时,其也使得压力平衡。这带来显著的能源节约,并且是常见的工业做法。
对于图1和2的实施方式,对于燃烧催化剂存在于反应器52的加热流通道中的情况,剩余流64可用作加热流进料60,因为剩余流包含烃(以及剩余的氢)。
作为图3的紧凑型反应器52的另一种选择,可以使用如图4所示的管式或通道式反应器70。管式反应器70设置在外壳72,所述外壳72限定了内部腔室。该管式反应器用作反应通道,因此其特征在于位于其内表面上的催化剂涂层或被催化剂填充,且该管式反应器接收反应流进料74。外壳72的内腔接收加热流76,由此向管式反应器70中的反应通道供热。对于图3的实施方式,来自反应器的产物流78经过通路(例如管路、管道或导管)流入分离器82。对于图3的实施方式,氢流(hydrogen stream)离开分离器82(如在84处所示),而剩余流(其相当于图2中的反应流出料部分34)离开该分离器(如在86处所示)。对于图3的实施方式,分离器82可以使用用于氢分离的膜或使用PSA方法。
类似于图1-3的实施方式,对于燃烧催化剂存在于外壳72的内腔中的情况,剩余反应流86可以用作加热流进料76,因为剩余反应流包含烃(以及剩余的氢)。在这种条件下,燃烧在外壳72的内腔中发生,以便为管式反应器70的反应通道供热。
在上述所有本发明的实施方式中,可以通过改变反应器的操作条件来提高氢的生产。例如,提高进料压力将会提高氢分离的驱动力。因此,能够承受较高压力的反应器(例如图1-3的实施方式的紧凑型反应器)将有利于更高的氢产量。
应当注意,平衡移动发生在有利于氢生产的反应流中。更具体地说,当反应流中的氢浓度降低时,反应向产生更多氢的方向移动。而且,去除反应产物氢降低了必要的反应温度,这增加了反应器可接受的原料范围。这导致了反应器的更低成本、更好性能和更高的生产容易程度。
图1-4的实施方式提供多种独特的益处,包括有效且简单地生成高纯氢和生成可能颇有价值的副产物高压CO2(分别存在于图2的反应流出料部分34或图3和图的4产物流64和86中)。除了用作反应器的加热流之外,所产生的高压CO2可用于发电厂或者石油化工联合工厂应用。
图1-4的反应器的反应流进料部分由超临界水和烃燃料的混合物组成。如前所述,水的临界点在压力为221bar时为温度374℃。在此条件或者更高温度和/或更大压力下的水(超临界水)具有理想的特性,包括溶解液烃的能力的改变。烃燃料可以是任何烃基燃料,例如原油,液体燃料如航空煤油、柴油和汽油,天然气,液化天然气,煤,煤粉,木屑,废木料或生物质材料。其它短链(例如<C6)烃也可以在反应流中与水一起使用。对于反应流和加热流来说,温度可以是374℃以上,且压力可以为221bar。
超临界水具有对大多数有机液体、粉末或气体具有高溶解度的独特特征。通常不溶于水的烃燃料将会变得非常易溶于超临界水,从而允许燃料与水在金属催化剂类表面(例如镍、铂、钌、铑、铜或其合金)上反应的可能性。反应转化率达到100%且氢产率可以超过90%,显示了控制反应选择性的能力。细节可见如下实施例。
从这种超临界方法得到的两项最重要的益处是,当使用化石燃料作为进料时,额外的氢(例如,超过60%)来自水,并且与目前的化石燃料燃烧系统相比,生产相同量的氢时可以显著减少CO2的产生(例如,减少一半)。
使用不同燃料的本发明实施方式中的方法的实施例描述如下。
1.甲苯
甲苯作为模型液烃原料(model liquid hydrocarbon feedstock)可用于超临界方法。甲苯和水之间的反应如下:

该反应的理论产率是每100克甲苯产生39克氢,或者每摩尔甲苯产生18摩尔氢。
钌/氧化铝(5重量%载量,100m2/g-cat表面积)可用作一个反应器实施方式中的催化剂。这种催化剂可以从商业供应商处以未还原形式获得。反应器的反应通道各自用Ru/Al2O3催化剂填充。在各反应通道的每端放置两微米的玻璃熔块(two-micron frit),由此允许反应物自由通过,而催化剂则被保留。
来自在超临界水中经由Ru/Al2O3进行的甲苯重整的实验结果表明,数秒量级的停留时间得到良好的氢产率。例如,在使用由填充有催化剂的1/4英寸直径的OD Inconel管组成的催化剂实验反应器(catalytic test reactor)进行的实验中,1.9秒反应时间产生了65.5%H2、0.9%CO、5.3%CH4和28.3%CO2的气体混合物,氢产率为13.2,且甲苯完全转化为气体产物。
使用2重量%汽油和98重量%水的进料,在700到800℃的温度进行实验。对于所有实验,实验反应器压力保持在3500psi,且在催化剂中的停留时间保持在2秒。
温度影响如图5所示,其显示了对于不同停留时间每摩尔甲苯产生的氢摩尔数,条件为:Ru/Al2O3催化剂,800℃,3500psi,2.1重量%的甲苯/水,基于由系统的碳输出计算的甲烷当量。
较短的停留时间得到较好的氢产率,这显示反应是动力学控制的。反应产生很好的氢产率;其与每摩尔甲苯产生18摩尔氢的理论产率相差不太远。进一步调整反应条件并移到紧凑型反应器中可以提高产率。
2.辛烷
辛烷作为模型液烃原料可用于超临界方法。辛烷与水之间的反如下:

该反应的理论产率是每100克辛烷产生26.3克氢,或者每摩尔辛烷产生25摩尔氢。
相同的催化剂Ru/Al2O3在上述用于甲苯的相同实验反应器中用于实验。实验在750℃和3500psi进行。结果如表1所示。
表1.使用辛烷时的结果

结果表明,氢可以在超临界方法中有效地产生。产率达到70%,且辛烷完全转化,进一步调整反应条件和移到紧凑型反应器中可以提高产率。提高原料流中的辛烷浓度会降低氢产率。
3.模型汽油
汽油是包括烷烃、异链烷烃、环烷(环烷烃)及芳烃在内的多种烃的混合物,并且含有痕量硫化合物。硫的存在可能会影响催化剂的性能并降低氢产率。因此,为进行比较分析,通过将组成如表2所示的异辛烷、甲基环己烷和甲苯混合来制备无硫汽油。
表2.无硫汽油的组成

  组分  重量百分数  摩尔百分比  异辛烷  50%  45.4%  甲基环己烷  20%  20.6%  甲苯  30%  34.0%

以上所有化合物通常均存在于汽油中,并且代表异链烷烃、环烷和芳烃。
在超临界重整的过程中,这些烃与水之间的预期反应如下:



总反应为:

因此,每摩尔汽油理论上可以产生约21.8摩尔氢。或者100克汽油理论上可以产生43.6克氢。相同的催化剂Ru/Al2O3在上述用于甲苯的相同实验反应器中用于实验。
对于上述所有实验,得到了超过95%的碳进料/出料平衡。除CO2之外,如图6所示,少量碳作为CO和CH4产出,这显示了温度对气体产物产率的影响,条件是原料中含2重量%的汽油,反应器压力为3500psi,且在Ru/Al2O3催化剂床中停留时间为2秒。获得了17到19摩尔/摩尔-汽油的氢产率,这显示碳接近完全转化为二氧化碳。当温度从700℃升高到800℃时,氢产率稍微提高。气体产物分布和碳平衡的细节如表3所示。
表3.来自汽油的超临界水重整的气体产物的组成,反应条件为在3500psi下,在Ru/Al2O3催化剂床中的停留时间为2秒

进一步调整反应条件并移到紧凑型反应器中可以提高产率。
根据本发明的制氢系统如图7所示。在图7的系统中,从反应器产物流中分离氢在反应器外部进行。液烃燃料111和水121分别进料到泵110和120,以将其各自的压力从大约1bar提高到240bar。合适的泵在本领域是抑制的,并且可从例如加利福尼亚州Santa Clara的Agilent Technologies,Inc和宾夕法尼亚州Ivyland的Milton Roy获得。来自水循环流516的另一股水流进料到泵130,以将其压力提高到240bar,然后在混合器210中与新鲜水混合形成水流212。燃料流112和水流212均通过热交换器310,以经由与反应器产物流412的热交换而使器各自的温度提高到约600-800℃。热交换器之后的超临界水流312在混合器220中与燃料流314混合,形成进入反应器410的反应流222。
离开反应器410的产物流412被导入热交换器310,在这里其分别加热进入的燃料流112和水流和212,然后被导入氢分离器510中。氢作为产物从510处收集,并由该处分配(如512处所示)以用于燃料电池或氢化。气流514的其余部分经由压力释放过程进入气体分离器520。除氢之外的所有产物气体在离开分离器520后的气流522中收集。水流516离开分离器520,并经由泵130而循环回到混合器210中与新鲜水混合。在流程图中,能量经由进入动力泵110、120和130中的流113、123和133而输入到系统中,且流411通过燃烧来自燃料电池的剩余氢或来自气体分离器520的烃而为反应器410提供加热流(如图1-4中对于加热流通道中的燃烧所述般)。
另外,燃料脱硫方法可以选择性地包含在本发明的制氢方法中。该方法的目的是去除能够使反应器410中的催化剂中毒的硫化合物。超临界方法提供了一种当硫化合物可以由于在超临界条件下可实现的独特性能来进行分离时将燃料源脱硫的方法。更具体地说,无机硫化合物通常溶于水溶液,但在超临界条件下会形成沉淀。另外,一些有机硫化合物在超临界水条件中会形成悬浮物。这些行为中的任一种使得有可能通过形成可以在分离器装置(如图7中的600处简略图示般)中物理地分离的硫化合物的方法来从燃料中机械地分离硫。分离器装置600可以是例如特征为沸石结构的分子筛。当燃料/反应流(图7中的222)流经该装置时,分离器装置600吸附硫污染物。惯例是将两个分子筛平行并交替放置在生产流和再生流之间。当生产流通过一个筛子602时,另一个筛子(图7中的600)通过解吸来再生。
上述超临界方法和反应器在多种条件下和使用具有多种杂质的各种烃燃料源时工作良好。另外,所产生的氢燃料与生成的CO2量之比远高于烃燃料自身燃烧时,且操作该反应器和系统的能量成本低于所产生的能量数量。由于反应器中提供的巨大的热交换和分离表面积(其也有助于促进反应器中的氢分离),反应过程的停留时间也被缩短。
虽然已经显示和描述了本发明的实施方式,对本领域技术人员来说显而易见的是可以在不违反本发明精神的情况下做出变化和修改。

用于制氢的超临界方法、反应器和系统.pdf_第1页
第1页 / 共23页
用于制氢的超临界方法、反应器和系统.pdf_第2页
第2页 / 共23页
用于制氢的超临界方法、反应器和系统.pdf_第3页
第3页 / 共23页
点击查看更多>>
资源描述

《用于制氢的超临界方法、反应器和系统.pdf》由会员分享,可在线阅读,更多相关《用于制氢的超临界方法、反应器和系统.pdf(23页珍藏版)》请在专利查询网上搜索。

本发明提供了一种用于制氢的反应器、系统和方法,其特征在于该反应器含有加热流通道、氢通道和位于二者之间的反应通道。传热片分隔加热流通道和反应通道,且多孔支撑板分隔反应通道和氢通道。由钯、钒、铜或其合金构成的膜覆盖了多孔支撑板。加热流通道接收加热流,从而通过传热片向反应通道供热。催化剂位于反应通道中,且反应通道接收包含超临界水和烃燃料的混合物的反应流,由此氢在反应通道内产生并通过膜进入氢通道中。或者,。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 作业;运输 > 一般的物理或化学的方法或装置


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1