片状剥落有机粘土以制备纳米复合材料的方法.pdf

上传人:小** 文档编号:804612 上传时间:2018-03-12 格式:PDF 页数:10 大小:795.64KB
返回 下载 相关 举报
摘要
申请专利号:

CN200980123491.6

申请日:

2009.06.18

公开号:

CN102066255A

公开日:

2011.05.18

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效IPC(主分类):C01B 33/44申请日:20090618|||公开

IPC分类号:

C01B33/44; C08J3/20; C08K9/04; C09C3/08; C08J5/00

主分类号:

C01B33/44

申请人:

联合碳化化学及塑料技术有限责任公司

发明人:

罗伯特·F·伊顿; 穆罕麦德·埃塞吉尔

地址:

美国密歇根州

优先权:

2008.06.30 US 61/076,914

专利代理机构:

北京市柳沈律师事务所 11105

代理人:

吴培善

PDF下载: PDF下载
内容摘要

包括热塑性聚合物(TPO)和片状剥落的有机粘土的纳米复合材料通过包括下列的方法制备:在片状剥落条件下使至少一种熔融TPO聚合物与至少一种有机粘土以及H-TEMPO或H-TEMPO的胺前体中的至少一种片状剥落剂接触,使得所述片状剥落剂能够使所述有机粘土片状剥落。

权利要求书

1: 一种制备纳米复合材料的方法, 所述纳米复合材料包括 TPO 聚合物和片状剥落的有 机粘土, 所述方法包括在片状剥落条件下使至少一种熔融 TPO 聚合物与至少一种有机粘土 以及 H-TEMPO 或 H-TEMPO 的胺前体中的至少一种片状剥落剂接触, 使得所述片状剥落剂使 所述有机粘土片状剥落。
2: 权利要求 1 中所述的方法, 其进一步包括 : 将所述有机粘土与所述熔融聚合物树脂混合以使所述有机粘土分散于所述熔融聚合 物树脂内, 得到熔融的树脂 / 有机粘土共混物 ; 将所述片状剥落剂加入到所述熔融的树脂 / 有机粘土共混物中 ; 和, 将所述片状剥落剂与所述熔融的聚合物树脂 / 有机粘土共混物混合。
3: 权利要求 1 中所述的方法, 其中所述聚合物树脂包括下列中的至少一种 : 聚烯烃、 乙 烯 / 醋酸乙烯酯 (EVA) 共聚物、 乙烯 - 丙烯弹性体、 由乙烯 - 丙烯 - 二烯单体共聚物 (EPDM) 制备的三元共聚物弹性体、 或聚氯乙烯 (PVC)。
4: 权利要求 3 中所述的方法, 其中所述聚烯烃包括聚乙烯或聚丙烯的均聚物和共聚 物。
5: 权利要求 3 中所述的方法, 其中所述聚合物树脂包括 EPDM。
6: 权利要求 1 中所述的方法, 其中所述有机粘土的存在量为至多 25wt%, 基于所述纳 米复合材料的总重量。
7: 权利要求 1 中所述的方法, 其中所述有机粘土的存在量为 2wt%至 6wt%, 基于所述 纳米复合材料的总重量。
8: 权利要求 1 中所述的方法, 其中所述有机粘土的存在量小于 1wt%, 基于所述纳米复 合材料的总重量。
9: 权利要求 1 中所述的方法, 其中所述有机粘土的存在量为 0.125wt%至 0.25wt%, 基 于所述纳米复合材料的总重量。
10: 一种母料, 其包括 TPO 聚合物、 片状剥落的有机粘土、 以及 H-TEMPO 或 H-TEMPO 的胺 前体中的至少一种。

说明书


片状剥落有机粘土以制备纳米复合材料的方法

    相关申请的交叉引用
     本申请要求 2008 年 6 月 30 日提交的序列号为 61/076,914 的美国专利申请的优 先权, 其全部内容在此引入作为参考。
     发明领域 本发明涉及热塑性聚合物、 特别是热塑性烯烃 (TPO) 聚合物的填料。一方面, 本发 明涉及多层硅酸盐填料, 特别是有机粘土, 而另一方面, 本发明涉及在将硅酸盐填料与聚合 物共混时层离该硅酸盐填料的方法。再在另一方面, 本发明涉及包括 TPO 聚合物和层离的 硅酸盐填料的组合物。
     发明背景
     热塑性聚合物, 特别是 TPO 聚合物, 如聚乙烯、 聚丙烯、 乙烯 / 丙烯 / 二烯单体 (EPDM) 橡胶等, 特别适宜于各种各样的用途。然而, 由于它们相对于各种工程塑料 ( 例如, 尼龙、 聚砜、 聚碳酸酯等 ) 的低硬度和低韧度的性质, 热塑性聚合物典型地与一种或多种填 料共混以增强这些性质。与形态学上非平坦的 ( 即, 具有低长宽比 ) 填料相比, 形态学上平 坦的 ( 即, 具有相对高的长宽比 ) 填料更易赋予 TPO 聚合物更好的硬度和韧度。代表性的 平坦填料是有机粘土和滑石, 而代表性的非平坦填料是玻璃珠。
     平坦填料的形态学可以比作一副纸牌, 其中各张纸牌代表该填料的一个平面。所 述填料 ( 例如, 有机粘土 ) 的平面或层通过与位于各平面之间的可交换的阳离子的离子键 保持在一起。如果各张纸牌或平面可以相互分离, 即, 层离, 则该副纸牌或填料将能与跟其 共混的无论什么物质 ( 例如, TPO 聚合物 ) 更好地混合。 通常通过将天然产生的阳离子与较 大的原子或分子交换来使各平面相互分离, 并且引入平面间的分离越大, 混合得越好。 如果 各平面间的间距增大但彼此间的滑动并未达到任何显著程度 ( 各张纸牌间的间距加宽 ( 溶 胀 ) 但该副纸牌保持其整体形状 ), 则该填料是插层的 (intercalated)。如果该间距增加 至使得各平面之间互相滑动 ( 各张纸牌不再位于彼此之上的位置而是分散开来, 但是仍保 持一定程度的交叠, 而由此该副 “纸牌” 变得更短但是明显更宽和 / 或更长 ) 的程度, 则该 填料是片状剥落的。典型地, 片状剥落的填料是 “片状剥落” 的平面和插层平面的混合物, 例如, “分散的” 平面中的一些是 “短的” 各副溶胀平面。
     关于增加具有平坦填料的 TPO 聚合物的硬度和 / 或韧度的过程中, 理想地, 将该填 料片状剥落至使填料的各平面变为单层的程度, 即, 该副纸牌中的每一个都不位于彼此之 上。因为 TPO 聚合物是非极性的, 而很多 ( 如果并非全部 ) 平坦的填料 ( 特别是有机粘土 ) 是极性的, 则在 TPO 聚合物存在的条件下使该填料片状剥落 ( 即, 在其中非片状剥落的有机 粘土与 TPO 聚合物彼此共混接触的条件下 ) 以达到该聚合物与该填料各单个层的充分或均 相混合是非常困难的。到目前为止, 研究成果并未达到满意的效果。
     蒙脱石是有机粘土, 即一种多层硅酸盐。在其自然状态下, 其各层通过离子键与 位于各层之间的可交换阳离子结合在一起。如由 Kawasumi 等人在 Macromolecules, 1997, pp.6333-6338 中所讨论的, 当这样的硅酸盐与软化的或熔融的聚丙烯共混时, 即使当阳离
     子为季铵离子时, 得到的剪切力也不足以使所述硅酸盐层层离或片状剥落, 因为聚丙烯是 相对非极性的聚合物。
     Usuki 等人 (USP 5,973,053) 使用两种相关但并不相同的方法解决了这个问题。 第一种方法 ( 也由 Kawasumi 等人描述 ) 是将季铵交换的多层硅酸盐与马来酸酐改性的聚 丙烯低聚物共混, 并然后加入未改性的聚丙烯聚合物。马来酸酐改性的聚丙烯低聚物在共 混过程的剪切条件下具有足够的极性来使硅酸盐片状剥落。
     Usuki 等人的第二种方法是将季铵交换的多层硅酸盐与马来酸酐改性的聚丙烯聚 合物共混。 马来酸酐改性的聚丙烯聚合物在共混过程的剪切条件下具有足够的极性来使硅 酸盐片状剥落。
     Usuki 等人指出, 如果不使用马来酸酐改性的聚丙烯低聚物, 则马来酸酐改性的聚 丙烯聚合物的平均分子量应该限于约 100,000。 发明内容
     在一种实施方式中, 本发明是制备纳米复合材料的方法, 所述纳米复合材料包括 TPO 聚合物和片状剥落的有机粘土, 所述方法包括在片状剥落条件下使至少一种熔融 TPO 聚合物与至少一种有机粘土和 H-TEMPO 或 H-TEMPO 的胺前体中至少一种片状剥落剂接触, 使得该片状剥落剂使有机粘土片状剥落。 在另一种实施方式中, 本发明是一种母料, 其包括 TPO 聚合物、 片状剥落的有机粘 土、 和 H-TEMPO 或 H-TEMPO 的胺前体中的至少一种。
     附图说明
     该附图是用于实施例 1 的片状剥落的有机粘土 (Cloisite15A) 的电子显微照片。 具体实施方式
     针对美国专利实践的目的, 任何参考的专利、 专利申请或公开的内容全部引入作 为参考 ( 或者其等价的 US 文本也引入作为参考 ), 特别是关于合成技术、 定义 ( 达到不与本 申请特别提供的任何定义相矛盾的程度 )、 以及本领域的常识的那些。
     本申请中的数字范围是近似值, 因此除非指明, 否则其可以包括该范围以外的值。 数字范围包括下限值和上限值内的所有值并且包括上限值及下限值, 并且如果在任何下限 值和任何上限值之间存在至少两个单元的分隔, 则所述数字范围的增量为一个单元。作为 实例, 如果组成性质、 物理性质或其它性质 ( 如分子量、 添加剂含量等 ) 为 100 至 1,000, 那 么所有的单个值 ( 如 100、 101、 102 等 ) 和子区间 ( 如 100 至 144、 155 至 170、 197 至 200 等 ) 是清楚列举的。对于包含小于 1 的值或包含大于 1 的分数 ( 例如, 1.1、 1.5 等 ) 的范围, 认 为一个单元为 0.0001、 0.001、 0.01 或 0.1 是适当的。对于包含小于 10 的单个数字 ( 例如, 1 至 5) 的范围, 典型地认为一个单元为 0.1。这些仅是特别指出的实例, 并且认为本申请清 楚规定了所列举的最低值和最高值之间的数值的所有可能的组合。 本申请内的数字范围提 供了组合物的组分含量等。
     “共混物” 等术语表示两种或更多种化合物的组合物, 典型地为两种或更多种聚合物的组合物。这样的共混物可以是或可以不是溶混的。这样的共混物可以是或可以不是 相分离的。这样的共混物可以包含或可以不包含由透射电子光谱、 光散射、 x- 射线散射、 或 任何本领域已知的其它方法所确定的一种或多种微区构造。在本发明的上下文中, 共混物 包括两种或更多种热塑性聚合物 ( 无、 一种、 两种、 或更多种熔体 )、 或者一种热塑性聚合物 ( 熔体或非熔体 ) 与一种有机粘土 ( 片状剥落的或非片状剥落的 )。
     “组合物” 等术语表示两种或更多种组分的混合物或共混物。本发明的一种组合物 是包括热塑性聚合物、 非片状剥落的有机粘土和 H-TEMPO 的混合物, 而本发明的另一种组 合物是包括 TPO 聚合物和片状剥落的有机粘土的混合物。
     “共混接触” 等术语表示共混物或组合物的两种或更多种组分彼此密切接触, 如在 混合挤出机的运行期间两种聚合物之间或者聚合物和填料之间的接触。
     “片状剥落的有机粘土” 等术语表示层离的有机粘土, 即, 其中各组成层是分离的、 但是相对于它们的天然状态彼此间有较小量的交叠的有机粘土。在本发明的上下文中, 片 状剥落的有机粘土包括插层的有机粘土。
     “片状剥落剂” 等术语表示在片状剥落条件下可以在 TPO 聚合物存在时使有机粘土 层离的 H-TEMPO 或 H-TEMPO 的胺前体。
     “片状剥落条件” 等术语表示在熔融 TPO 聚合物存在时, H-TEMPO 或 H-TEMPO 的胺 前体有机粘土使层离所必需的温度、 压力、 剪切、 接触时间以及其它参数。
     “纳米复合材料” 等术语表示包括插层的或片状剥落的有机粘土的组合物。典型 地, 在分子级别上, 有机粘土的层或平面通过电子显微镜法测量不超过约 6 层厚。纳米复合 材料包括母料和充分制成制剂的组合物。
     “母料” 等术语表示包括向另一种组合物中添加并在其中稀释的浓缩量的某组分 的中间体或前体组合物。在本发明的上下文中, 母料是包括为向另一种聚合物中引入有机 粘土 ( 片状剥落的或非片状剥落的 ) 而在某聚合物中携带的过量的所述有机粘土的组合 物。典型地, 母料中的有机粘土的量使得, 通过向另一种聚合物中加入该母料, 得到的组合 物包含较小但期望浓度的有机粘土。典型地, 母料的聚合物与向组合物中所加入的聚合物 是相同的。
     本发明的方法可以用来制备任何适宜的热塑性聚合物树脂或聚合物树脂共混物 与片状剥落的有机粘土的纳米复合材料。适宜的热塑性聚合物树脂包括, 例如, 聚烯烃, 如 聚乙烯或聚丙烯均聚物和共聚物、 乙烯 / 醋酸乙烯基酯 (EVA) 共聚物或乙烯 - 丙烯弹性体 ( 或称作乙烯 - 丙烯 - 橡胶 (EPR))、 由乙烯 - 丙烯 - 二烯单体 (EPDM) 共聚物制备的三元共 聚物弹性体、 聚氯乙烯 (PVC)、 聚硅醚等。与在具有极性官能度的聚合物 ( 如 EVA、 PVC 等 ) 存在的情况相比, 有机粘土在不具有极性官能度的聚合物 ( 例如, 聚烯烃, 如聚乙烯、 聚丙 烯、 EPR、 EPDM 等 ) 存在的情况下可以更好地片状剥落。
     在一种优选的实施方式中, 本方法用来从 TPO 弹性体、 特别是 EPDM 制备纳米复合 材料。在 EPDM 中使有机粘土片状剥落是难以实现的。通常地, 需要使用马来酸酐共聚物来 使有机粘土在 EPDM 橡胶中片状剥落。如此一来, 本发明既是出乎意料的也是令人高度期待 的。
     在另一种优选的实施方式中, 本发明的方法用来制备 TPO 树脂和有机粘土的纳米 复合材料。 在本发明方式的一种变化中, 所述 TPO 树脂是聚烯烃 ( 如中密度或低密度聚乙烯或聚丙烯 ) 和热塑性弹性体 ( 如 EPDM 或极低密度聚乙烯 ) 的共混物, 典型地为其机械 ( 如 相对于反应器内 ) 共混物。在低温使用基于聚丙烯的 TPO 制品是受限的, 因为基于聚丙烯 的 TPO 制品具有相对较差的低温抗冲韧性, 因此, 典型地, 将聚丙烯与弹性体和 / 或填料共 混以赋予完成制品低温抗冲击性。
     用于本发明实践的有机粘土 ( 也称作亲有机物质的粘土 ) 通常为聚有机硅酸盐。 有机粘土是经离子交换机制通过使有机阳离子与天然粘土反应而制备的。有机阳离子与 粘土的天然夹层阳离子交换以产生亲有机物质的表面, 同时保持与天然粘土相似的片状结 构。 典型地, 该有机阳离子是季铵化合物。 有机粘土的普通实例包括已经与有机结构化学键 接的粘土, 如高岭土或蒙脱石。用于本发明的有机粘土可以具有过量的季铵化合物。制备 有机粘土的更多详细资料可以见于 USP 5,780,376。 有机粘土也是可从商业上购买到的, 如 购自 Southern Clay Products, Inc 的 CLOISITE 系列的以季铵盐改性的天然蒙脱粘土。
     本申请的有机粘土可以占组合物 ( 例如, 所述聚合物、 有机粘土和任何添加剂的 组合重量 ) 的至多 25 重量百分比 (wt% )。在一些实施方式中, 有机粘土的使用量为 2wt% 至 6wt%, 基于组合物的总重量。在其它实施方式中, 有机粘土的使用量小于约 1%, 优选 地, 其使用量为 0.125wt%至 0.25wt%, 基于组合物的总重量。 本申请的片状剥落剂是 H-TEMPO 或 H-TEMPO 的胺前体, 并且 H-TEMPO 具有的化学 结构式 (I) :
     H-TEMPO 的胺前体是 4- 羟基 -2, 2, 6, 6- 四甲基哌啶。
     用于本发明实践的片状剥落剂的使用量很大程度取决于所期望的片状剥落的程 度。例如, 5wt%的 H-TEMPO 适宜于使至少 5wt%的有机粘土片状剥落, 所有的 wt%均基于 组合物的总重量。
     本申请组合物也可以包含阻燃剂和其它填料 ( 形态学上平坦的或非平坦的 ), 所 述其它填料包括碳酸钙、 玻璃纤维和 / 或玻璃珠、 大理石粉尘、 水泥粉尘、 长石、 石英或玻 璃、 火成二氧化硅、 硅酸盐、 氧化铝、 各种磷化合物、 溴化铵、 三氧化锑、 氧化锌、 硼酸锌、 硫酸 钡、 有机硅树脂、 硅酸铝、 硅酸钙、 氧化钛、 玻璃微球、 白垩、 云母、 粘土、 硅灰石、 八钼酸铵、 膨 胀化合物、 可发性石墨、 以及这些化合物中的两种或更多种的混合物。 所述填料可以包含各 种表面涂层或表面处理剂, 如硅烷、 脂肪酸等。也可以使用卤化有机化合物, 其包括卤代烃 ( 如氯化石蜡 )、 卤化芳族化合物 ( 如五溴甲苯、 十溴二苯醚、 十溴二苯基乙烷、 亚乙基 - 二 ( 四溴邻苯二甲酰亚胺 )) 和其它含卤素的阻燃剂。 典型地, 如果使用, 以与本领域已知和常 规的方式和量使用这些其它填料, 例如, 使用量为 2wt%至 80wt%, 优选为 5wt%至 70wt%,
     基于组合物的重量。如果这些其它填料中的一种或多种用于本发明的实践, 则在有机粘土 已经在热塑性树脂存在时片状剥落之后, 可以加入所述填料。
     本申请组合物也可以包含其它添加剂, 其包括但不限于, 抗氧化剂 ( 例如, 受 TM TM 阻 酚 ( 如 IRGANOX 1010) 和 亚 磷 酸 酯 ( 如 IRGAFOS 168), 都 得 自 Ciba Specialty Chemicals)、 UV 稳定剂、 粘着添加剂、 光稳定剂 ( 如受阻胺 )、 增塑剂 ( 如邻苯二甲酸二辛酯 或环氧化的大豆油 )、 热稳定剂、 脱模剂、 增粘剂 ( 如烃类增粘剂 )、 蜡 ( 如聚乙烯蜡 )、 加工 助剂 ( 如油类、 有机酸 ( 如硬脂酸 )、 有机酸的金属盐 )、 交联剂 ( 如过氧化物或硅烷 )、 以及 着色剂和颜料。这些其它添加剂中的任何及全部的使用程度可以为, 它们不会干扰期望的 组合物的物理性质或机械性质。
     可以通过任何提供适当分布和混合的方法将有机粘土与热塑性聚合物共混。 典型 地, 将有机粘土与树脂在熔融混合器、 挤出机或类似设备中熔融混合。 将聚合物与所有类型 的添加剂熔融共混的技术是本领域已知的并且可以典型地用于本发明的实践。典型地, 在 用于本发明实践的熔融共混操作中, 将热塑性聚合物加热至足以形成聚合物熔体的温度, 然后将其与期望量的有机粘土在适宜的混合器 ( 如挤出机、 Banbury 混合器、 Brabender 混 合器、 或连续型混合器 ) 中混合。 复合材料可以通过下列步骤制备 : 在大于或等于聚合物熔 点的温度将片状剥落剂加入到呈熔体形式的聚合物和有机粘土中, 并通过机械剪切混合各 组分。剪切可以通过在挤出机 ( 单螺杆或双螺杆 ) 的一端引入聚合物熔体并在挤出机的另 一端接收所剪切的聚合物来完成。 熔体的温度、 熔体在挤出机中的停留时间、 和挤出机的设 计 ( 单螺杆、 双螺杆、 单位长度的螺纹数、 通道深度、 螺纹余隙、 混合区域等 ) 是几个通过其 来控制剪切量的变量。 可替换地, 可以先将聚合物粒化并使其与有机粘土干式混合, 然后在混合器中加 热该干式混合物加热直至所述混合物熔融而易流动的混合物。 然后向所述易流动的混合物 中加入片状剥落剂。然后, 可以使这种易流动的混合物与片状剥落剂在混合器中经受足够 的剪切, 从而期望的组合物。 也可以先在混合器中加热聚合物以形成易流动的混合物, 然后 加入有机粘土和片状剥落剂。然后, 使所述有机粘土、 硝基氧化物 (nitroxide) 化合物和聚 合物树脂经受足的剪切从而形成期望的组合物。
     片状剥落的有机粘土可以广泛地增加聚合物的硬度和韧度, 并改进聚合物的抗渗 性。它们使得聚烯烃可以在苛求应用中替代一些工程塑料。本发明的 TPO 纳米复合材料或 EPDM 纳米复合材料可以用来, 例如, 制备制造制品, 如机动车辆、 器具、 商业机器或建筑制品 的部件。所赋予的抗渗性可以使聚烯烃和其它对油和油脂敏感的聚合物能够用于 “车盖下 (under-hood)” 以及相关的汽车应用。 此外, 片状剥落的有机粘土可以改进有机粘土对于最 终用途的阻燃效力, 所述最终用途宽泛至电路板、 衣服、 电线和电缆护套、 计算机框架、 以及 汽车内部和外部部件。其它应用包括改进聚烯烃和其它非极性塑料的可涂漆性 ( 无需一步 或多步准备步骤, 如底漆、 蚀刻等的应用 )、 和增加有机光发射二极管的功效。此外, 通过加 入片状剥落的有机粘土, 可以改进非烯烃类聚合物的上限使用温度, 也可以改进各种聚合 物的成核剂的功效, 所述后者可以依次产生改进的光学透明度、 挠曲温度热、 电导率、 刚性 等。
     下面的实施例意在说明本发明, 因此并不限制本发明。除非说明, 否则比率、 份和 百分比均基于重量。
     具体的实施方式
     实施例 1-2 和对比例 A-D :
     NORDEL 3722( 即, 一种 EPDM) 是乙烯 / 丙烯 / 二烯低结晶橡胶。 通过 ASTM D-1646 测量其在 125℃的门尼粘度为约 18。其是大约 71wt%的乙烯和约 0.5wt%的乙叉降冰片 烯。 其用作热塑性聚合物来制备实施例 1-2 的组合物, 其中实施例 1-2 各自包含 H-TEMPO 和 CLOISITE 有机粘土。 CLOISITE A 和 B 是通过将脂肪铵离子离子交换为该粘土内部的钠离 子从蒙脱石制备的。CLOISITE 30 包含氮上的一个脂肪组分 ; CLOISITE 15A 具有氮上的两 + 个脂肪基团。CLOISITE Na 是天然粘土 ( 即, 其非离子交换的 )。相同的 EPDM 用来制备对 比例 A-D。不论对于实施例还是对于对比例, 都按照下列进行 : 使 EPDM 聚合物在 Brabender 中于 80-110℃熔融, 加入粘土 ( 或二氧化硅 ), 然后, 当适用时加入 H-TEMPO。 将膜压制成约 80 密耳的样片, 切成狗骨头形状 ( 一英寸长度规格 ) 并以 2 英寸 / 毫米在 Instron Tensile tester 上测量。组成和模量结果如表 1 所报告。
     表1
     实施例 1-2 和对比例 A-D 的组成和模量
     材料 实施例 1 实施例 2 对比例 A 对比例 B 对比例 C EPDM 90 90 90 95 100
     H-TEMPO 5 5 5 5 0
     Cloisite 15A 5 0 0 0 0
     Cloisite 30B 0 5 5 0 0 +
     Cloisite Na 0 0 5 0 0
     总计 100 100 100 100 100
     填料 5 5 5 0 0
     2” /min 模量
     拉伸模量 (psi) 3687 2661 2376 2171 1892
     实施例 1 和 2 报告了相对于对比例改进的模量。实施例 1(5%的 Cloisite 15A 和 5%的 H-TEMPO) 的组合物的模量是 CE-D(Nordell 3722 纯 ) 的组合物的模量的两倍。与既 不包含 H-TEMPO 也不包含有机粘土的各种对照相比, 实施例 1 和 2 表现了较高的模量。具 有两个脂肪取代基的 CLOISITE A 表现了最高的模量。
     附图的电子显微照片显示了实施例 1 的 Cloisite 15A 是片状剥落的。
     实施例 3-4 和对比例 E :
     以与报告于表 1 中的组合物相同的材料以及相同的方式制备实施例 3-4 和对比例 E 的组合物。 测试组合物的体积电阻率, 其为电绝缘性质, 其中越高的值代表越好的绝缘性。 组成和体积电阻率结果如表 2 所报告。
     表2
     实施例 5-6 和对比例 E 的组成和体积电阻率
     材料 对比例 E 实施例 5 实施例 6
     EPDM 98.68 98.305 98.18
     DiCup 过氧化物 1.32 1.32 1.32
     H-TEMPO 0 0.25 0.25
     Cloisite 15A 0 0.125 0.25 14 15
     体积电阻率 1.37x10 2.49x10 3.63x1015
     与纯交联的 NORDEL 橡胶相比, H-TEMPO 和有机粘土的添加显示了更高的高达十倍 的电阻率。较高的电阻率, 即较低的电导率, 说明电绝缘性质通过粘土和 H-TEMPO 改性而增 强了。

片状剥落有机粘土以制备纳米复合材料的方法.pdf_第1页
第1页 / 共10页
片状剥落有机粘土以制备纳米复合材料的方法.pdf_第2页
第2页 / 共10页
片状剥落有机粘土以制备纳米复合材料的方法.pdf_第3页
第3页 / 共10页
点击查看更多>>
资源描述

《片状剥落有机粘土以制备纳米复合材料的方法.pdf》由会员分享,可在线阅读,更多相关《片状剥落有机粘土以制备纳米复合材料的方法.pdf(10页珍藏版)》请在专利查询网上搜索。

1、10申请公布号CN102066255A43申请公布日20110518CN102066255ACN102066255A21申请号200980123491622申请日2009061861/076,91420080630USC01B33/44200601C08J3/20200601C08K9/04200601C09C3/08200601C08J5/0020060171申请人联合碳化化学及塑料技术有限责任公司地址美国密歇根州72发明人罗伯特F伊顿穆罕麦德埃塞吉尔74专利代理机构北京市柳沈律师事务所11105代理人吴培善54发明名称片状剥落有机粘土以制备纳米复合材料的方法57摘要包括热塑性聚合物TPO和。

2、片状剥落的有机粘土的纳米复合材料通过包括下列的方法制备在片状剥落条件下使至少一种熔融TPO聚合物与至少一种有机粘土以及HTEMPO或HTEMPO的胺前体中的至少一种片状剥落剂接触,使得所述片状剥落剂能够使所述有机粘土片状剥落。30优先权数据85PCT申请进入国家阶段日2010122186PCT申请的申请数据PCT/US2009/0477492009061887PCT申请的公布数据WO2010/002598EN2010010751INTCL19中华人民共和国国家知识产权局12发明专利申请权利要求书1页说明书7页附图1页CN102066265A1/1页21一种制备纳米复合材料的方法,所述纳米复合材。

3、料包括TPO聚合物和片状剥落的有机粘土,所述方法包括在片状剥落条件下使至少一种熔融TPO聚合物与至少一种有机粘土以及HTEMPO或HTEMPO的胺前体中的至少一种片状剥落剂接触,使得所述片状剥落剂使所述有机粘土片状剥落。2权利要求1中所述的方法,其进一步包括将所述有机粘土与所述熔融聚合物树脂混合以使所述有机粘土分散于所述熔融聚合物树脂内,得到熔融的树脂/有机粘土共混物;将所述片状剥落剂加入到所述熔融的树脂/有机粘土共混物中;和,将所述片状剥落剂与所述熔融的聚合物树脂/有机粘土共混物混合。3权利要求1中所述的方法,其中所述聚合物树脂包括下列中的至少一种聚烯烃、乙烯/醋酸乙烯酯EVA共聚物、乙烯丙。

4、烯弹性体、由乙烯丙烯二烯单体共聚物EPDM制备的三元共聚物弹性体、或聚氯乙烯PVC。4权利要求3中所述的方法,其中所述聚烯烃包括聚乙烯或聚丙烯的均聚物和共聚物。5权利要求3中所述的方法,其中所述聚合物树脂包括EPDM。6权利要求1中所述的方法,其中所述有机粘土的存在量为至多25WT,基于所述纳米复合材料的总重量。7权利要求1中所述的方法,其中所述有机粘土的存在量为2WT至6WT,基于所述纳米复合材料的总重量。8权利要求1中所述的方法,其中所述有机粘土的存在量小于1WT,基于所述纳米复合材料的总重量。9权利要求1中所述的方法,其中所述有机粘土的存在量为0125WT至025WT,基于所述纳米复合材。

5、料的总重量。10一种母料,其包括TPO聚合物、片状剥落的有机粘土、以及HTEMPO或HTEMPO的胺前体中的至少一种。权利要求书CN102066255ACN102066265A1/7页3片状剥落有机粘土以制备纳米复合材料的方法0001相关申请的交叉引用0002本申请要求2008年6月30日提交的序列号为61/076,914的美国专利申请的优先权,其全部内容在此引入作为参考。发明领域0003本发明涉及热塑性聚合物、特别是热塑性烯烃TPO聚合物的填料。一方面,本发明涉及多层硅酸盐填料,特别是有机粘土,而另一方面,本发明涉及在将硅酸盐填料与聚合物共混时层离该硅酸盐填料的方法。再在另一方面,本发明涉及。

6、包括TPO聚合物和层离的硅酸盐填料的组合物。0004发明背景0005热塑性聚合物,特别是TPO聚合物,如聚乙烯、聚丙烯、乙烯/丙烯/二烯单体EPDM橡胶等,特别适宜于各种各样的用途。然而,由于它们相对于各种工程塑料例如,尼龙、聚砜、聚碳酸酯等的低硬度和低韧度的性质,热塑性聚合物典型地与一种或多种填料共混以增强这些性质。与形态学上非平坦的即,具有低长宽比填料相比,形态学上平坦的即,具有相对高的长宽比填料更易赋予TPO聚合物更好的硬度和韧度。代表性的平坦填料是有机粘土和滑石,而代表性的非平坦填料是玻璃珠。0006平坦填料的形态学可以比作一副纸牌,其中各张纸牌代表该填料的一个平面。所述填料例如,有机。

7、粘土的平面或层通过与位于各平面之间的可交换的阳离子的离子键保持在一起。如果各张纸牌或平面可以相互分离,即,层离,则该副纸牌或填料将能与跟其共混的无论什么物质例如,TPO聚合物更好地混合。通常通过将天然产生的阳离子与较大的原子或分子交换来使各平面相互分离,并且引入平面间的分离越大,混合得越好。如果各平面间的间距增大但彼此间的滑动并未达到任何显著程度各张纸牌间的间距加宽溶胀但该副纸牌保持其整体形状,则该填料是插层的INTERCALATED。如果该间距增加至使得各平面之间互相滑动各张纸牌不再位于彼此之上的位置而是分散开来,但是仍保持一定程度的交叠,而由此该副“纸牌”变得更短但是明显更宽和/或更长的程。

8、度,则该填料是片状剥落的。典型地,片状剥落的填料是“片状剥落”的平面和插层平面的混合物,例如,“分散的”平面中的一些是“短的”各副溶胀平面。0007关于增加具有平坦填料的TPO聚合物的硬度和/或韧度的过程中,理想地,将该填料片状剥落至使填料的各平面变为单层的程度,即,该副纸牌中的每一个都不位于彼此之上。因为TPO聚合物是非极性的,而很多如果并非全部平坦的填料特别是有机粘土是极性的,则在TPO聚合物存在的条件下使该填料片状剥落即,在其中非片状剥落的有机粘土与TPO聚合物彼此共混接触的条件下以达到该聚合物与该填料各单个层的充分或均相混合是非常困难的。到目前为止,研究成果并未达到满意的效果。0008。

9、蒙脱石是有机粘土,即一种多层硅酸盐。在其自然状态下,其各层通过离子键与位于各层之间的可交换阳离子结合在一起。如由KAWASUMI等人在MACROMOLECULES,1997,PP63336338中所讨论的,当这样的硅酸盐与软化的或熔融的聚丙烯共混时,即使当阳离说明书CN102066255ACN102066265A2/7页4子为季铵离子时,得到的剪切力也不足以使所述硅酸盐层层离或片状剥落,因为聚丙烯是相对非极性的聚合物。0009USUKI等人USP5,973,053使用两种相关但并不相同的方法解决了这个问题。第一种方法也由KAWASUMI等人描述是将季铵交换的多层硅酸盐与马来酸酐改性的聚丙烯低聚。

10、物共混,并然后加入未改性的聚丙烯聚合物。马来酸酐改性的聚丙烯低聚物在共混过程的剪切条件下具有足够的极性来使硅酸盐片状剥落。0010USUKI等人的第二种方法是将季铵交换的多层硅酸盐与马来酸酐改性的聚丙烯聚合物共混。马来酸酐改性的聚丙烯聚合物在共混过程的剪切条件下具有足够的极性来使硅酸盐片状剥落。0011USUKI等人指出,如果不使用马来酸酐改性的聚丙烯低聚物,则马来酸酐改性的聚丙烯聚合物的平均分子量应该限于约100,000。发明内容0012在一种实施方式中,本发明是制备纳米复合材料的方法,所述纳米复合材料包括TPO聚合物和片状剥落的有机粘土,所述方法包括在片状剥落条件下使至少一种熔融TPO聚合。

11、物与至少一种有机粘土和HTEMPO或HTEMPO的胺前体中至少一种片状剥落剂接触,使得该片状剥落剂使有机粘土片状剥落。0013在另一种实施方式中,本发明是一种母料,其包括TPO聚合物、片状剥落的有机粘土、和HTEMPO或HTEMPO的胺前体中的至少一种。附图说明0014该附图是用于实施例1的片状剥落的有机粘土CLOISITE15A的电子显微照片。具体实施方式0015针对美国专利实践的目的,任何参考的专利、专利申请或公开的内容全部引入作为参考或者其等价的US文本也引入作为参考,特别是关于合成技术、定义达到不与本申请特别提供的任何定义相矛盾的程度、以及本领域的常识的那些。0016本申请中的数字范围。

12、是近似值,因此除非指明,否则其可以包括该范围以外的值。数字范围包括下限值和上限值内的所有值并且包括上限值及下限值,并且如果在任何下限值和任何上限值之间存在至少两个单元的分隔,则所述数字范围的增量为一个单元。作为实例,如果组成性质、物理性质或其它性质如分子量、添加剂含量等为100至1,000,那么所有的单个值如100、101、102等和子区间如100至144、155至170、197至200等是清楚列举的。对于包含小于1的值或包含大于1的分数例如,11、15等的范围,认为一个单元为00001、0001、001或01是适当的。对于包含小于10的单个数字例如,1至5的范围,典型地认为一个单元为01。这。

13、些仅是特别指出的实例,并且认为本申请清楚规定了所列举的最低值和最高值之间的数值的所有可能的组合。本申请内的数字范围提供了组合物的组分含量等。0017“共混物”等术语表示两种或更多种化合物的组合物,典型地为两种或更多种聚合说明书CN102066255ACN102066265A3/7页5物的组合物。这样的共混物可以是或可以不是溶混的。这样的共混物可以是或可以不是相分离的。这样的共混物可以包含或可以不包含由透射电子光谱、光散射、X射线散射、或任何本领域已知的其它方法所确定的一种或多种微区构造。在本发明的上下文中,共混物包括两种或更多种热塑性聚合物无、一种、两种、或更多种熔体、或者一种热塑性聚合物熔体。

14、或非熔体与一种有机粘土片状剥落的或非片状剥落的。0018“组合物”等术语表示两种或更多种组分的混合物或共混物。本发明的一种组合物是包括热塑性聚合物、非片状剥落的有机粘土和HTEMPO的混合物,而本发明的另一种组合物是包括TPO聚合物和片状剥落的有机粘土的混合物。0019“共混接触”等术语表示共混物或组合物的两种或更多种组分彼此密切接触,如在混合挤出机的运行期间两种聚合物之间或者聚合物和填料之间的接触。0020“片状剥落的有机粘土”等术语表示层离的有机粘土,即,其中各组成层是分离的、但是相对于它们的天然状态彼此间有较小量的交叠的有机粘土。在本发明的上下文中,片状剥落的有机粘土包括插层的有机粘土。。

15、0021“片状剥落剂”等术语表示在片状剥落条件下可以在TPO聚合物存在时使有机粘土层离的HTEMPO或HTEMPO的胺前体。0022“片状剥落条件”等术语表示在熔融TPO聚合物存在时,HTEMPO或HTEMPO的胺前体有机粘土使层离所必需的温度、压力、剪切、接触时间以及其它参数。0023“纳米复合材料”等术语表示包括插层的或片状剥落的有机粘土的组合物。典型地,在分子级别上,有机粘土的层或平面通过电子显微镜法测量不超过约6层厚。纳米复合材料包括母料和充分制成制剂的组合物。0024“母料”等术语表示包括向另一种组合物中添加并在其中稀释的浓缩量的某组分的中间体或前体组合物。在本发明的上下文中,母料是。

16、包括为向另一种聚合物中引入有机粘土片状剥落的或非片状剥落的而在某聚合物中携带的过量的所述有机粘土的组合物。典型地,母料中的有机粘土的量使得,通过向另一种聚合物中加入该母料,得到的组合物包含较小但期望浓度的有机粘土。典型地,母料的聚合物与向组合物中所加入的聚合物是相同的。0025本发明的方法可以用来制备任何适宜的热塑性聚合物树脂或聚合物树脂共混物与片状剥落的有机粘土的纳米复合材料。适宜的热塑性聚合物树脂包括,例如,聚烯烃,如聚乙烯或聚丙烯均聚物和共聚物、乙烯/醋酸乙烯基酯EVA共聚物或乙烯丙烯弹性体或称作乙烯丙烯橡胶EPR、由乙烯丙烯二烯单体EPDM共聚物制备的三元共聚物弹性体、聚氯乙烯PVC、。

17、聚硅醚等。与在具有极性官能度的聚合物如EVA、PVC等存在的情况相比,有机粘土在不具有极性官能度的聚合物例如,聚烯烃,如聚乙烯、聚丙烯、EPR、EPDM等存在的情况下可以更好地片状剥落。0026在一种优选的实施方式中,本方法用来从TPO弹性体、特别是EPDM制备纳米复合材料。在EPDM中使有机粘土片状剥落是难以实现的。通常地,需要使用马来酸酐共聚物来使有机粘土在EPDM橡胶中片状剥落。如此一来,本发明既是出乎意料的也是令人高度期待的。0027在另一种优选的实施方式中,本发明的方法用来制备TPO树脂和有机粘土的纳米复合材料。在本发明方式的一种变化中,所述TPO树脂是聚烯烃如中密度或低密度聚乙烯说。

18、明书CN102066255ACN102066265A4/7页6或聚丙烯和热塑性弹性体如EPDM或极低密度聚乙烯的共混物,典型地为其机械如相对于反应器内共混物。在低温使用基于聚丙烯的TPO制品是受限的,因为基于聚丙烯的TPO制品具有相对较差的低温抗冲韧性,因此,典型地,将聚丙烯与弹性体和/或填料共混以赋予完成制品低温抗冲击性。0028用于本发明实践的有机粘土也称作亲有机物质的粘土通常为聚有机硅酸盐。有机粘土是经离子交换机制通过使有机阳离子与天然粘土反应而制备的。有机阳离子与粘土的天然夹层阳离子交换以产生亲有机物质的表面,同时保持与天然粘土相似的片状结构。典型地,该有机阳离子是季铵化合物。有机粘土。

19、的普通实例包括已经与有机结构化学键接的粘土,如高岭土或蒙脱石。用于本发明的有机粘土可以具有过量的季铵化合物。制备有机粘土的更多详细资料可以见于USP5,780,376。有机粘土也是可从商业上购买到的,如购自SOUTHERNCLAYPRODUCTS,INC的CLOISITE系列的以季铵盐改性的天然蒙脱粘土。0029本申请的有机粘土可以占组合物例如,所述聚合物、有机粘土和任何添加剂的组合重量的至多25重量百分比WT。在一些实施方式中,有机粘土的使用量为2WT至6WT,基于组合物的总重量。在其它实施方式中,有机粘土的使用量小于约1,优选地,其使用量为0125WT至025WT,基于组合物的总重量。00。

20、30本申请的片状剥落剂是HTEMPO或HTEMPO的胺前体,并且HTEMPO具有的化学结构式I00310032HTEMPO的胺前体是4羟基2,2,6,6四甲基哌啶。0033用于本发明实践的片状剥落剂的使用量很大程度取决于所期望的片状剥落的程度。例如,5WT的HTEMPO适宜于使至少5WT的有机粘土片状剥落,所有的WT均基于组合物的总重量。0034本申请组合物也可以包含阻燃剂和其它填料形态学上平坦的或非平坦的,所述其它填料包括碳酸钙、玻璃纤维和/或玻璃珠、大理石粉尘、水泥粉尘、长石、石英或玻璃、火成二氧化硅、硅酸盐、氧化铝、各种磷化合物、溴化铵、三氧化锑、氧化锌、硼酸锌、硫酸钡、有机硅树脂、硅酸。

21、铝、硅酸钙、氧化钛、玻璃微球、白垩、云母、粘土、硅灰石、八钼酸铵、膨胀化合物、可发性石墨、以及这些化合物中的两种或更多种的混合物。所述填料可以包含各种表面涂层或表面处理剂,如硅烷、脂肪酸等。也可以使用卤化有机化合物,其包括卤代烃如氯化石蜡、卤化芳族化合物如五溴甲苯、十溴二苯醚、十溴二苯基乙烷、亚乙基二四溴邻苯二甲酰亚胺和其它含卤素的阻燃剂。典型地,如果使用,以与本领域已知和常规的方式和量使用这些其它填料,例如,使用量为2WT至80WT,优选为5WT至70WT,说明书CN102066255ACN102066265A5/7页7基于组合物的重量。如果这些其它填料中的一种或多种用于本发明的实践,则在有。

22、机粘土已经在热塑性树脂存在时片状剥落之后,可以加入所述填料。0035本申请组合物也可以包含其它添加剂,其包括但不限于,抗氧化剂例如,受阻酚如IRGANOXTM1010和亚磷酸酯如IRGAFOSTM168,都得自CIBASPECIALTYCHEMICALS、UV稳定剂、粘着添加剂、光稳定剂如受阻胺、增塑剂如邻苯二甲酸二辛酯或环氧化的大豆油、热稳定剂、脱模剂、增粘剂如烃类增粘剂、蜡如聚乙烯蜡、加工助剂如油类、有机酸如硬脂酸、有机酸的金属盐、交联剂如过氧化物或硅烷、以及着色剂和颜料。这些其它添加剂中的任何及全部的使用程度可以为,它们不会干扰期望的组合物的物理性质或机械性质。0036可以通过任何提供适。

23、当分布和混合的方法将有机粘土与热塑性聚合物共混。典型地,将有机粘土与树脂在熔融混合器、挤出机或类似设备中熔融混合。将聚合物与所有类型的添加剂熔融共混的技术是本领域已知的并且可以典型地用于本发明的实践。典型地,在用于本发明实践的熔融共混操作中,将热塑性聚合物加热至足以形成聚合物熔体的温度,然后将其与期望量的有机粘土在适宜的混合器如挤出机、BANBURY混合器、BRABENDER混合器、或连续型混合器中混合。复合材料可以通过下列步骤制备在大于或等于聚合物熔点的温度将片状剥落剂加入到呈熔体形式的聚合物和有机粘土中,并通过机械剪切混合各组分。剪切可以通过在挤出机单螺杆或双螺杆的一端引入聚合物熔体并在挤。

24、出机的另一端接收所剪切的聚合物来完成。熔体的温度、熔体在挤出机中的停留时间、和挤出机的设计单螺杆、双螺杆、单位长度的螺纹数、通道深度、螺纹余隙、混合区域等是几个通过其来控制剪切量的变量。0037可替换地,可以先将聚合物粒化并使其与有机粘土干式混合,然后在混合器中加热该干式混合物加热直至所述混合物熔融而易流动的混合物。然后向所述易流动的混合物中加入片状剥落剂。然后,可以使这种易流动的混合物与片状剥落剂在混合器中经受足够的剪切,从而期望的组合物。也可以先在混合器中加热聚合物以形成易流动的混合物,然后加入有机粘土和片状剥落剂。然后,使所述有机粘土、硝基氧化物NITROXIDE化合物和聚合物树脂经受足。

25、的剪切从而形成期望的组合物。0038片状剥落的有机粘土可以广泛地增加聚合物的硬度和韧度,并改进聚合物的抗渗性。它们使得聚烯烃可以在苛求应用中替代一些工程塑料。本发明的TPO纳米复合材料或EPDM纳米复合材料可以用来,例如,制备制造制品,如机动车辆、器具、商业机器或建筑制品的部件。所赋予的抗渗性可以使聚烯烃和其它对油和油脂敏感的聚合物能够用于“车盖下UNDERHOOD”以及相关的汽车应用。此外,片状剥落的有机粘土可以改进有机粘土对于最终用途的阻燃效力,所述最终用途宽泛至电路板、衣服、电线和电缆护套、计算机框架、以及汽车内部和外部部件。其它应用包括改进聚烯烃和其它非极性塑料的可涂漆性无需一步或多步。

26、准备步骤,如底漆、蚀刻等的应用、和增加有机光发射二极管的功效。此外,通过加入片状剥落的有机粘土,可以改进非烯烃类聚合物的上限使用温度,也可以改进各种聚合物的成核剂的功效,所述后者可以依次产生改进的光学透明度、挠曲温度热、电导率、刚性等。0039下面的实施例意在说明本发明,因此并不限制本发明。除非说明,否则比率、份和百分比均基于重量。说明书CN102066255ACN102066265A6/7页80040具体的实施方式0041实施例12和对比例AD0042NORDEL3722即,一种EPDM是乙烯/丙烯/二烯低结晶橡胶。通过ASTMD1646测量其在125的门尼粘度为约18。其是大约71WT的乙。

27、烯和约05WT的乙叉降冰片烯。其用作热塑性聚合物来制备实施例12的组合物,其中实施例12各自包含HTEMPO和CLOISITE有机粘土。CLOISITEA和B是通过将脂肪铵离子离子交换为该粘土内部的钠离子从蒙脱石制备的。CLOISITE30包含氮上的一个脂肪组分;CLOISITE15A具有氮上的两个脂肪基团。CLOISITENA是天然粘土即,其非离子交换的。相同的EPDM用来制备对比例AD。不论对于实施例还是对于对比例,都按照下列进行使EPDM聚合物在BRABENDER中于80110熔融,加入粘土或二氧化硅,然后,当适用时加入HTEMPO。将膜压制成约80密耳的样片,切成狗骨头形状一英寸长度规。

28、格并以2英寸/毫米在INSTRONTENSILETESTER上测量。组成和模量结果如表1所报告。0043表10044实施例12和对比例AD的组成和模量0045材料实施例1实施例2对比例A对比例B对比例C0046EPDM909090951000047HTEMPO555500048CLOISITE15A500000049CLOISITE30B055000050CLOISITENA005000051总计1001001001001000052填料5550000532”/MIN模量0054拉伸模量PSI368726612376217118920055实施例1和2报告了相对于对比例改进的模量。实施例15的。

29、CLOISITE15A和5的HTEMPO的组合物的模量是CEDNORDELL3722纯的组合物的模量的两倍。与既不包含HTEMPO也不包含有机粘土的各种对照相比,实施例1和2表现了较高的模量。具有两个脂肪取代基的CLOISITEA表现了最高的模量。0056附图的电子显微照片显示了实施例1的CLOISITE15A是片状剥落的。0057实施例34和对比例E0058以与报告于表1中的组合物相同的材料以及相同的方式制备实施例34和对比例E的组合物。测试组合物的体积电阻率,其为电绝缘性质,其中越高的值代表越好的绝缘性。组成和体积电阻率结果如表2所报告。0059表20060实施例56和对比例E的组成和体积。

30、电阻率0061材料对比例E实施例5实施例60062EPDM98689830598180063DICUP过氧化物1321321320064HTEMPO0025025说明书CN102066255ACN102066265A7/7页90065CLOISITE15A001250250066体积电阻率137X1014249X1015363X10150067与纯交联的NORDEL橡胶相比,HTEMPO和有机粘土的添加显示了更高的高达十倍的电阻率。较高的电阻率,即较低的电导率,说明电绝缘性质通过粘土和HTEMPO改性而增强了。说明书CN102066255ACN102066265A1/1页10图1说明书附图CN102066255A。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 化学;冶金 > 无机化学


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1