一种TIOSUB2/SUB纳米晶及其合成方法.pdf

上传人:Y94****206 文档编号:81292 上传时间:2018-01-23 格式:PDF 页数:17 大小:6.84MB
返回 下载 相关 举报
摘要
申请专利号:

CN201410411656.2

申请日:

2014.08.20

公开号:

CN104192896A

公开日:

2014.12.10

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效IPC(主分类):C01G 23/047申请日:20140820|||公开

IPC分类号:

C01G23/047; B82Y30/00(2011.01)I

主分类号:

C01G23/047

申请人:

北京师范大学; 北京师大科技园科技发展有限责任公司

发明人:

杨晓晶; 杜意恩; 杜德健

地址:

100875 北京市海淀区新街口外大街19号

优先权:

专利代理机构:

北京柏杉松知识产权代理事务所(普通合伙) 11413

代理人:

王春伟;刘继富

PDF下载: PDF下载
内容摘要

本发明实施例公开了一种TiO2纳米晶及其合成方法,其中,所述纳米晶为锐钛型TiO2纳米晶,其暴露晶面垂直于[111]晶带轴。该TiO2纳米晶纯度高、粒径分布均匀,可用于降解甲基蓝溶液和染料敏化太阳能电池中,与商业用的P25TiO2相比,催化性能和光伏打性能都得到了显著提高。

权利要求书

1.  一种TiO2纳米晶,其特征在于,所述纳米晶为锐钛型TiO2纳米晶,其暴露晶面垂直于[111]晶带轴。

2.
  如权利要求1所述的TiO2纳米晶,其特征在于,所述TiO2纳米晶的形貌为棒状。

3.
  如权利要求1或2所述的TiO2纳米晶的合成方法,其特征在于,包括以下步骤:
以四钛酸纳米片胶态悬浮液为前驱体,调节前驱体的pH值,使其pH值在1~4之间;将pH值在1~4之间的前驱体进行水热反应,得到TiO2纳米晶。

4.
  如权利要求3所述的方法,其特征在于:水热反应结束后分离所得产物,然后对所得产物进行洗涤、过滤及干燥。

5.
  如权利要求3所述的方法,其特征在于:将pH值在1~4之间的前驱体进行水热反应,具体为:
将pH值在1~4之间的前驱体在160℃~200℃微波辐射1小时~2小时;
或者
将pH值在1~4之间的前驱体加热至140℃~200℃后,保温18小时~30小时。

6.
  如权利要求3所述的方法,其特征在于:用第一盐酸溶液与第一四甲基氢氧化铵溶液调节前驱体的pH值,所述第一盐酸溶液的浓度为2mol/L~4mol/L;所述第一四甲基氢氧化铵溶液的浓度为0.5mol/L~2mol/L。

7.
  如权利要求3所述的方法,其特征在于,前驱体四钛酸纳米片胶态悬浮液的制备方法包括以下步骤:
a)合成层状四钛酸钾:以K2CO3和锐钛型TiO2为原料,将K2CO3和锐钛型TiO2混匀后,升温至800℃~1000℃,反应20小时~30小时,升温的速率为2℃/分钟~8℃/分钟,制得层状四钛酸钾,其中,所述K2CO3和锐钛型TiO2的摩尔比为(1~1.1):4;
b)合成四钛酸:将步骤a)中合成的四钛酸钾溶于第二盐酸溶液中,进行质子交换反应,反应结束后,分离所得产物,然后对所得产物进行洗涤、过滤及干燥, 得到四钛酸;
c)合成四钛酸纳米片胶态悬浮液:将步骤b)中合成的四钛酸加入到第二四甲基氢氧化铵溶液中,得到混合液,其中,四钛酸与四甲基氢氧化铵的质量比为1:(1.2~3);将所述混合液在90℃~110℃下反应20小时~30小时,反应结束后,将所得反应物与水混合并搅拌,静止后过滤,得到前驱体四钛酸纳米片胶态悬浮液。

8.
  如权利要求7所述的方法,其特征在于:在步骤a)中,将K2CO3和锐钛型TiO2混匀后,在升温至800℃~1000℃之前,还包括:充分研磨。

9.
  如权利要求7所述的方法,其特征在于:步骤b)中的第二盐酸溶液的浓度为0.7mol/L~2mol/L。

10.
  如权利要求7所述的方法,其特征在于:步骤b)中所述将步骤a)中合成的四钛酸钾溶于第二盐酸溶液中,进行质子交换反应,具体为:
将步骤a)中合成的四钛酸钾溶于第二盐酸溶液中,搅拌3~5天,并每天更换一次第二盐酸溶液。

说明书

一种TiO2纳米晶及其合成方法
技术领域
本发明涉及晶体材料领域,特别涉及一种TiO2纳米晶及其合成方法。
背景技术
1972年,日本Honda和Fujishima发现在紫外光照射下,TiO2(二氧化钛)纳米晶能够分解水生成H2和O2。自此以后,TiO2纳米晶引起了国内外研究者的高度重视和深入研究。
TiO2纳米晶具有高稳定性、无毒、对环境友好,以及价格低廉等显著特点,不仅广泛应用于光解水制氢,而且广泛应用于染料敏化太阳能电池、光催化降解毒性污染物、能量储存和转化、电致变色和传感领域等。由于TiO2纳米晶的暴露晶面强烈影响其光催化性能和光伏打性能,因此,合成具特定暴露晶面的锐钛型TiO2纳米晶是非常重要的。
近年来,报道了合成{101}、{010}、{001}结晶面的锐钛型TiO2纳米晶的一些方法和应用。然而,现有技术中并没有关于暴露结晶面垂直于[111]晶带轴的锐钛型TiO2的报道。
发明内容
本发明人出人预料地发现了具有高指数晶面的锐钛型TiO2纳米晶,并且发现其在催化降解有毒污染物、染料敏化太阳能电池等领域有着非常重要的用途。
为解决上述问题,本发明实施例公开了一种TiO2纳米晶及其合成方法。技术方案如下:
一种TiO2纳米晶,所述纳米晶为锐钛型TiO2纳米晶,其暴露晶面垂直于[111]晶带轴。
其中,所述TiO2纳米晶的形貌为棒状。
本发明同时提供了一种TiO2纳米晶的合成方法,可以包括以下步骤:
以四钛酸纳米片胶态悬浮液为前驱体,调节前驱体的pH值,使其pH值在1~4之间;将pH值在1~4之间的前驱体进行水热反应,得到TiO2纳米晶。
其中,水热反应结束后分离所得产物,然后对所得产物进行洗涤、过滤及干燥。
在本发明的一种优选实施方式中,将pH值在1~4之间的前驱体进行水热反应,具体为:
将pH值在1~4之间的前驱体在160℃~200℃微波辐射1小时~2小时;
或者
将pH值在1~4之间的前驱体加热至140℃~200℃后,保温18小时~30小时。
在本发明的一种优选实施方式中,用第一盐酸溶液与第一四甲基氢氧化铵溶液调节前驱体的pH值,所述第一盐酸溶液的浓度为2mol/L~4mol/L;所述第一四甲基氢氧化铵溶液的浓度为0.5mol/L~2mol/L。
在本发明的一种优选实施方式中,前驱体四钛酸纳米片胶态悬浮液的制备方法包括以下步骤:
a)合成层状四钛酸钾:以K2CO3和锐钛型TiO2为原料,将K2CO3和锐钛型TiO2混匀后,升温至800℃~1000℃,反应20小时~30小时,升温的速率为2℃/分钟~8℃/分钟,制得层状四钛酸钾,其中,所述K2CO3和锐钛型TiO2的摩尔比为(1~1.1):4;
b)合成四钛酸:将步骤a)中合成的四钛酸钾溶于第二盐酸溶液中,进行质子交换反应,反应结束后,分离所得产物,然后对所得产物进行洗涤、过滤及干燥,得到四钛酸;
c)合成四钛酸纳米片胶态悬浮液:将步骤b)中合成的四钛酸加入到第二四甲基氢氧化铵溶液中,得到混合液,其中,四钛酸与四甲基氢氧化铵的质量比为1:(1.2~3);将所述混合液在90℃~110℃下反应20小时~30小时,反应结束后,将所得反应物与水混合并搅拌,静止后过滤,得到前驱体四钛酸纳米片胶态悬浮液。
在本发明的一种优选实施方式中,在步骤a)中,将K2CO3和锐钛型TiO2混匀 后,在升温至800℃~1000℃之前,还包括:充分研磨。
在本发明的一种优选实施方式中,步骤b)中的第二盐酸溶液的浓度为0.7mol/L~2mol/L。
在本发明的一种优选实施方式中,步骤b)中所述将步骤a)中合成的四钛酸钾溶于第二盐酸溶液中,进行质子交换反应,具体为:
将步骤a)中合成的四钛酸钾溶于第二盐酸溶液中,搅拌3~5天,并每天更换一次第二盐酸溶液。
本发明合成了暴露晶面垂直于[111]晶带轴的锐钛型TiO2纳米晶,该TiO2纳米晶纯度高、粒径分布均匀,可用于降解甲基蓝溶液和染料敏化太阳能电池中,与商业用的P25TiO2相比,催化性能和光伏打性能都得到了显著提高。同时,本发明首次为优先暴露晶面垂直于[111]晶带轴的锐钛型TiO2纳米晶的合成提供了一种方法,这种方法成本低、无污染、制备工艺简单、可控性强、生产周期短、可重复性好,适用于工业化生产。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为实施例1步骤a)中合成的四钛酸钾(K2Ti4O9)、步骤b)中合成的四钛酸(H2Ti4O9·0.25H2O)、步骤c)中合成的四甲基氨离子(TMA+)插入的四钛酸(TMA+-intercalated H2Ti4O9)及四钛酸纳米片胶态悬浮液中的剥离的纳米带状的四钛酸(Nanoribbon)的XRD谱图;
图2为实施例2、实施例4、实施例5、实施例6、实施例7所合成的锐钛型TiO2纳米晶的XRD谱图,其中,(a)为实施例4所合成的锐钛型TiO2纳米晶的XRD谱图;(b)为实施例5所合成的锐钛型TiO2纳米晶的XRD谱图;(c)为实施例6所合成的锐钛型TiO2纳米晶的XRD谱图;(d)为实施例7所合成的锐钛型TiO2纳米晶的XRD谱图;(e)为实施例2所合成的锐钛型TiO2纳米晶的XRD谱图;
图3为实施例2、实施例4、实施例5、实施例6合成的锐钛型TiO2纳米晶的扫描电镜图,其中,(a)为实施例4合成的TiO2纳米晶的扫描电镜图;(b)为实施例5合成的TiO2纳米晶的扫描电镜图;(c)为实施例6合成的TiO2纳米晶的扫描电镜图;(d)为实施例2合成的TiO2纳米晶的扫描电镜图;
图4为实施例4、实施例6、实施例7合成的锐钛型TiO2纳米晶的扫描电镜图,其中,(a)和(b)为实施例4合成的TiO2纳米晶的扫描电镜图,(c)和(d)为实施例6合成的TiO2纳米晶的扫描电镜图,(e)和(f)为实施例7合成的TiO2纳米晶的扫描电镜图;
图5为实施例5、实施例2合成的锐钛型TiO2纳米晶的扫描电镜图,其中,(a)为实施例5合成的TiO2纳米晶的扫描电镜图;(b)和(c)为实施例2合成的TiO2纳米晶的扫描电镜图;
图6为实施例2合成的TiO2纳米晶的降解效率与光照时间特性曲线;
图7为实施例5合成的TiO2纳米晶的降解效率与光照时间特性曲线;
图8为实施例2合成的TiO2纳米晶的光电流-电压特征曲线图;
图9为实施例5合成的TiO2纳米晶的光电流-电压特征曲线图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
首先,需要说明的是,本发明实施例在合成TiO2纳米晶的过程中,所使用的水优选为去离子水或蒸馏水。
进一步需要说明的是,本发明实施例采用的所有试剂,对其来源没有特殊的限制,在市场上购得或自制均可;例如:
K2CO3:规格AR,天津市科密欧化学试剂开发公司购得;
锐钛型TiO2:规格AR,天津市科密欧化学试剂开发公司购得;
盐酸:规格36.5%(质量分数),天津市科密欧化学试剂开发公司购得;
四甲基氢氧化铵(TMAOH):规格AR,天津市科密欧化学试剂开发公司购得。
还需要说明的是,本发明实施例在合成TiO2纳米晶的过程中所采用的实验设备,均为本领域通用的设备,没有特殊的要求,均可在市场上购得。发明人相信,本领域技术人员完全可以通过对本发明技术方案的描述来选择适当的实验设备,本发明在此不对实验设备进行具体限制与说明。
一、TiO2纳米晶的合成
实施例1
a)合成层状四钛酸钾:按照物质的量之比为1:4,称量13.821g(0.1mol)K2CO3和31.960g(0.4mol)锐钛型TiO2放置到玛瑙研钵中,混匀后,充分研磨。然后将其转移到刚玉坩埚中,放入马弗炉中于900℃加热24小时,升温速率为5℃/分钟;制得层状纤维状四钛酸钾(K2Ti4O9)。
b)合成四钛酸:称取10.0g步骤a)中合成的K2Ti4O9,加入盛有1000mL 1mol/L第二盐酸溶液的大烧杯中,室温下磁力搅拌三天,每天更换一次第二盐酸溶液,使K2Ti4O9完全转化为H2Ti4O9。三次质子交换反应后,产物通过离心分离,用去离子水洗涤4次,重复离心三次,最后将所得到的样品冷冻干燥,得到H2Ti4O9·0.25H2O。
c)合成四钛酸纳米片胶态悬浮液:称取3.5g(约0.01mol)步骤b)中合成的H2Ti4O9·0.25H2O,加入到容积为70mL的四聚乙烯反应釜中,再向其中加入40g(质量分数为12.5%)第二四甲基氢氧化铵溶液,密封后,放入高温旋转反应炉中于100℃加热24小时。待冷却至室温后,将反应釜中的产物转移到烧杯中,再加入360mL去离子水,在磁力搅拌器上室温搅拌24小时后,再静止24小时,然后抽滤,得到四钛酸纳米片胶态悬浮液,即前驱体。
d)合成TiO2纳米晶:用3mol/L的第一盐酸溶液和1mol/L的第一四甲基氢氧化铵溶液调节步骤c)中合成的四钛酸纳米片胶态悬浮液的pH值为1.5。取40mL调节好pH值的纳米片悬浮液加入到内部容积为80mL的四聚乙烯反应釜中,放入微波炉中在180℃下微波辐射1.5小时。冷却至室温后,离心分离、用去离子水洗涤4次,然后冷冻干燥。得到暴露晶面垂直于[111]晶带轴的TiO2纳米 晶,其形貌为棒状。
实施例2
a)合成层状四钛酸钾:按照物质的量之比为1.05:4,称量14.512g(0.105mol)K2CO3和31.960g(0.4mol)锐钛型TiO2放置到玛瑙研钵中,混匀后,充分研磨。然后将其转移到刚玉坩埚中,放入马弗炉中于800℃加热30小时,升温速率为2℃/分钟;制得层状纤维状四钛酸钾(K2Ti4O9)。
b)合成四钛酸:称取10.0g步骤a)中合成的K2Ti4O9,加入盛有1000mL0.7mol/L第二盐酸溶液的大烧杯中,室温下磁力搅拌三天,每天更换一次第二盐酸溶液,使K2Ti4O9完全转化为H2Ti4O9。三次质子交换反应后,产物通过离心分离,用去离子水洗涤4次,重复离心三次,最后将所得到的样品冷冻干燥,得到H2Ti4O9·1.4H2O。
c)合成四钛酸纳米片胶态悬浮液:称取3.5g(约0.01mol)步骤b)中合成的H2Ti4O9·H2O,加入到容积为70mL的四聚乙烯反应釜中,再向其中加入40g(质量分数为25%)第二四甲基氢氧化铵溶液,密封后,放入高温旋转反应炉中于90℃加热30小时。待冷却至室温后,将反应釜中的产物转移到烧杯中,再加入360mL去离子水,在磁力搅拌器上室温搅拌24小时后,再静止24小时,然后抽滤,得到四钛酸纳米片胶态悬浮液,即前驱体。
d)合成TiO2纳米晶:用2mol/L的第一盐酸溶液和0.5mol/L的第一四甲基氢氧化铵溶液调节步骤c)中合成的四钛酸纳米片胶态悬浮液的pH值为3.0。取40mL调节好pH值的纳米片悬浮液加入到内部容积为80mL的四聚乙烯反应釜中,放入微波炉中在160℃下微波辐射2小时。冷却至室温后,离心分离、用去离子水洗涤4次,然后冷冻干燥。得到暴露晶面垂直于[111]晶带轴的TiO2纳米晶,其形貌为棒状。
实施例3
a)合成层状四钛酸钾:按照物质的量之比为1.1:4,称量15.203g(0.11mol)K2CO3和31.960g(0.4mol)锐钛型TiO2放置到玛瑙研钵中,混匀后,充分研磨。然后将其转移到刚玉坩埚中,放入马弗炉中于1000℃加热20小时,升温速率为8℃/分钟;制得层状纤维状四钛酸钾(K2Ti4O9)。
b)合成四钛酸:称取10.0g步骤a)中合成的K2Ti4O9,加入盛有1000mL 2mol/L第二盐酸溶液的大烧杯中,室温下磁力搅拌三天,每天更换一次第二盐酸溶液,使K2Ti4O9完全转化为H2Ti4O9。三次质子交换反应后,产物通过离心分离(离心参数,包括转速和时间),用去离子水洗涤4次,重复离心三次,最后将所得到的样品冷冻干燥,得到H2Ti4O9·3H2O。
c)合成四钛酸纳米片胶态悬浮液:称取3.5g(0.01mol)步骤b)中合成的H2Ti4O9·3H2O,加入到容积为70mL的四聚乙烯反应釜中,再向其中加入50g(质量分数为15%)第二四甲基氢氧化铵溶液,密封后,放入高温旋转反应炉中于110℃加热20小时。待冷却至室温后,将反应釜中的产物转移到烧杯中,再加入360mL去离子水,在磁力搅拌器上室温搅拌24小时后,再静止24小时,然后抽滤,得到四钛酸纳米片胶态悬浮液,即前驱体。
d)合成TiO2纳米晶:用4mol/L的第一盐酸溶液和2mol/L的第一四甲基氢氧化铵溶液调节步骤c)中合成的四钛酸纳米片胶态悬浮液的pH值为4.0。取40mL调节好pH值的纳米片悬浮液加入到内部容积为80mL的四聚乙烯反应釜中,放入微波炉中在200℃下微波辐射1小时。冷却至室温后,离心分离、用去离子水洗涤4次,然后冷冻干燥。得到暴露晶面垂直于[111]晶带轴的TiO2纳米晶,其形貌为棒状。
实施例4
步骤a)~步骤c)均与实施例1相同,
d)合成TiO2纳米晶:用3mol/L的第一盐酸溶液和1mol/L的第一四甲基氢氧化铵溶液调节步骤c)中合成的四钛酸纳米片胶态悬浮液的pH值为1.5。取40mL调节好pH值的纳米片悬浮液加入到内部容积为80mL的四聚乙烯反应釜中,,密封后,放入高温旋转反应炉中,在180℃下加热24小时。冷却至室温后,离心分离、用去离子水洗涤4次,然后冷冻干燥。得到暴露晶面垂直于[111]晶带轴的TiO2纳米晶,其形貌为棒状。
实施例5
步骤a)~步骤c)均与实施例2相同,
d)合成TiO2纳米晶:用2mol/L的第一盐酸溶液和0.5mol/L的第一四甲基氢氧化铵溶液调节步骤c)中合成的四钛酸纳米片胶态悬浮液的pH值为3.0。取40mL调节好pH值的纳米片悬浮液加入到内部容积为80mL的四聚乙烯反应釜中,,密封后,放入高温旋转反应炉中,在200℃下加热18小时。冷却至室温后,离心分离、用去离子水洗涤4次,然后冷冻干燥。得到暴露晶面垂直于[111]晶带轴的TiO2纳米晶,其形貌为棒状。
实施例6
步骤a)~步骤c)均与实施例3相同,
d)合成TiO2纳米晶:用4mol/L的第一盐酸溶液和2mol/L的第一四甲基氢氧化铵溶液调节步骤c)中合成的四钛酸纳米片胶态悬浮液的pH值为3.4。取40mL调节好pH值的纳米片悬浮液加入到内部容积为80mL的四聚乙烯反应釜中,,密封后,放入高温旋转反应炉中,在140℃下加热30小时。冷却至室温后,离心分离、用去离子水洗涤4次,然后冷冻干燥。得到暴露晶面垂直于[111]晶带轴的TiO2纳米晶,其形貌为棒状。
实施例7
除步骤d)中四钛酸纳米片胶态悬浮液的pH值为4.0外,其它均与实施例6相同,得到暴露晶面垂直于[111]晶带轴的TiO2纳米晶,其形貌为棒状。
上述实施1~实施7在合成TiO2纳米晶的过程中,采用离心分离的相关参数可以为离心的转速为8000转/分钟,离心时间为10分钟。
需要说明的是,本发明实施例中所采用的离心的相关参数只是为了让本领域技术人员能够更好的理解TiO2纳米晶的合成方法,并不代表只能所列举的相关参数才能实现本发明的技术方案,本领域技术人员可以根据实际情况对该参数进行调整,这都是可行的。本发明在此不作具体限定。
上述实施1~实施7在合成TiO2纳米晶的过程中,采用的冷冻干燥具体为: 将样品放在冷冻专用的玻璃瓶中,然后安装在冷冻机中,打开旋转按钮,使含样品的水溶液在冷冻机中旋转冷冻成冰,冷冻机中液体的温度为-15℃~30℃即可,样品冷冻时间一般为30分钟,即可结成冰,当然样品中水溶液的量多时,时间要长些。冷冻成冰后,关闭旋转按钮和冷冻机,将冷冻瓶取出,安装到干燥机上,打开真空泵,抽真空至压力表表压大约为-0.09Mpa,使其在真空条件下干燥24小时。
同理,本实施例中所采用的冷冻干燥的相关参数只是为了让本领域技术人员能够更好的理解TiO2纳米晶的合成过程,并不代表只能所列举的相关参数才能实现本发明的技术方案,本领域技术人员可以根据实际情况对该参数进行调整,这都是可行的。本发明在此不作具体限定。
二、TiO2纳米晶的表征
1、XRD(X-ray diffraction,X射线衍射)分析
(a)采用SHIMADZU XRD-6100衍射仪分别对本发明实施例1步骤a)中合成的四钛酸钾(K2Ti4O9)、步骤b)中合成的四钛酸(H2Ti4O9·0.25H2O)、步骤c)中合成的四甲基氨根离子(TMA+)插入的四钛酸(TMA+-intercalated H2Ti4O9)及四钛酸纳米片胶态悬浮液中的剥离的纳米带状的四钛酸(Nanoribbon)进行XRD表征,其中,收集数据衍射角(2θ)的范围是3~70°,扫描速度是5°/min,加速电压和应用的电流分别是40kV和30mA。结果如图1所示。
从图1可以看出,K2Ti4O9的(200)晶面的层间距由0.87nm减小到H2Ti4O9·0.25H2O的0.77nm,表明K2Ti4O9成功的发生了质子化,随着TMA+离子的插入,其(200)晶面的层间距增加到1.82nm,表明TMA+与H+发生了交换反应,成功插入到四钛酸的层间。TMA+插入的四钛酸溶于水中,搅拌2~3天后,得到其对应的纳米带胶态悬浮液。将TMA+插入的四钛酸纳米带胶态悬浮液离心分离后,进行XRD表征,发现在2θ为20°~40°范围内出现了一个晕轮,表明层状H2Ti4O9成功发生了的剥离反应,剥离成了纳米带;于此同时,XRD衍射谱图中在层间距为0.78nm、0.58nm、0.29nm处出现了峰强度较弱的衍射峰,表明发生剥离形成的部分纳米带在离心后又发生了再配列,重新堆叠成四钛酸。
由上述可知,实施例1步骤a)~步骤c)合成了相应的目标产物。由于实施例2~6中步骤a)~步骤c)所得到的产物与实施例1相同,其XRD衍射谱图参照图1即可,本发明在此不作赘述。
(b)采用SHIMADZU XRD-6100衍射仪分别对本发明实施例2、实施例4、实施例5、实施例6、实施例7所合成的TiO2纳米晶进行XRD表征,其中,收集数据衍射角(2θ)的范围是3~70°,扫描速度是5°/min,加速电压和应用的电流分别是40kV和30mA。结果如图2所示。
从图2中可以看出,无论微波辅助水热法还是常规水热法所合成的TiO2,均与JCPDS为21-1272的标准卡对应,为锐钛型(anatase)TiO2,由图中也可以看出,随着pH的升高,测得的衍射峰强度逐渐升高,合成的TiO2纳米晶颗粒逐渐较大,结晶度逐渐升高。
2、场发射扫描电镜(field emission scanning electron microscope,简称FE-SEM)分析
采用HITACHI S-90X型号的场发射扫描电镜对本发明实施例2、实施例4、实施例5、实施例6合成的TiO2纳米晶形貌和微观结构进行分析,样品的制备是将样品分散到去离子水中,超声后,用移液枪移取液体后,点一滴在硅板上,测定时加速电压是15kV,应用电流是10μA。其结果如图3所示。
从图3中可以看出,,无论微波辅助水热法还是常规水热法所合成的TiO2,所得到的锐钛型TiO2纳米晶的形貌均为棒状型。
3、透射电子显微镜(TEM)分析
对实施例4合成的TiO2纳米晶进行透射电子显微镜(TEM)及高分辨透射电子显微镜(HR-TEM)测试,测试条件为:加速电压是300kV,样品准备在载有碳膜的标准铜网格上。其结果如图4(a)和图4(b)所示;
对实施例6合成的TiO2纳米晶进行透射电子显微镜(TEM)及高分辨透射电子显微镜(HR-TEM)测试,测试条件为:加速电压是300kV,样品准备在载有碳膜的标准铜网格上。其结果如图4(c)和图4(d)所示;
对实施例7合成的TiO2纳米晶进行透射电子显微镜(TEM)及高分辨透射电子显微镜(HR-TEM)测试,测试条件为:加速电压是300kV,样品准备在载有碳膜的标准铜网格上。其结果如图4(e)和图4(f)所示;
对实施例5合成的TiO2纳米晶进行透射电子显微镜(TEM)及高分辨透射电子显微镜(HR-TEM)测试,测试条件为:加速电压是300kV,样品准备在载有碳膜的标准铜网格上。其结果如图5(a)所示;
对实施例2合成的TiO2纳米晶进行透射电子显微镜(TEM)及高分辨透射电子显微镜(HR-TEM)测试,测试条件为:加速电压是300kV,样品准备在载有碳膜的标准铜网格上。其结果如图5(b)和图5(c)所示;
从图4可以看出,实施例4、实施例6、实施例7所合成的TiO2纳米晶的形貌均为棒状。图4中,晶面间距分别对应于锐钛型TiO2的(101)和(011)晶面,这两个晶面间的夹角为82°,与根据锐钛型TiO2的(101)和(011)晶面常数计算的结果相一致,其暴露晶面均为垂直于[111]晶带轴的平面。
从图5可以看出,实施例5、实施例2所合成的TiO2纳米晶的形貌均为棒状。图5(a)中,晶面间距分别对应于锐钛型TiO2的(011)和(101)晶面。图5(c)中,晶面间距分别对应于锐钛型TiO2的(011)和(101)晶面。(101)和(011)两个晶面间的夹角为82°,与根据锐钛型TiO2的(011)和(101)晶面常数计算的结果相一致,其暴露晶面均为垂直于[111]晶带轴的平面。
终上所述,本发明所合成的TiO2纳米晶的暴露晶面均为垂直于[111]晶带轴的平面。
三、TiO2纳米晶的性能分析
1、光催化实验
称取50mg实施例2和实施例5合成的锐钛型TiO2纳米晶,分别加入到150mL的锥形瓶中,然后向每一个锥形瓶中加入100mL 10mg/L的甲基蓝溶液,超声2h以使两个样品均匀分散。在照射之前,将两个锥形瓶中的悬浮液在暗处剧烈搅拌30min,以使染料在二氧化钛纳米晶表面达到吸附/去吸附平衡,然后在搅拌的条件下将两个锥形瓶中悬浮液放在250W紫外灯下照射,紫外灯的发 射波长365nm,距离甲基蓝溶液的距离是80cm。每隔20min,在两个锥形瓶中分别取3mL悬浮液,离心以除去二氧化钛纳米晶。甲基蓝的降解速率通过使用TU-1901分光光度计测定紫外灯照射前后甲基蓝溶液的浓度变化确定。作为对比,商业用的德固赛P25(52.50m2/g,80%锐钛矿和20%金红石)在同样的条件下测定。测试结果分别如图6和图7所示。
图6为实施例2合成的TiO2纳米晶的降解效率与光照时间特性曲线,由图可以看出,在120分钟时,实施2所合成的锐钛型TiO2纳米晶对甲基蓝的降解效率为94%,P25对甲基蓝的降解效率86%,因此,实施2所合成的锐钛型TiO2纳米晶对甲基蓝的降解效率要远高于德固赛P25对甲基蓝的降解效率。
图7为实施例5合成的TiO2纳米晶的降解效率与光照时间特性曲线,由图可以看出,在120分钟时,实施5所合成的锐钛型TiO2纳米晶对甲基蓝的降解效率为99%,P25对甲基蓝的降解效率86%,因此,实施5所合成的锐钛型TiO2纳米晶对甲基蓝的降解效率要远高于德固赛P25对甲基蓝的降解效率。
综上所述,本发明实施例所合成的暴露晶面垂直于[111]晶带轴的TiO2纳米晶,对甲基蓝的降解效率均高于德固赛P25对甲基蓝的降解效率。说明本发明实施例所合成的暴露晶面垂直于[111]晶带轴的TiO2纳米晶有着良好的光催化性能。
2、光伏打性能测试
称取0.5g实施例2和实施例5合成的锐钛型TiO2纳米晶,并将它们分别加入到玻璃瓶中,然后再向两个玻璃瓶中加入2.5g乙醇,2.0gα-松油醇,1.4g10w%的乙基纤维素10和1.1g 10w%的乙基纤维素45,然后对两个玻璃瓶均超声处理5min,在室温下球磨3天,最后在真空旋转蒸发仪旋转蒸发掉乙醇,制得实施例2的TiO2浆和实施例5的TiO2浆。
用去离子水超声处理FTO玻璃(长×宽×高=50mm×50mm×2.2mm,表面电阻率~7Ω/sq,Aldrich公司生产)5min,然后再用乙醇超声处理5min。将洗涤好的FTO玻璃浸没于0.1M Ti(OC3O7)4有机钛溶液中数秒钟,然后在高温炉中煅烧60min。多孔二氧化钛薄膜电极使用刮刀法将实施例2和实施例5的TiO2浆分别涂到FTO导带玻璃上制备。薄膜的厚度由所使用的胶带的厚度控 制。将实施例2和实施例5的TiO2浆分别涂抹在FTO导电玻璃上后,在高温炉中315℃煅烧15min(升温速率为5℃/min),如此操作多次直至得到所需的膜厚后,再在高温炉中450℃煅烧30min。冷却至室温后,再次将其浸没于0.1MTi(OC3O7)4有机钛溶液中数秒钟,然后再在高温炉中煅烧60min。等温度降低到80℃时,将其取出,迅速浸入到含3×10-4mol/L N719的乙腈和叔丁醇的混合溶液中,在暗处室温下放置24h,以使染料N719吸附在二氧化钛电极上。Pt对电极通过将FTO导电玻璃浸没在含0.5mM H2PtCl6的异丙醇溶液中,数分钟后取出,然后在高温炉中400℃煅烧20min制备。电解质溶液依靠毛细管作用注入到两电极之间的空隙中,组装成三明治结构的染料敏化太阳能电池。电解质溶液是由含0.60mol/L 1-丁基-3-甲基咪唑碘化物(1-Butyl-3-methylimidazolium iodide),0.10mol/L硫氰酸胍(Guanidine Thiocyanate),0.50mol/L 4-叔丁基吡啶(4-tert-Butylpyridine)的乙腈(Acetonitrile)和戊腈(Valeronitrile)的混合溶液(体积比=85%:15%)组成的。由同样方法制备的德固赛P25TiO2的光电阳极组装成电池,与上述电池进行对照。测试结果如图8及图9所示。
如图8所示:在膜厚为19.1μm时,实施例2合成的优先暴露晶面垂直于[111]晶带轴的棒状锐钛型TiO2纳米晶的光电电流为11.06mA/cm2,光电电压为0.745V,填充因子为0.606,转化效率为4.99%,优于P25(膜厚19.1μm)的光电电流9.80mA/cm2,光电电压0.707V,填充因子0.572,转化效率3.96%。
如图9所示:在膜厚为15.9μm时,实施例5合成的优先暴露晶面垂直于[111]晶带轴的棒状锐钛型TiO2纳米晶光电电流为11.5mA/cm2,转化效率为4.74%,优于P25TiO2(膜厚:16.6μm)的光电电流10.3mA/cm2,转化效率4.37%。
本发明合成了暴露晶面垂直于[111]晶带轴的锐钛型TiO2纳米晶,该TiO2纳米晶纯度高、粒径分布均匀,可用于降解甲基蓝溶液和染料敏化太阳能电池中,与商业用的P25TiO2相比,催化性能和光伏打性能都得到了显著提高。同时,本发明首次为优先暴露晶面垂直于[111]晶带轴的锐钛型TiO2纳米晶的合成提供了一种方法,这种方法成本低、无污染、制备工艺简单、可控性强、生产周期短、可重复性好,适用于工业化生产。
以上对本发明所提供的一种TiO2纳米晶及其合成方法进行了详细介绍。本文中应用了具体实施例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其中心思想。应当指出,对于本领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

一种TIOSUB2/SUB纳米晶及其合成方法.pdf_第1页
第1页 / 共17页
一种TIOSUB2/SUB纳米晶及其合成方法.pdf_第2页
第2页 / 共17页
一种TIOSUB2/SUB纳米晶及其合成方法.pdf_第3页
第3页 / 共17页
点击查看更多>>
资源描述

《一种TIOSUB2/SUB纳米晶及其合成方法.pdf》由会员分享,可在线阅读,更多相关《一种TIOSUB2/SUB纳米晶及其合成方法.pdf(17页珍藏版)》请在专利查询网上搜索。

1、10申请公布号CN104192896A43申请公布日20141210CN104192896A21申请号201410411656222申请日20140820C01G23/047200601B82Y30/0020110171申请人北京师范大学地址100875北京市海淀区新街口外大街19号申请人北京师大科技园科技发展有限责任公司72发明人杨晓晶杜意恩杜德健74专利代理机构北京柏杉松知识产权代理事务所普通合伙11413代理人王春伟刘继富54发明名称一种TIO2纳米晶及其合成方法57摘要本发明实施例公开了一种TIO2纳米晶及其合成方法,其中,所述纳米晶为锐钛型TIO2纳米晶,其暴露晶面垂直于111晶带轴。

2、。该TIO2纳米晶纯度高、粒径分布均匀,可用于降解甲基蓝溶液和染料敏化太阳能电池中,与商业用的P25TIO2相比,催化性能和光伏打性能都得到了显著提高。51INTCL权利要求书1页说明书9页附图6页19中华人民共和国国家知识产权局12发明专利申请权利要求书1页说明书9页附图6页10申请公布号CN104192896ACN104192896A1/1页21一种TIO2纳米晶,其特征在于,所述纳米晶为锐钛型TIO2纳米晶,其暴露晶面垂直于111晶带轴。2如权利要求1所述的TIO2纳米晶,其特征在于,所述TIO2纳米晶的形貌为棒状。3如权利要求1或2所述的TIO2纳米晶的合成方法,其特征在于,包括以下步。

3、骤以四钛酸纳米片胶态悬浮液为前驱体,调节前驱体的PH值,使其PH值在14之间;将PH值在14之间的前驱体进行水热反应,得到TIO2纳米晶。4如权利要求3所述的方法,其特征在于水热反应结束后分离所得产物,然后对所得产物进行洗涤、过滤及干燥。5如权利要求3所述的方法,其特征在于将PH值在14之间的前驱体进行水热反应,具体为将PH值在14之间的前驱体在160200微波辐射1小时2小时;或者将PH值在14之间的前驱体加热至140200后,保温18小时30小时。6如权利要求3所述的方法,其特征在于用第一盐酸溶液与第一四甲基氢氧化铵溶液调节前驱体的PH值,所述第一盐酸溶液的浓度为2MOL/L4MOL/L;。

4、所述第一四甲基氢氧化铵溶液的浓度为05MOL/L2MOL/L。7如权利要求3所述的方法,其特征在于,前驱体四钛酸纳米片胶态悬浮液的制备方法包括以下步骤A合成层状四钛酸钾以K2CO3和锐钛型TIO2为原料,将K2CO3和锐钛型TIO2混匀后,升温至8001000,反应20小时30小时,升温的速率为2/分钟8/分钟,制得层状四钛酸钾,其中,所述K2CO3和锐钛型TIO2的摩尔比为1114;B合成四钛酸将步骤A中合成的四钛酸钾溶于第二盐酸溶液中,进行质子交换反应,反应结束后,分离所得产物,然后对所得产物进行洗涤、过滤及干燥,得到四钛酸;C合成四钛酸纳米片胶态悬浮液将步骤B中合成的四钛酸加入到第二四甲。

5、基氢氧化铵溶液中,得到混合液,其中,四钛酸与四甲基氢氧化铵的质量比为1123;将所述混合液在90110下反应20小时30小时,反应结束后,将所得反应物与水混合并搅拌,静止后过滤,得到前驱体四钛酸纳米片胶态悬浮液。8如权利要求7所述的方法,其特征在于在步骤A中,将K2CO3和锐钛型TIO2混匀后,在升温至8001000之前,还包括充分研磨。9如权利要求7所述的方法,其特征在于步骤B中的第二盐酸溶液的浓度为07MOL/L2MOL/L。10如权利要求7所述的方法,其特征在于步骤B中所述将步骤A中合成的四钛酸钾溶于第二盐酸溶液中,进行质子交换反应,具体为将步骤A中合成的四钛酸钾溶于第二盐酸溶液中,搅拌。

6、35天,并每天更换一次第二盐酸溶液。权利要求书CN104192896A1/9页3一种TIO2纳米晶及其合成方法技术领域0001本发明涉及晶体材料领域,特别涉及一种TIO2纳米晶及其合成方法。背景技术00021972年,日本HONDA和FUJISHIMA发现在紫外光照射下,TIO2二氧化钛纳米晶能够分解水生成H2和O2。自此以后,TIO2纳米晶引起了国内外研究者的高度重视和深入研究。0003TIO2纳米晶具有高稳定性、无毒、对环境友好,以及价格低廉等显著特点,不仅广泛应用于光解水制氢,而且广泛应用于染料敏化太阳能电池、光催化降解毒性污染物、能量储存和转化、电致变色和传感领域等。由于TIO2纳米晶。

7、的暴露晶面强烈影响其光催化性能和光伏打性能,因此,合成具特定暴露晶面的锐钛型TIO2纳米晶是非常重要的。0004近年来,报道了合成101、010、001结晶面的锐钛型TIO2纳米晶的一些方法和应用。然而,现有技术中并没有关于暴露结晶面垂直于111晶带轴的锐钛型TIO2的报道。发明内容0005本发明人出人预料地发现了具有高指数晶面的锐钛型TIO2纳米晶,并且发现其在催化降解有毒污染物、染料敏化太阳能电池等领域有着非常重要的用途。0006为解决上述问题,本发明实施例公开了一种TIO2纳米晶及其合成方法。技术方案如下0007一种TIO2纳米晶,所述纳米晶为锐钛型TIO2纳米晶,其暴露晶面垂直于111。

8、晶带轴。0008其中,所述TIO2纳米晶的形貌为棒状。0009本发明同时提供了一种TIO2纳米晶的合成方法,可以包括以下步骤0010以四钛酸纳米片胶态悬浮液为前驱体,调节前驱体的PH值,使其PH值在14之间;将PH值在14之间的前驱体进行水热反应,得到TIO2纳米晶。0011其中,水热反应结束后分离所得产物,然后对所得产物进行洗涤、过滤及干燥。0012在本发明的一种优选实施方式中,将PH值在14之间的前驱体进行水热反应,具体为0013将PH值在14之间的前驱体在160200微波辐射1小时2小时;0014或者0015将PH值在14之间的前驱体加热至140200后,保温18小时30小时。0016在。

9、本发明的一种优选实施方式中,用第一盐酸溶液与第一四甲基氢氧化铵溶液调节前驱体的PH值,所述第一盐酸溶液的浓度为2MOL/L4MOL/L;所述第一四甲基氢氧化铵溶液的浓度为05MOL/L2MOL/L。0017在本发明的一种优选实施方式中,前驱体四钛酸纳米片胶态悬浮液的制备方法包说明书CN104192896A2/9页4括以下步骤0018A合成层状四钛酸钾以K2CO3和锐钛型TIO2为原料,将K2CO3和锐钛型TIO2混匀后,升温至8001000,反应20小时30小时,升温的速率为2/分钟8/分钟,制得层状四钛酸钾,其中,所述K2CO3和锐钛型TIO2的摩尔比为1114;0019B合成四钛酸将步骤A。

10、中合成的四钛酸钾溶于第二盐酸溶液中,进行质子交换反应,反应结束后,分离所得产物,然后对所得产物进行洗涤、过滤及干燥,得到四钛酸;0020C合成四钛酸纳米片胶态悬浮液将步骤B中合成的四钛酸加入到第二四甲基氢氧化铵溶液中,得到混合液,其中,四钛酸与四甲基氢氧化铵的质量比为1123;将所述混合液在90110下反应20小时30小时,反应结束后,将所得反应物与水混合并搅拌,静止后过滤,得到前驱体四钛酸纳米片胶态悬浮液。0021在本发明的一种优选实施方式中,在步骤A中,将K2CO3和锐钛型TIO2混匀后,在升温至8001000之前,还包括充分研磨。0022在本发明的一种优选实施方式中,步骤B中的第二盐酸溶。

11、液的浓度为07MOL/L2MOL/L。0023在本发明的一种优选实施方式中,步骤B中所述将步骤A中合成的四钛酸钾溶于第二盐酸溶液中,进行质子交换反应,具体为0024将步骤A中合成的四钛酸钾溶于第二盐酸溶液中,搅拌35天,并每天更换一次第二盐酸溶液。0025本发明合成了暴露晶面垂直于111晶带轴的锐钛型TIO2纳米晶,该TIO2纳米晶纯度高、粒径分布均匀,可用于降解甲基蓝溶液和染料敏化太阳能电池中,与商业用的P25TIO2相比,催化性能和光伏打性能都得到了显著提高。同时,本发明首次为优先暴露晶面垂直于111晶带轴的锐钛型TIO2纳米晶的合成提供了一种方法,这种方法成本低、无污染、制备工艺简单、可。

12、控性强、生产周期短、可重复性好,适用于工业化生产。附图说明0026为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。0027图1为实施例1步骤A中合成的四钛酸钾K2TI4O9、步骤B中合成的四钛酸H2TI4O9025H2O、步骤C中合成的四甲基氨离子TMA插入的四钛酸TMAINTERCALATEDH2TI4O9及四钛酸纳米片胶态悬浮液中的剥离的纳米带状的四钛酸NANORIBBON的XRD谱图。

13、;0028图2为实施例2、实施例4、实施例5、实施例6、实施例7所合成的锐钛型TIO2纳米晶的XRD谱图,其中,A为实施例4所合成的锐钛型TIO2纳米晶的XRD谱图;B为实施例5所合成的锐钛型TIO2纳米晶的XRD谱图;C为实施例6所合成的锐钛型TIO2纳米晶的XRD谱图;D为实施例7所合成的锐钛型TIO2纳米晶的XRD谱图;E为实施例2所合成的锐钛型TIO2纳米晶的XRD谱图;0029图3为实施例2、实施例4、实施例5、实施例6合成的锐钛型TIO2纳米晶的扫描电说明书CN104192896A3/9页5镜图,其中,A为实施例4合成的TIO2纳米晶的扫描电镜图;B为实施例5合成的TIO2纳米晶的。

14、扫描电镜图;C为实施例6合成的TIO2纳米晶的扫描电镜图;D为实施例2合成的TIO2纳米晶的扫描电镜图;0030图4为实施例4、实施例6、实施例7合成的锐钛型TIO2纳米晶的扫描电镜图,其中,A和B为实施例4合成的TIO2纳米晶的扫描电镜图,C和D为实施例6合成的TIO2纳米晶的扫描电镜图,E和F为实施例7合成的TIO2纳米晶的扫描电镜图;0031图5为实施例5、实施例2合成的锐钛型TIO2纳米晶的扫描电镜图,其中,A为实施例5合成的TIO2纳米晶的扫描电镜图;B和C为实施例2合成的TIO2纳米晶的扫描电镜图;0032图6为实施例2合成的TIO2纳米晶的降解效率与光照时间特性曲线;0033图7。

15、为实施例5合成的TIO2纳米晶的降解效率与光照时间特性曲线;0034图8为实施例2合成的TIO2纳米晶的光电流电压特征曲线图;0035图9为实施例5合成的TIO2纳米晶的光电流电压特征曲线图。具体实施方式0036下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。0037首先,需要说明的是,本发明实施例在合成TIO2纳米晶的过程中,所使用的水优选为去离子水或蒸馏水。0038进一步需要说明的。

16、是,本发明实施例采用的所有试剂,对其来源没有特殊的限制,在市场上购得或自制均可;例如0039K2CO3规格AR,天津市科密欧化学试剂开发公司购得;0040锐钛型TIO2规格AR,天津市科密欧化学试剂开发公司购得;0041盐酸规格365质量分数,天津市科密欧化学试剂开发公司购得;0042四甲基氢氧化铵TMAOH规格AR,天津市科密欧化学试剂开发公司购得。0043还需要说明的是,本发明实施例在合成TIO2纳米晶的过程中所采用的实验设备,均为本领域通用的设备,没有特殊的要求,均可在市场上购得。发明人相信,本领域技术人员完全可以通过对本发明技术方案的描述来选择适当的实验设备,本发明在此不对实验设备进行。

17、具体限制与说明。0044一、TIO2纳米晶的合成0045实施例10046A合成层状四钛酸钾按照物质的量之比为14,称量13821G01MOLK2CO3和31960G04MOL锐钛型TIO2放置到玛瑙研钵中,混匀后,充分研磨。然后将其转移到刚玉坩埚中,放入马弗炉中于900加热24小时,升温速率为5/分钟;制得层状纤维状四钛酸钾K2TI4O9。0047B合成四钛酸称取100G步骤A中合成的K2TI4O9,加入盛有1000ML1MOL/L第二盐酸溶液的大烧杯中,室温下磁力搅拌三天,每天更换一次第二盐酸溶液,使K2TI4O9完全说明书CN104192896A4/9页6转化为H2TI4O9。三次质子交换。

18、反应后,产物通过离心分离,用去离子水洗涤4次,重复离心三次,最后将所得到的样品冷冻干燥,得到H2TI4O9025H2O。0048C合成四钛酸纳米片胶态悬浮液称取35G约001MOL步骤B中合成的H2TI4O9025H2O,加入到容积为70ML的四聚乙烯反应釜中,再向其中加入40G质量分数为125第二四甲基氢氧化铵溶液,密封后,放入高温旋转反应炉中于100加热24小时。待冷却至室温后,将反应釜中的产物转移到烧杯中,再加入360ML去离子水,在磁力搅拌器上室温搅拌24小时后,再静止24小时,然后抽滤,得到四钛酸纳米片胶态悬浮液,即前驱体。0049D合成TIO2纳米晶用3MOL/L的第一盐酸溶液和1。

19、MOL/L的第一四甲基氢氧化铵溶液调节步骤C中合成的四钛酸纳米片胶态悬浮液的PH值为15。取40ML调节好PH值的纳米片悬浮液加入到内部容积为80ML的四聚乙烯反应釜中,放入微波炉中在180下微波辐射15小时。冷却至室温后,离心分离、用去离子水洗涤4次,然后冷冻干燥。得到暴露晶面垂直于111晶带轴的TIO2纳米晶,其形貌为棒状。0050实施例20051A合成层状四钛酸钾按照物质的量之比为1054,称量14512G0105MOLK2CO3和31960G04MOL锐钛型TIO2放置到玛瑙研钵中,混匀后,充分研磨。然后将其转移到刚玉坩埚中,放入马弗炉中于800加热30小时,升温速率为2/分钟;制得层。

20、状纤维状四钛酸钾K2TI4O9。0052B合成四钛酸称取100G步骤A中合成的K2TI4O9,加入盛有1000ML07MOL/L第二盐酸溶液的大烧杯中,室温下磁力搅拌三天,每天更换一次第二盐酸溶液,使K2TI4O9完全转化为H2TI4O9。三次质子交换反应后,产物通过离心分离,用去离子水洗涤4次,重复离心三次,最后将所得到的样品冷冻干燥,得到H2TI4O914H2O。0053C合成四钛酸纳米片胶态悬浮液称取35G约001MOL步骤B中合成的H2TI4O9H2O,加入到容积为70ML的四聚乙烯反应釜中,再向其中加入40G质量分数为25第二四甲基氢氧化铵溶液,密封后,放入高温旋转反应炉中于90加热。

21、30小时。待冷却至室温后,将反应釜中的产物转移到烧杯中,再加入360ML去离子水,在磁力搅拌器上室温搅拌24小时后,再静止24小时,然后抽滤,得到四钛酸纳米片胶态悬浮液,即前驱体。0054D合成TIO2纳米晶用2MOL/L的第一盐酸溶液和05MOL/L的第一四甲基氢氧化铵溶液调节步骤C中合成的四钛酸纳米片胶态悬浮液的PH值为30。取40ML调节好PH值的纳米片悬浮液加入到内部容积为80ML的四聚乙烯反应釜中,放入微波炉中在160下微波辐射2小时。冷却至室温后,离心分离、用去离子水洗涤4次,然后冷冻干燥。得到暴露晶面垂直于111晶带轴的TIO2纳米晶,其形貌为棒状。0055实施例30056A合成。

22、层状四钛酸钾按照物质的量之比为114,称量15203G011MOLK2CO3和31960G04MOL锐钛型TIO2放置到玛瑙研钵中,混匀后,充分研磨。然后将其转移到刚玉坩埚中,放入马弗炉中于1000加热20小时,升温速率为8/分钟;制得层状纤维状四钛酸钾K2TI4O9。0057B合成四钛酸称取100G步骤A中合成的K2TI4O9,加入盛有1000ML2MOL/L第二盐酸溶液的大烧杯中,室温下磁力搅拌三天,每天更换一次第二盐酸溶液,使K2TI4O9完全说明书CN104192896A5/9页7转化为H2TI4O9。三次质子交换反应后,产物通过离心分离离心参数,包括转速和时间,用去离子水洗涤4次,重。

23、复离心三次,最后将所得到的样品冷冻干燥,得到H2TI4O93H2O。0058C合成四钛酸纳米片胶态悬浮液称取35G001MOL步骤B中合成的H2TI4O93H2O,加入到容积为70ML的四聚乙烯反应釜中,再向其中加入50G质量分数为15第二四甲基氢氧化铵溶液,密封后,放入高温旋转反应炉中于110加热20小时。待冷却至室温后,将反应釜中的产物转移到烧杯中,再加入360ML去离子水,在磁力搅拌器上室温搅拌24小时后,再静止24小时,然后抽滤,得到四钛酸纳米片胶态悬浮液,即前驱体。0059D合成TIO2纳米晶用4MOL/L的第一盐酸溶液和2MOL/L的第一四甲基氢氧化铵溶液调节步骤C中合成的四钛酸纳。

24、米片胶态悬浮液的PH值为40。取40ML调节好PH值的纳米片悬浮液加入到内部容积为80ML的四聚乙烯反应釜中,放入微波炉中在200下微波辐射1小时。冷却至室温后,离心分离、用去离子水洗涤4次,然后冷冻干燥。得到暴露晶面垂直于111晶带轴的TIO2纳米晶,其形貌为棒状。0060实施例40061步骤A步骤C均与实施例1相同,0062D合成TIO2纳米晶用3MOL/L的第一盐酸溶液和1MOL/L的第一四甲基氢氧化铵溶液调节步骤C中合成的四钛酸纳米片胶态悬浮液的PH值为15。取40ML调节好PH值的纳米片悬浮液加入到内部容积为80ML的四聚乙烯反应釜中,密封后,放入高温旋转反应炉中,在180下加热24。

25、小时。冷却至室温后,离心分离、用去离子水洗涤4次,然后冷冻干燥。得到暴露晶面垂直于111晶带轴的TIO2纳米晶,其形貌为棒状。0063实施例50064步骤A步骤C均与实施例2相同,0065D合成TIO2纳米晶用2MOL/L的第一盐酸溶液和05MOL/L的第一四甲基氢氧化铵溶液调节步骤C中合成的四钛酸纳米片胶态悬浮液的PH值为30。取40ML调节好PH值的纳米片悬浮液加入到内部容积为80ML的四聚乙烯反应釜中,密封后,放入高温旋转反应炉中,在200下加热18小时。冷却至室温后,离心分离、用去离子水洗涤4次,然后冷冻干燥。得到暴露晶面垂直于111晶带轴的TIO2纳米晶,其形貌为棒状。0066实施例。

26、60067步骤A步骤C均与实施例3相同,0068D合成TIO2纳米晶用4MOL/L的第一盐酸溶液和2MOL/L的第一四甲基氢氧化铵溶液调节步骤C中合成的四钛酸纳米片胶态悬浮液的PH值为34。取40ML调节好PH值的纳米片悬浮液加入到内部容积为80ML的四聚乙烯反应釜中,密封后,放入高温旋转反应炉中,在140下加热30小时。冷却至室温后,离心分离、用去离子水洗涤4次,然后冷冻干燥。得到暴露晶面垂直于111晶带轴的TIO2纳米晶,其形貌为棒状。0069实施例70070除步骤D中四钛酸纳米片胶态悬浮液的PH值为40外,其它均与实施例6相同,得到暴露晶面垂直于111晶带轴的TIO2纳米晶,其形貌为棒状。

27、。0071上述实施1实施7在合成TIO2纳米晶的过程中,采用离心分离的相关参数可以为离心的转速为8000转/分钟,离心时间为10分钟。0072需要说明的是,本发明实施例中所采用的离心的相关参数只是为了让本领域技术说明书CN104192896A6/9页8人员能够更好的理解TIO2纳米晶的合成方法,并不代表只能所列举的相关参数才能实现本发明的技术方案,本领域技术人员可以根据实际情况对该参数进行调整,这都是可行的。本发明在此不作具体限定。0073上述实施1实施7在合成TIO2纳米晶的过程中,采用的冷冻干燥具体为将样品放在冷冻专用的玻璃瓶中,然后安装在冷冻机中,打开旋转按钮,使含样品的水溶液在冷冻机中。

28、旋转冷冻成冰,冷冻机中液体的温度为1530即可,样品冷冻时间一般为30分钟,即可结成冰,当然样品中水溶液的量多时,时间要长些。冷冻成冰后,关闭旋转按钮和冷冻机,将冷冻瓶取出,安装到干燥机上,打开真空泵,抽真空至压力表表压大约为009MPA,使其在真空条件下干燥24小时。0074同理,本实施例中所采用的冷冻干燥的相关参数只是为了让本领域技术人员能够更好的理解TIO2纳米晶的合成过程,并不代表只能所列举的相关参数才能实现本发明的技术方案,本领域技术人员可以根据实际情况对该参数进行调整,这都是可行的。本发明在此不作具体限定。0075二、TIO2纳米晶的表征00761、XRDXRAYDIFFRACTI。

29、ON,X射线衍射分析0077A采用SHIMADZUXRD6100衍射仪分别对本发明实施例1步骤A中合成的四钛酸钾K2TI4O9、步骤B中合成的四钛酸H2TI4O9025H2O、步骤C中合成的四甲基氨根离子TMA插入的四钛酸TMAINTERCALATEDH2TI4O9及四钛酸纳米片胶态悬浮液中的剥离的纳米带状的四钛酸NANORIBBON进行XRD表征,其中,收集数据衍射角2的范围是370,扫描速度是5/MIN,加速电压和应用的电流分别是40KV和30MA。结果如图1所示。0078从图1可以看出,K2TI4O9的200晶面的层间距由087NM减小到H2TI4O9025H2O的077NM,表明K2T。

30、I4O9成功的发生了质子化,随着TMA离子的插入,其200晶面的层间距增加到182NM,表明TMA与H发生了交换反应,成功插入到四钛酸的层间。TMA插入的四钛酸溶于水中,搅拌23天后,得到其对应的纳米带胶态悬浮液。将TMA插入的四钛酸纳米带胶态悬浮液离心分离后,进行XRD表征,发现在2为2040范围内出现了一个晕轮,表明层状H2TI4O9成功发生了的剥离反应,剥离成了纳米带;于此同时,XRD衍射谱图中在层间距为078NM、058NM、029NM处出现了峰强度较弱的衍射峰,表明发生剥离形成的部分纳米带在离心后又发生了再配列,重新堆叠成四钛酸。0079由上述可知,实施例1步骤A步骤C合成了相应的目。

31、标产物。由于实施例26中步骤A步骤C所得到的产物与实施例1相同,其XRD衍射谱图参照图1即可,本发明在此不作赘述。0080B采用SHIMADZUXRD6100衍射仪分别对本发明实施例2、实施例4、实施例5、实施例6、实施例7所合成的TIO2纳米晶进行XRD表征,其中,收集数据衍射角2的范围是370,扫描速度是5/MIN,加速电压和应用的电流分别是40KV和30MA。结果如图2所示。0081从图2中可以看出,无论微波辅助水热法还是常规水热法所合成的TIO2,均与JCPDS为211272的标准卡对应,为锐钛型ANATASETIO2,由图中也可以看出,随着PH的升高,测得的衍射峰强度逐渐升高,合成的。

32、TIO2纳米晶颗粒逐渐较大,结晶度逐渐升高。说明书CN104192896A7/9页900822、场发射扫描电镜ELDEMISSIONSCANNINGELECTRONMICROSCOPE,简称FESEM分析0083采用HITACHIS90X型号的场发射扫描电镜对本发明实施例2、实施例4、实施例5、实施例6合成的TIO2纳米晶形貌和微观结构进行分析,样品的制备是将样品分散到去离子水中,超声后,用移液枪移取液体后,点一滴在硅板上,测定时加速电压是15KV,应用电流是10A。其结果如图3所示。0084从图3中可以看出,无论微波辅助水热法还是常规水热法所合成的TIO2,所得到的锐钛型TIO2纳米晶的形貌。

33、均为棒状型。00853、透射电子显微镜TEM分析0086对实施例4合成的TIO2纳米晶进行透射电子显微镜TEM及高分辨透射电子显微镜HRTEM测试,测试条件为加速电压是300KV,样品准备在载有碳膜的标准铜网格上。其结果如图4A和图4B所示;0087对实施例6合成的TIO2纳米晶进行透射电子显微镜TEM及高分辨透射电子显微镜HRTEM测试,测试条件为加速电压是300KV,样品准备在载有碳膜的标准铜网格上。其结果如图4C和图4D所示;0088对实施例7合成的TIO2纳米晶进行透射电子显微镜TEM及高分辨透射电子显微镜HRTEM测试,测试条件为加速电压是300KV,样品准备在载有碳膜的标准铜网格上。

34、。其结果如图4E和图4F所示;0089对实施例5合成的TIO2纳米晶进行透射电子显微镜TEM及高分辨透射电子显微镜HRTEM测试,测试条件为加速电压是300KV,样品准备在载有碳膜的标准铜网格上。其结果如图5A所示;0090对实施例2合成的TIO2纳米晶进行透射电子显微镜TEM及高分辨透射电子显微镜HRTEM测试,测试条件为加速电压是300KV,样品准备在载有碳膜的标准铜网格上。其结果如图5B和图5C所示;0091从图4可以看出,实施例4、实施例6、实施例7所合成的TIO2纳米晶的形貌均为棒状。图4中,晶面间距和分别对应于锐钛型TIO2的101和011晶面,这两个晶面间的夹角为82,与根据锐钛。

35、型TIO2的101和011晶面常数计算的结果相一致,其暴露晶面均为垂直于111晶带轴的平面。0092从图5可以看出,实施例5、实施例2所合成的TIO2纳米晶的形貌均为棒状。图5A中,晶面间距和分别对应于锐钛型TIO2的011和101晶面。图5C中,晶面间距和分别对应于锐钛型TIO2的011和101晶面。101和011两个晶面间的夹角为82,与根据锐钛型TIO2的011和101晶面常数计算的结果相一致,其暴露晶面均为垂直于111晶带轴的平面。0093终上所述,本发明所合成的TIO2纳米晶的暴露晶面均为垂直于111晶带轴的平面。0094三、TIO2纳米晶的性能分析00951、光催化实验0096称取。

36、50MG实施例2和实施例5合成的锐钛型TIO2纳米晶,分别加入到150ML的说明书CN104192896A8/9页10锥形瓶中,然后向每一个锥形瓶中加入100ML10MG/L的甲基蓝溶液,超声2H以使两个样品均匀分散。在照射之前,将两个锥形瓶中的悬浮液在暗处剧烈搅拌30MIN,以使染料在二氧化钛纳米晶表面达到吸附/去吸附平衡,然后在搅拌的条件下将两个锥形瓶中悬浮液放在250W紫外灯下照射,紫外灯的发射波长365NM,距离甲基蓝溶液的距离是80CM。每隔20MIN,在两个锥形瓶中分别取3ML悬浮液,离心以除去二氧化钛纳米晶。甲基蓝的降解速率通过使用TU1901分光光度计测定紫外灯照射前后甲基蓝溶。

37、液的浓度变化确定。作为对比,商业用的德固赛P255250M2/G,80锐钛矿和20金红石在同样的条件下测定。测试结果分别如图6和图7所示。0097图6为实施例2合成的TIO2纳米晶的降解效率与光照时间特性曲线,由图可以看出,在120分钟时,实施2所合成的锐钛型TIO2纳米晶对甲基蓝的降解效率为94,P25对甲基蓝的降解效率86,因此,实施2所合成的锐钛型TIO2纳米晶对甲基蓝的降解效率要远高于德固赛P25对甲基蓝的降解效率。0098图7为实施例5合成的TIO2纳米晶的降解效率与光照时间特性曲线,由图可以看出,在120分钟时,实施5所合成的锐钛型TIO2纳米晶对甲基蓝的降解效率为99,P25对甲。

38、基蓝的降解效率86,因此,实施5所合成的锐钛型TIO2纳米晶对甲基蓝的降解效率要远高于德固赛P25对甲基蓝的降解效率。0099综上所述,本发明实施例所合成的暴露晶面垂直于111晶带轴的TIO2纳米晶,对甲基蓝的降解效率均高于德固赛P25对甲基蓝的降解效率。说明本发明实施例所合成的暴露晶面垂直于111晶带轴的TIO2纳米晶有着良好的光催化性能。01002、光伏打性能测试0101称取05G实施例2和实施例5合成的锐钛型TIO2纳米晶,并将它们分别加入到玻璃瓶中,然后再向两个玻璃瓶中加入25G乙醇,20G松油醇,14G10W的乙基纤维素10和11G10W的乙基纤维素45,然后对两个玻璃瓶均超声处理5。

39、MIN,在室温下球磨3天,最后在真空旋转蒸发仪旋转蒸发掉乙醇,制得实施例2的TIO2浆和实施例5的TIO2浆。0102用去离子水超声处理FTO玻璃长宽高50MM50MM22MM,表面电阻率7/SQ,ALDRICH公司生产5MIN,然后再用乙醇超声处理5MIN。将洗涤好的FTO玻璃浸没于01MTIOC3O74有机钛溶液中数秒钟,然后在高温炉中煅烧60MIN。多孔二氧化钛薄膜电极使用刮刀法将实施例2和实施例5的TIO2浆分别涂到FTO导带玻璃上制备。薄膜的厚度由所使用的胶带的厚度控制。将实施例2和实施例5的TIO2浆分别涂抹在FTO导电玻璃上后,在高温炉中315煅烧15MIN升温速率为5/MIN,。

40、如此操作多次直至得到所需的膜厚后,再在高温炉中450煅烧30MIN。冷却至室温后,再次将其浸没于01MTIOC3O74有机钛溶液中数秒钟,然后再在高温炉中煅烧60MIN。等温度降低到80时,将其取出,迅速浸入到含3104MOL/LN719的乙腈和叔丁醇的混合溶液中,在暗处室温下放置24H,以使染料N719吸附在二氧化钛电极上。PT对电极通过将FTO导电玻璃浸没在含05MMH2PTCL6的异丙醇溶液中,数分钟后取出,然后在高温炉中400煅烧20MIN制备。电解质溶液依靠毛细管作用注入到两电极之间的空隙中,组装成三明治结构的染料敏化太阳能电池。电解质溶液是由含060MOL/L1丁基3甲基咪唑碘化物。

41、1BUTYL3METHYLIMIDAZOLIUMIODIDE,010MOL/L硫氰酸胍GUANIDINETHIOCYANATE,050MOL/L4叔丁基吡啶4TERTBUTYLPYRIDINE的乙腈ACETONITRILE和戊腈VALERONITRILE的混合溶液说明书CN104192896A109/9页11体积比8515组成的。由同样方法制备的德固赛P25TIO2的光电阳极组装成电池,与上述电池进行对照。测试结果如图8及图9所示。0103如图8所示在膜厚为191M时,实施例2合成的优先暴露晶面垂直于111晶带轴的棒状锐钛型TIO2纳米晶的光电电流为1106MA/CM2,光电电压为0745V,。

42、填充因子为0606,转化效率为499,优于P25膜厚191M的光电电流980MA/CM2,光电电压0707V,填充因子0572,转化效率396。0104如图9所示在膜厚为159M时,实施例5合成的优先暴露晶面垂直于111晶带轴的棒状锐钛型TIO2纳米晶光电电流为115MA/CM2,转化效率为474,优于P25TIO2膜厚166M的光电电流103MA/CM2,转化效率437。0105本发明合成了暴露晶面垂直于111晶带轴的锐钛型TIO2纳米晶,该TIO2纳米晶纯度高、粒径分布均匀,可用于降解甲基蓝溶液和染料敏化太阳能电池中,与商业用的P25TIO2相比,催化性能和光伏打性能都得到了显著提高。同时。

43、,本发明首次为优先暴露晶面垂直于111晶带轴的锐钛型TIO2纳米晶的合成提供了一种方法,这种方法成本低、无污染、制备工艺简单、可控性强、生产周期短、可重复性好,适用于工业化生产。0106以上对本发明所提供的一种TIO2纳米晶及其合成方法进行了详细介绍。本文中应用了具体实施例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其中心思想。应当指出,对于本领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。说明书CN104192896A111/6页12图1说明书附图CN104192896A122/6页13图2说明书附图CN104192896A133/6页14图3说明书附图CN104192896A144/6页15图4图5说明书附图CN104192896A155/6页16图6图7说明书附图CN104192896A166/6页17图8图9说明书附图CN104192896A17。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 化学;冶金 > 无机化学


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1