三维槽形圆铣刀片 技术领域:
本发明涉及铣削刀具技术领域,特别涉及三维槽形圆铣刀片。
背景技术:
铣削加工工作过程中,铣刀的切削刃切削待加工工件表面,去除余量时,工件对刀具的反作用力形成切削力。切削过程中切削刃与切削平面的夹角,即主偏角,对径向切削力和切削宽度影响很大。径向切削力的大小直接影响切削功率和刀具的抗振性能;铣刀的主偏角越小,其径向切削力越小,抗振性也越好,但切削宽度也随之减小。
不同于直刃形刀片,圆形铣刀片由于其切削刃为圆弧形,意味着主偏角从0度到90度连续变化,在加工过程中所产生的压力主要取决于切削宽度。现代刀片几何槽形的研制使圆形铣刀片具有平稳的切削效应、对机床功率需求较低、稳定性好等优点。今天,它已不再是一种有效的粗铣刀,在面铣和立铣中都有广泛的应用。
圆形铣刀片在切削过程中,由于参与切削的切削刃各处的主偏角不同,同一进尺中切削刃各处的切削宽度不同,各处的切削力亦不同,然而,现有的圆形铣刀片的槽形大多全周向为相同形状和尺寸,故而切削力分布不均衡,在刀片切削宽度变化时的工作状态不合理,容易发生局部磨损或崩刃,从而影响整个圆形铣刀片的使用寿命。
发明内容:
本发明的目的在于针对现有技术的不足而提供一种可转位的、使刀片在切削刃各处不同的切削宽度都保持良好工作状态,且排屑顺畅的三维槽形圆铣刀片。
本发明的目的通过以下技术措施实现:
三维槽形圆铣刀片,由基本呈圆锥状的本体组成,所述本体的前刀面和侧面之间形成有切削刃,所述前刀面自侧面至中心依次形成有第一正前角面和第二正前角面;所述第一正前角面与垂直于本体几何轴心的平面的夹角为第一正前角,第一正前角为0°;所述第二正前角面与垂直于本体几何轴心的平面所形成的锐角为第二正前角;所述本体以其几何轴心为中心等分为多个单元刃,每个单元刃的第一正前角面自单元刃底部起随切削宽度变大而宽度逐渐增加,每个单元刃的第二正前角自单元刃底部起随切削宽度变大而角度增加。
本发明的进一步技术方案包括:
每个单元刃依次包括工作区间和过渡区间;所述第一正前角面的宽度在所述工作区间内逐渐增大,并在所述过渡区间结束处过渡至下一单元刃的第一正前角面起点宽度;所述第二正前角在所述工作区间内逐渐增大,并在所述过渡区间结束处过渡至下一单元刃的第二正前角起点角度。
其中,所述过渡区间的中心角为工作区间的中心角的1/5~1/3。
进一步地,所述过渡区间包括第一过渡区间和第二过渡区间,所述第一过渡区间靠近工作区间,所述第二过渡区间靠近相邻单元刃的工作区间;所述第一正前角面的宽度在所述第一过渡区间内逐渐增大,所述第二正前角所述第一过渡区间内逐渐减小;所述第一正前角面的宽度在所述第二过渡区间内逐渐减小至相邻单元刃的第一正前角起点宽度,所述第二正前角在所述第二过渡区域逐渐减小至相邻单元刃的第二正前角起点角度。
其中,所述第一过渡区间与第二过渡区间的中心角相等。
较优选地,所述本体等分为6个相同的单元刃,每个单元刃的工作区间的中心角为45°~50°。
根据以上所述的,所述本体在切削刃外侧形成有后角。
其中,所述本体在切削刃与后角之间设置有过渡的强化倒棱。
所述本体的侧面对应每个所述单元刃的位置分别设置有用于定位单元刃的定位平面,每个单元刃的前刀面靠近中心处凹设有定位凹坑。
所述本体中心处沿其中心轴线的方向开设有夹持孔。
本发明有益效果为:该三维槽形圆铣刀片由基本呈圆锥状的本体组成,所述本体的前刀面和侧面之间形成有切削刃,所述前刀面自侧面至中心依次形成有第一正前角面和第二正前角面;所述第一正前角面与垂直于本体几何轴心的平面的夹角为第一正前角,所述第一正前角为0°;所述第二正前角面与垂直于本体几何轴心的平面所形成的锐角为第二正前角;所述本体以其几何轴心为中心等分为多个单元刃,每个单元刃的第一正前角面自单元刃底部起随切削宽度变大而宽度逐渐增加,每个单元刃的第二正前角自单元刃底部起随切削宽度变大而角度增加。由于所述本体等分为多个单元刃,使用时,一个单元刃的切削刃磨损或崩坏时,可以转位而使用另一个单元刃,提高了本铣刀片的利用率;使用过程中,自单元刃的起点开始,主偏角逐渐增大,切削刃的切削宽度逐渐增大,故而切削刃上各处的切削力亦逐渐增大,随切削宽度变大而宽度逐渐增加的第一正前角面能较好地适应逐渐增大的切削力,因此能使切削力均衡分布,避免造成切削刃局部切削力过大而磨损或崩刃;而自单元刃底部起随切削宽度变大而角度增加的第二正前角能适应因切削宽度增大而厚度逐渐增大的切屑,使切屑能顺利从前刀面排出。
附图说明:
利用附图对本发明作进一步说明,但附图中的实施例不构成对本发明的任何限制。
图1是本发明的结构示意图;
图2是本发明的正面示意图;
图3是本发明的侧面示意图;
图4是图2的A向局部剖视图;
图5是图2的B向局部剖视图;
图6是图2的C向局部剖视图;
图7是图2的D向局部剖视图;
图8是本发明的工作状态示意图。
图1至图8中包括:
1——本体 11——前刀面 12——侧面
121——定位平面 13——单元刃 131——工作区间
132——过渡区间 β——第二正前角 γ——后角
132a——第一过渡区间 132b——第二过渡区间
14——强化倒棱 15——定位凹坑 16——夹持孔
2——第一正前角面 3——第二正前角面
4——刀盘 5——工件 51——加工完成面
d——切削宽度 h——切削深度
具体实施方式:
下面结合附图对本发明作进一步的说明,见图1至图8所示,这是本发明的较佳实施例:
三维槽形圆铣刀片,由基本呈圆锥状的本体1组成,所述本体1的前刀面11和侧面12之间形成有切削刃,所述前刀面11自侧面12至中心依次形成有第一正前角面2和第二正前角面3;所述第一正前角面2与垂直于本体1几何轴心的平面的夹角为第一正前角,第一正前角为0°;所述第二正前角面3与垂直于本体1几何轴心的平面所形成的锐角为第二正前角β;所述本体1以其几何轴心为中心等分为多个单元刃13,每个单元刃13的第一正前角面2自单元刃13底部起随切削宽度d变大而宽度逐渐增加,每个单元刃13的第二正前角β自单元刃13底部起随切削宽度d变大而角度增加。
本发明装配于铣刀刀盘4,由于所述本体1等分为多个单元刃13,使用时,一个单元刃13的切削刃磨损或崩坏时,可以转位而使用另一个单元刃13,提高了本铣刀片的利用率。
见图4、图5、图6、图7、图8所示,铣削加工工作过程中,刀片的切削深度h固定,单元刃13的底部切削刃,即单元刃13起点与工件5的加工完成面51接触,其主偏角为0°,该处主要用于对加工完成面51进行修光,主要受轴向挤压力,其径向切削力为零,故而此处的第一正前角面2宽度最窄,切削刃最锋利,切削过程中有利于有利于获得较高的切削粗糙度;同时,该处的第二正前角β最小,亦即刃根处最厚,这是因为所述第一正前角面2宽度最窄,为了保证该处的切削刃强度,保持该区域切削刃较好的抗挤压、抗折强度,而设置最小的第二正前角β。自单元刃13的起点开始,随切削宽度d增加,主偏角从0°逐渐增大,自所述单元刃13的起点起,切削刃与工件5的切削面接触,受径向的冲击力、剪切力逐渐增大,故而切削刃上各处的切削力亦逐渐增大,随切削宽度d变大而宽度逐渐增加的第一正前角面2使切削刃结构强度逐渐增加,能较好地适应逐渐增大的切削力,因此能使切削力均衡分布,避免造成切削刃局部切削力过大而磨损或崩刃;而自单元刃13底部起随切削宽度d变大而角度增加的第二正前角β能适应因切削宽度d增大而厚度逐渐增大的切屑,使切屑能顺利从前刀面11排出,同时,由于第一正前角面2的宽度逐渐增大而保证了切削刃的强度,所述第二正前角β逐渐增大,即刃根厚度逐渐减小,亦不会造成切削刃的强度下降,保证了本发明的工作可靠性。
见图2、图4、图5所示,每个单元刃13依次包括工作区间131和过渡区间132;所述第一正前角面2的宽度在所述工作区间131内逐渐增大,并在所述过渡区间132结束处过渡至下一单元刃13的第一正前角面2起点宽度;所述第二正前角β在所述工作区间131内逐渐增大,并在所述过渡区间132结束处过渡至下一单元刃13的第二正前角β起点角度。切削过程中,所述工作区间131内的切削刃参与切削。所述过渡区间132的设置,是为了使第一正前角面2的宽度,以及第二正前角β的角度由工作区间131的终点平滑过渡至下一单元刃13的工作区间131起点,避免应力集中,提高本体1的整体强度。
其中,所述过渡区间132的中心角为工作区间131的中心角的1/5~1/3。
见图2、图5、图6、图7所示,所述过渡区间132包括第一过渡区间132a和第二过渡区间132b,所述第一过渡区间132a靠近工作区间131,所述第二过渡区间132b靠近相邻单元刃13的工作区间131;所述第一正前角面2的宽度在所述第一过渡区间132a内逐渐增大,所述第二正前角β所述第一过渡区间132a内逐渐减小;所述第一正前角面2的宽度在所述第二过渡区间132b内逐渐减小至相邻单元刃13的第一正前角起点宽度,所述第二正前角β在所述第二过渡区域逐渐减小至相邻单元刃13的第二正前角β起点角度。
所述第一过渡区间132a靠近所述工作区间131,因而切削过程中,工作区间131受工件5的压力一部分传递至该第一过渡区间132a,为了提高第一过渡区间132a内的切削刃结构强度,在第一过渡区间132a内,第一正前角面2的宽度保持增大,而第二正前角β的角度逐渐减小;相对于第一过渡区间132a,第二过渡区间132b远离工作区间131,工件5压力对第二过渡区间132b的影响小,故而在该第二过渡区间132b内,第一正前角面2的宽度,以及第二正前角β的角度均逐渐减小过渡至下一单元刃13的起点,这样保证了过渡曲线平滑,防止出现曲线拐点而造成应力集中。
其中,较优选地,所述第一过渡区间132a与第二过渡区间132b的中心角相等。
见图1或图2所示,所述本体1等分为6个相同的单元刃13,每个单元刃13的工作区间131的中心角为45°~50°。切削过程中,单元刃13参与切削的切削刃长度由铣刀的切削深度h和每次进尺的切削宽度d共同决定,故而将圆形的本体1等分为6个相同的单元刃13,即能较好地同时满足切削深度h和每次进尺的切削宽度d的共同要求,避免不参与切削的闲置区域过大,有利于提高本发明的有效利用率。使用过程中,切削深度h大,则铣刀每次进尺的切削宽度d亦可增大,此时可以选用直径较大的铣刀片;反之,切削深度h小,则铣刀每次进尺的切削宽度d亦可小,此时可以选用直径较小的铣刀片。当然,也可以根据切削深度h或每次进尺的切削宽度d的具体要求,将本体1等分为少于6个或多于6个的单元刃13,这并不影响本发明的使用效果。
见图3所示,所述本体1在切削刃外侧形成有后角γ,所述后角γ形成于所述本体1的侧面12,该后角γ能在切削过程中形成容隙空间,避免除切削刃之外的侧面12与工件5切除余量后的表面接触,使切削过程顺利,同时,残留于工件5表面的切屑余屑亦可从该容隙空间排出,避免这些余屑刮伤工件5表面。
见图3、图4、图5、图6、图7所示,所述本体1在切削刃与后角γ之间设置有过渡的强化倒棱14。由于所述后角γ的存在,本体1的侧面12与所述第一正前角面2之间的夹角为锐角,不利于保证切削刃的强度,设置有所述强化倒棱14后,则所述强化倒棱14与所述第一正前角面2之间的夹角,以及强化倒棱14与所述侧面12之间的夹角均为钝角,这提高了切削刃的强度。
见图1、图2、图3所示,所述本体1的侧面12对应每个所述单元刃13的位置分别设置有用于定位单元刃13的定位平面121,每个单元刃13的前刀面11靠近中心处凹设有定位凹坑15。所述定位凹坑15与铣刀刀盘4上用于固定本发明的凸柱配合,用于定位和固定本体1,防止本体1在切削过程中发生颤动或滑移;所述定位平面121用于定位所述本体1,通过所述定位面121与设置在铣刀刀盘4上的安装限位装置对应定位,使设计前角特征对应到位,实现单元刃13中每一个特征的功能。
见图1或图2所示,所述本体1中心处沿其中心轴线的方向开设有夹持孔16。该夹持孔16用于将本发明安装于铣刀刀盘4,安装时,通过一插销或螺杆穿过所述夹持孔16而将本发明安装于刀盘4。当然,若刀盘4安装铣刀片的安装方式采用其它方式,所述本体1亦可不开设夹持孔16,这并不影响本发明的使用效果。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。