碳纤维碳复合成型体、碳纤维强化碳复合体材料及其制造方法.pdf

上传人:1****2 文档编号:788551 上传时间:2018-03-11 格式:PDF 页数:14 大小:906.39KB
返回 下载 相关 举报
摘要
申请专利号:

CN200980113117.8

申请日:

2009.04.06

公开号:

CN102007090A

公开日:

2011.04.06

当前法律状态:

驳回

有效性:

无权

法律详情:

发明专利申请公布后的驳回IPC(主分类):H01L 23/36申请公布日:20110406|||实质审查的生效IPC(主分类):C04B 35/83申请日:20090406|||公开

IPC分类号:

C04B35/83; C04B41/88; C30B15/10; H01L23/36; H01L23/373

主分类号:

C04B35/83

申请人:

东洋炭素株式会社

发明人:

武田章义

地址:

日本大阪府

优先权:

2008.04.14 JP 2008-104539

专利代理机构:

北京尚诚知识产权代理有限公司 11322

代理人:

龙淳

PDF下载: PDF下载
内容摘要

本发明得到一种沿X轴及Y轴的面方向的所有方向均显示优异的热传导率的碳纤维强化碳复合材料。本发明在于提供碳纤维碳复合成型体和使用该成型体得到的碳纤维强化碳复合材料,该碳纤维复合成型体的特征在于,通过在叠层有沿X轴及Y轴的面方向随机分散有沥青类碳纤维的片状分散体的碳纤维叠层体的碳纤维的表面上堆积热分解碳而包覆该碳纤维的周围,在上述碳纤维叠层体内填充热分解碳。

权利要求书

1.一种碳纤维碳复合成型体,其特征在于:通过在沿X轴及Y轴的面方向随机分散有碳纤维的碳纤维叠层体的碳纤维的表面上堆积热分解碳而包覆该碳纤维的周围,在所述碳纤维叠层体内填充热分解碳。2.如权利要求1所述的碳纤维碳复合成型体,其特征在于:所述碳纤维碳叠层体是将沿X轴及Y轴的面方向随机分散有碳纤维的片状分散体叠层而得到的。3.如权利要求2所述的碳纤维碳复合成型体,其特征在于:所述碳纤维碳叠层体是使树脂含浸于沿X轴及Y轴的面方向随机分散有碳纤维的分散体中,形成预浸渍材料,将该预浸渍材料叠层多层而加压成型后,进行热处理而得到的。4.如权利要求1所述的碳纤维碳复合成型体,其特征在于:所述碳纤维碳叠层体是使用碳纤维进行梳理,通过粘合剂无光泽化而得到的无光泽状分散体。5.如权利要求1~4中任一项所述的碳纤维碳复合成型体,其特征在于:所述碳纤维为沥青类碳纤维。6.如权利要求1~5中任一项所述的碳纤维碳复合成型体,其特征在于:密度为1.50~1.80Mg/m37.如权利要求1~5中任一项所述的碳纤维碳复合成型体,其特征在于:填充热分解碳之后,含浸沥青。8.如权利要求7所述的碳纤维碳复合成型体,其特征在于:密度为1.60~2.00Mg/m39.一种碳纤维强化碳复合材料,其特征在于:使权利要求7或8所述的碳纤维碳复合成型体的石墨晶体成长。10.如权利要求9所述的碳纤维强化碳复合材料,其特征在于:由X射线衍射测得的石墨晶体的112面的厚度为6nm以上。11.一种碳纤维强化碳复合材料的制造方法,用于制造权利要求9或10所述的碳纤维强化碳复合材料,其特征在于,包括:制备密度为0.10~0.40Mg/m3的所述碳纤维叠层体的工序,在所述碳纤维叠层体的碳纤维的表面上堆积热分解碳,制备密度为1.50~1.80Mg/m3的碳纤维碳复合成型体的工序,在所述碳纤维碳复合成型体中含浸沥青,直至密度为1.60~2.00Mg/m3的工序,和对含浸有沥青的所述碳纤维碳复合成型体进行热处理,直至由X射线衍射测得的石墨晶体的112面的厚度为6nm以上的工序。12.一种散热材料,其特征在于:使用权利要求9或10所述的碳纤维强化碳复合材料或通过权利要求11所述的方法制造的碳纤维强化碳复合材料。13.如权利要求12所述的散热材料,其特征在于:在所述碳纤维碳复合材料中含浸有金属。14.如权利要求13所述的散热材料,其特征在于:所述金属为铜或铝合金。15.一种散热材料,其特征在于:在所述碳纤维强化碳复合材料或权利要求13或14所述的散热材料的表面包覆有金属。16.如权利要求15所述的散热材料,其特征在于:用于包覆的所述金属为选自铁、铜、铝、铁合金、铜合金和铝合金中的一种以上的金属。

说明书

碳纤维碳复合成型体、碳纤维强化碳复合体材料及其制造方法

技术领域

本发明涉及碳纤维碳复合成型体、碳纤维强化碳复合体材料及其制造方法。

背景技术

在使用硅或化合物半导体的电子设备领域,现在的技术进步飞快,推测所使用的频率或电力变换容量将进一步提高。随之,由电子设备产生的热量也不断增加,因此能够将更多的热量更迅速地按照设计散热的所谓的散热材料必不可少。

目前,作为散热材料使用的材料为铜钼、铜钨、氮化铝等。这些散热材料的热传导率低于250W/mK,随着上述的半导体技术的技术进步,希望得到具有比铜或银等400W/mK更高的热传导率的材料。

上述的半导体装置通过焊料或银焊等与散热材料接合。焊料或银焊的热传导率低至数+W/mK,另外,还产生界面连接的热电阻,因此接合引起实际的热传导率比初始值减少数成。因此,考虑界面的热传导率损失,散热材料所要求的热传导率期望为450W/mK以上,优选500W/mK以上。

作为热传导率高的材料,已知有由金刚石成分构成的材料或石墨片材等。但是,这些材料所能够制造的厚度为数mm左右,在散热设计的阶段产生限制。另外,存在金刚石成分高价的问题。

作为热传导率高的其它的材料,已知有碳纤维强化碳复合材料。作为碳纤维强化碳复合材料,已知有使用由碳纤维和树脂等基材前体制成的预浸渍材料,将预浸渍材料热压成型后进行石墨化处理的材料,或将预浸渍材料的基材前体碳化后,使预浸渍材料内部含有热分解碳,之后进行石墨化处理形成的材料(专利文献1和2等)。

通过上述的方法形成的碳纤维强化碳复合材料的热传导率,根据并线碳纤维的方式、所谓的碳纤维成型体的结构不同而有较大差异。其原因在于,根据碳纤维的并线方向、密度、有无波纹,极大地左右热分解碳含有的成分。例如,是由于应用热分解碳通过甲烷、乙烷、乙烯、丙烷等有机气体的热分解从而它们的碳成分和一部分氢等附着于碳纤维表面的碳纤维强化碳复合材料。气体的碰撞次数受成型体的结构和密度的影响大,气体分解的大部分在成型体表面附近完成,因此有时气体达不到成型体内部。另外,即使在到达的情况下,根据碳纤维的种类形成的热分解碳的晶体形态不同,有时也达不到充分高的热传导率。

作为并线碳纤维的具体的方式,可以列举(1)向一个方向并线的方式;(2)向两个方向并线的方式(包括编织的平纹编织方式或缎纹编织的方式等);(3)将碳纤维分别向X轴、Y轴、及Z轴的方向分开编织的毛毡的方式等。

在上述(1)的情况下,在并线碳纤维的方向上得到700W/mK以上的热传导率。另外,在(3)的方式中,在X轴、Y轴、及Z轴的三个方向上得到300~400W/mK的热传导率。

如上所述,碳纤维强化碳复合材料作为散热材料使用。对由半导体产生的热量进行散热的散热材料通常设于基座上,并在其上配置有半导体。由半导体产生的热量经由散热材料传递到基座。为了将半导体的发热而产生的热量有效地向基座进行热传递,重要的是使热量一边在散热材料中放射状进行扩散,一边进行传递。

如上述(1)所示的向一个方向并线碳纤维的方式中,以碳纤维垂直半导体的方式设置散热材料时,其方向为具有700W/mK以上的热传导率的方向,因此向下方的热传递迅速。但是,不能期望向基座扩散,半导体产生的热量难以迅速传递到基座。

另外,以碳纤维的方向相对于半导体平行的方式设置时,由于与碳纤维的轴方向垂直的方向的热传导率为100W/mK以下,因此难以传递来自半导体的热量。

另外,在上述(3)的方式中,没有报道X轴和Y轴的各自方向的热传导率的平均值超过400W/mK的情况,绝对的热传导率不足。

在上述(2)的向二各方向并线碳纤维的方式及编织的平纹编织或缎纹编织的方式中,如果以在两个方向上得到高的热传导率为前提考虑,则能够使来自半导体的热量优先在垂直方向和横向传递,能够一边放射状进行扩散一边进行传递。另外,三个方向内剩余的一个方向难以传递热量,由于在半导体的周边也存在对热敏感的设备,因此通过有意识地将难以传递散热材料的热量的方向朝向该设备的方向,也能够保护设备。

但是,将碳纤维沿上述(2)的两个方向并线的方式的碳纤维强化碳复合材料中,不能够得到充分高的热传导率,另外,存在在X轴及Y轴的面方向上热传导率具有各向异性的问题。例如,存在热传导率在X轴和Y轴之间的中间方向低于X轴方向和Y轴方向的问题。

专利文献1:日本特开2004-23088号公报

专利文献2:日本特开2004-91256号公报

发明内容

本发明的目的在于提供沿X轴及Y轴的面方向的任意方向都能够得到优异的热传导率的碳纤维碳复合成型体、碳纤维强化碳复合材料及其制造方法。

本发明的碳纤维碳复合成型体的特征在于,通过在沿X轴及Y轴的面方向随机分散有碳纤维的碳纤维叠层体的碳纤维的表面上堆积热分解碳而包覆该碳纤维的周围,在碳纤维叠层体内填充热分解碳。

本发明中,作为填充热分解碳的碳纤维叠层体,使用沿X轴及Y轴的面方向随机分散有碳纤维的碳纤维叠层体。由于在面方向的随机方向上存在碳纤维,因此沿X轴及Y轴的面方向的热传导率的各向异性小,在X轴及Y轴的面方向的任意方向上均能够得到优异的热传导率。

本发明的碳纤维叠层体优选将沿X轴及Y轴的面方向随机分散有碳纤维的片状分散体叠层而成的叠层体或后述的无光泽状分散体。另外,作为碳纤维叠层体中使用的碳纤维,优选使用沥青类碳纤维,通过使用沥青类碳纤维,能够在碳纤维的表面上沿碳纤维的周面形成具有同心圆状致密洋葱结构的热分解碳的包覆层。如果对该同心圆状的包覆层进行热处理而石墨化,则能够沿碳纤维的长度方向生成石墨的六元环结构,能够使石墨沿碳纤维的长度方向晶体成长。因此,能够在碳纤维的长度方向上得到高的热传导率。

另外,本发明的碳纤维叠层体为空隙率高的碳纤维叠层体,因此能够使大量的热分解碳堆积在碳纤维的表面上。因此能够在碳纤维叠层体内填充大量的热分解碳,因此能够大量含有容易石墨化的热分解碳,从而能够得到高的热传导率。例如,能够在碳纤维叠层体中填充体积比为碳纤维的5~10倍量的热分解碳。

本发明的碳纤维叠层体中使用的的碳纤维优选沥青类碳纤维,更优选短纤维。例如优选10~150mm的长度,更优选30~100mm。这样的短纤维能够将市场上出售的碳纤维切断而制造,另外,优选平均直径为8~12μm范围内的碳纤维。另外,优选密度为1.50~2.00Mg/m3

本发明的热分解碳能够通过现有公知的方法进行堆积。例如,能够使碳数为1~8、优选碳数为3的烃气体或烃和卤的化合物等烃化合物进行热分解而堆积在碳纤维表面。优选烃气体和烃化合物的气体以氢气等稀释使用。此时,优选烃浓度为5~15体积%。另外,处理温度为1300℃以下,压力为100Torr以下,优选50Torr以下。如果处理温度超过1300℃,则热分解碳在气相中进行反应,从而有时不能将热分解碳导入碳纤维叠层体的深层部。另外,在压力高于100Torr的情况下,原料气体的平均自由程的距离增大,从而气体向碳纤维叠层体的扩散变差,有时不能将热分解碳导入碳纤维叠层体的深层部。

作为堆积热分解碳的方法,能够采用现有的等温法、温度梯度法、压力梯度法、脉冲法等。使热分解碳堆积时的方法及条件并不重要,只要是能够在碳纤维叠层体的深层部填充热分解碳的方法即可,可以使用任何方法。

如上所述,本发明的碳纤维叠层体中沿X轴及Y轴的面方向随机分散有碳纤维。这样的碳纤维叠层体例如能够通过如下方法制造:使树脂含浸于沿X轴及Y轴的面方向随机分散有碳纤维的分散体中,形成预浸渍材料,将该预浸渍材料叠层多层而加压成型后,进行热处理。另外,能够通过如下方法制造:将在碳纤维中涂布或含浸树脂或者使碳纤维在树脂中浸渍而使树脂附着在碳纤维表面而成的碳纤维叠层体沿X轴及Y轴的面方向随机分散,形成分散体,将该分散体叠层多层而加压成型后,进行热处理。此时,为了提高碳纤维强化碳复合成型体的热传导率,作为碳纤维优选使用沥青类碳纤维。

作为碳纤维叠层体的制作方法,例如涂布相对于碳纤维的分散体100质量部为20~70质量部的树脂并使之干燥。更优选20~50质量部。为预浸渍材料的情况下,厚度优选0.1~2.0mm的范围,更优选0.1~1.0mm的范围。将这样的预浸渍材料叠层多层而将其加压成型。作为叠层的预浸渍材料层,优选10~100层。加压成型优选通过热压机进行,优选压力为0.01MPa以上,更优选为0.3MPa以上。加压成型时的温度优选为100~300℃的范围。更优选100~200℃。

另外,作为碳纤维叠层体的其它的制作方法,通过使用短的碳纤维进行梳理,利用粘合剂进行无光泽化,也能够得到无光泽状分散体。作为粘合剂,优选使用有机粘合剂。但是,如一般的成型隔热材料,不优选产生碳纤维密度差的材料或通过针刺处理碳纤维三维取向的材料,而由于碳纤维沿X轴及Y轴的面方向随机分散的方式的材料密度差尽可能小,故而优选使用。即,能够使对短的碳纤维进行梳理且以粘合剂进行无光泽化的无光泽状分散体形成碳纤维叠层体。这样的无光泽状分散体为具有一定厚度的分散体,因此能够直接作为碳纤维叠层体使用。这样,本发明的要点在于使用沿X轴及Y轴的面方向随机分散有碳纤维方式的碳纤维叠层体。

优选碳纤维叠层体的密度为0.1~0.4Mg/m3的范围。如果碳纤维叠层体的密度过低,则在之后的工序中,大多伴随破损,不能够维持形状,如果碳纤维叠层体的密度过高,则难以将热分解碳堆积直至碳纤维叠层体的内部。

图1是表示本发明的碳纤维叠层体的一例的模式图。如图1所示,通过使沿X轴及Y轴的面方向随机分散有沥青类碳纤维的片状分散体1叠层,形成碳纤维叠层体2。

优选上述的碳纤维叠层体或碳纤维叠层成型体中填充热分解碳后的碳纤维碳复合成型体的密度为1.50~1.80Mg/m3。如果碳纤维碳复合成型体的密度过低,则得到的热传导率低,如果密度过高,则碳纤维碳复合成型体的内部和外周部的密度差增大。

热处理后的碳纤维的晶体形成洋葱结构,优选堆积在碳纤维上的热分解碳的厚度大于碳纤维的截面直径。如果小于碳纤维的截面直径,则碳纤维强化碳复合成型体的密度低,得到的热传导率低。

本发明中,优选如上所述填充热分解碳后,进一步含浸沥青。通过含浸沥青,能够对碳纤维碳复合成型体赋予机械强度。这样操作而含浸的沥青在碳纤维碳复合成型体中作为粘合剂起作用,能够包覆相对脆弱的热分解碳的包覆层,填满碳纤维碳复合成型体的空隙部分。优选含浸沥青后的碳纤维碳复合成型体的密度为1.60~2.00Mg/m3。如果密度过低,则热传导率低,在密度高于该范围时,需要特别的设备而无法实现。

本发明的碳纤维强化碳复合材料的特征在于,使沥青含浸于上述本发明的碳纤维碳复合成型体后,进行热处理,使碳纤维碳复合成型体的石墨晶体成长。

本发明的碳纤维强化碳复合材料由于是使上述本发明的含浸有沥青后的碳纤维碳复合成型体的石墨晶体成长而形成的,因此石墨在良好的状态下沿碳纤维的方向晶体成长,能够得到优异的热传导率。

另外,由于使用沿X轴及Y轴的面方向随机分散有碳纤维的碳纤维碳复合成型体,因此在X轴及Y轴的面方向的所有方向上均能够得到高的热传导率。

优选对碳纤维碳复合成型体进行热处理而使石墨晶体成长时的热处理温度为2800℃以上,更优选为2800~3100℃的范围。如果热处理温度过低,则石墨晶体的成长不充分,得到的热传导率低。

使石墨晶体成长后的碳纤维强化碳复合材料,优选由X射线衍射测得的石墨晶体的112面的厚度为6nm以上。更优选为8nm以上。

通过使由X射线衍射测得的石墨晶体的112面的厚度为6nm以上,能够得到高的热传导率。

本发明的碳纤维强化碳复合材料,例如作为X轴及Y轴的面方向的热传导率,能够得到450W/mK以上的值。另外,作为Z轴方向的热传导率,例如能够得到50~200W/mK以上的值。

本发明的碳纤维强化碳复合材料的制造方法为能够制造上述本发明的碳纤维强化碳复合材料的方法,其特征在于,包括:使用沥青类碳纤维,制备密度为0.10~0.40Mg/m3的上述碳纤维叠层体的工序;在碳纤维叠层体的碳纤维的表面上堆积热分解碳,制备密度为1.50~1.80Mg/m3的碳纤维碳复合成型体的工序;使碳纤维碳复合成型体含浸沥青直至密度为1.60~2.00Mg/m3的工序;对含浸有沥青的碳纤维碳复合成型体进行热处理,直至由X射线衍射测得的石墨晶体的112面的厚度为6nm以上的工序。

根据本发明,使用上述本发明的碳纤维碳复合成型体制造上述本发明的碳纤维强化碳复合材料,因此能够制造在X轴及Y轴的面方向的任何方向上均具有优异的热传导率的碳纤维强化碳复合材料。

本发明的散热材料的特征在于使用上述本发明的碳纤维强化碳复合材料或通过上述本发明的制造方法制造的碳纤维强化碳复合材料。

本发明的散热材料使用上述本发明的碳纤维强化碳复合材料或通过上述本发明的制造方法制造的碳纤维强化碳复合材料,因此在X轴及Y轴的面方向的所有方向上均表示优异的热传导率。因此能够作为用于冷却半导体装置的散热材料合适地使用。

另外,本发明的散热材料也可以是使金属熔融而含浸于上述本发明的碳纤维强化碳复合材料而成的散热材料。

通过使金属熔融而含浸,能够进一步减少碳纤维强化碳复合材料的空隙,能够提高与电子部件等端子的金属接合性。作为这样的金属,例如可以列举铜、铝合金等。

本发明的金属含浸能够通过现有公知的方法进行含浸。例如,通过将无氧铜在非活性气体中溶解,且在其中浸入碳纤维强化碳复合材料,以1~10MPa进行加压而得到。

另外,本发明的散热材料也可以是以铁、铜、铝、或铁合金、铜合金、铝合金包覆上述本发明的碳纤维强化碳复合材料或使金属熔融含浸于碳纤维强化碳复合材料的表面形成的散热材料。

本发明的铁、铜、铝、或铁合金、铜合金、铝合金进行的包覆能够通过现有公知的方法进行包覆。作为包覆的方法,能够采用现有的无电解或电镀法等。

电镀法,例如有在含有离子化的金属的水溶液中通过电流,通过电化学的氧化还原反应使金属析出于材料的表面的电镀;在溶液中溶解含有析出的金属的化合物和还原剂,将材料浸泡于溶液而在材料表面析出金属的无电解电镀法;和利用不同金属的离子化倾向的差值(电位差)的浸渍电镀法等。

铁、铜、铝、或铁合金、铜合金、铝合金进行包覆的方法及条件,只要是能够满足作为散热条件的使用环境的方法即可,可以使用任何方法。

发明的效果

使用本发明的碳纤维碳复合成型体,形成本发明的碳纤维强化碳复合材料,由此能够形成在X轴及Y轴的面方向的所有方向上均表示优异的热传导率的碳纤维强化碳复合材料。

根据本发明的制造方法,能够制造在X轴及Y轴的面方向的所有方向上均表示优异的热传导率的碳纤维强化碳复合材料。

由于本发明的散热材料使用本发明的碳纤维强化碳复合材料,因此在X轴及Y轴的面方向的所有方向上均表示优异的热传导率。

附图说明

图1是模式表示本发明的碳纤维叠层体的立体图。

图2是表示设于半导体和基座之间的散热材料的结构的立体图。

图3是表示本发明的实施例的碳纤维强化碳复合材料的截面的扫描型电子显微镜照片。

符号说明

1片状分散体

2碳纤维叠层体

3半导体装置

4散热材料

5基座

具体实施方式

以下,通过具体的实施例说明本发明,但本发明并不受以下的实施例限定。

(实施例1)

将沥青类碳纤维(12K的丝线,平均直径9μm,密度1.93Mg/m3)切断为30~100mm左右,使用丙酮等除去施胶剂。使该碳纤维在随机的方向分散,使用相对于碳纤维100质量部为30质量部的酚醛树脂固定碳纤维,制成在X轴及Y轴的面方向上随机分散有碳纤维的片状的预浸渍材料(厚度约0.5mm)。将该预浸渍材料在干燥机中以约100℃进行预干燥。将干燥后的预浸渍材料重叠约100层,使用热压机,以压力0.3MPa、温度150℃的条件加压成型。接着,以约2000℃进行热处理,由此得到50mm×50mm×50mm大小的碳纤维叠层体。该碳纤维叠层体的密度为0.15Mg/m3

使上述的碳纤维叠层体含有具有易石墨化性的大致柱状组织的热分解碳。使热分解碳堆积在构成碳纤维叠层体的碳纤维的表面上,包覆该碳纤维的周围,由此在碳纤维叠层体内填充热分解碳。填充热分解碳后的碳纤维碳复合成型体的密度为1.65Mg/m3

接着,使易石墨化性的热沥青含浸于如上所述填充有热分解碳的碳纤维碳复合成型体,反复进行五次该含浸和热处理,使之含浸有沥青。沥青含浸后的密度为1.85Mg/m3

如上所述含浸有沥青后,以约3000℃进行热处理,使碳纤维碳复合成型体石墨化。

表1中表示碳纤维叠层体的密度及体积率、热分解碳填充后的密度及体积率、沥青含浸后的密度及体积率、石墨化热处理后的碳纤维后的密度、石墨晶体的d(112)面的晶体厚度、石墨化热处理后的碳纤维强化碳复合材料的热传导率。另外,密度为各工序后的密度,体积率为体积%。各工序后的密度、面间隔d(112)面及热传导率如下求出。

〔密度的测定〕

从碳纤维强化碳复合材料切出10mm×10mm×60mm形状的试样,在将表面加工成比Rz12μm更平滑的状态下,使用秤测定质量,使用千分尺测出长度。将三个方向的长度相乘求出体积。密度通过质量除以体积而求出。

〔热传导率的测定〕

依照JIS(日本工业规格)R1611-1997,由热传导率=热扩散率×比热容量×体积密度的式子求出热传导率。制成直径10mm×3mm的试样,使用ULVAC公司制的激光闪光法热常数测定装置(TC-7000UVH)测定热扩散率。

另外,比热容量由《新·碳材料入门》(《新·炭素材料入門》,碳材料学会编,第45页,表-1,石墨的热力学的各函数)求出。

表1所示的热传导率的“X-Y面方向”表示从X轴及Y轴的面方向的所有方向测定时的最小的热传导率~最大的热传导率。另外,“Z轴方向”表示Z轴方向的热传导率。

〔晶体结构(面间隔d(112))的测定〕

使用X射线衍射装置,通过Ni过滤器将Cu-Kα射线单色化,以高纯度硅为标准物质,通过学振法进行了测定。关于石墨晶体的d(112)面的测定,通过将碳纤维强化碳复合材料粉末化,使用该粉末进行测定。

(实施例2)

与实施例1同样操作,在碳纤维叠层体中填充热分解碳,接着,反复进行易石墨化性的喹啉不溶部分少的沥青的浸渍和热处理,之后,进行用于石墨化的热处理。

碳纤维叠层体的密度为0.25Mg/m3,填充热分解碳后的密度为1.75Mg/m3,沥青的浸渍和热处理后的密度为1.82Mg/m3。另外,石墨化处理后的石墨晶体的d(112)面的晶体厚度为8nm。

与实施例1同样操作进行测定,表1中表示测定结果。

(实施例3)

与实施例1同样操作,使碳纤维叠层体含有热分解碳,之后,反复进行沥青的浸渍和热处理,之后,进行石墨化的热处理,得到碳纤维强化碳复合材料。

碳纤维叠层体的密度为0.20Mg/m3,含有热分解碳后的密度为1.75Mg/m3,含浸沥青后的密度为1.95Mg/m3,石墨晶体的d(112)面的晶体厚度为8nm。

与实施例1同样操作进行测定,表1中表示测定结果。

(实施例4)

与实施例1同样操作,使碳纤维叠层体含有热分解碳,之后,反复进行沥青的浸渍和热处理,之后,进行用于石墨化的热处理。碳纤维叠层体的密度为0.25Mg/m3,含有热分解碳后的密度为1.65Mg/m3,进行沥青的含浸和热处理后的密度为1.85Mg/m3,石墨化热处理后的石墨晶体的d(112)面的晶体厚度为8nm。

与实施例1同样操作进行测定,表1中表示测定结果。

(实施例5)

在密度0.20Mg/m3的碳纤维叠层体中填充热分解碳,使密度为1.50Mg/m3。接着,反复进行焦油沥青的含浸和热处理,使浸渍后的密度为1.85Mg/m3。之后,进行用于石墨化的热处理。石墨化热处理后的石墨晶体的d(112)面的晶体厚度为8nm。得到的碳纤维强化碳复合成型体的X-Y平面的热传导率为400~450W/(m·K),Z轴方向为140W/(m·K)。

表1中表示与实施例1同样操作进行测定后的测定结果。

(实施例6)

在密度0.20Mg/m3的碳纤维叠层体中填充热分解碳,使密度为1.65Mg/m3。接着,反复进行焦油沥青的浸渍和热处理,使浸渍后的密度为1.85Mg/m3。之后,进行用于石墨化的热处理。石墨化热处理后的石墨晶体的d(112)面的晶体厚度为6nm。得到的碳纤维强化碳复合成型体的X-Y平面的热传导率为400~450W/(m·K),Z轴方向为100W/(m·K)。

与实施例1同样操作进行测定,表1中表示测定结果。

(实施例7)

使用实施例1的沥青类碳纤维,即长度30~100mm的短的碳纤维,进行梳理,使用有机粘合剂进行无光泽状,由此,得到在X轴及Y轴的面方向随机分散有碳纤维的、50mm×50mm×50mm的无光泽状分散体(密度为0.15Mg/m3)。填充具有易石墨化性的大致柱状组织的热分解碳,使密度为1.65Mg/m3。接着,反复进行焦油沥青的浸渍和热处理,使浸渍后的密度为1.85Mg/m3。之后,进行用于石墨化的热处理。石墨化热处理后的石墨晶体的d(112)面的晶体厚度为8nm。得到的碳纤维强化碳复合成型体的X-Y平面的热传导率为450~550W/(m·K),Z轴方向为140W/(m·K)。

与实施例1同样操作进行测定,表1中表示测定结果。

另外,在上述实施例1~7的碳纤维强化碳复合材料的表面,通过电镀法分别包覆铁、铜、铝、铁合金、铜合金、铝合金,得到金属包覆碳纤维强化碳复合材料。所得到的金属包覆碳纤维强化碳复合材料,其散热性优异,适合作为散热部件。

(比较例1)

为密度0.05Mg/m3的碳纤维叠层体时,在其后的工序中,大多伴随破损,不能够维持形状。

(比较例2)

为密度0.5Mg/m3的碳纤维叠层体时,即使填充热分解碳,密度为1.00Mg/m3,含量也少,之后在约3000℃下进行热处理,得到的碳纤维强化碳复合成型体的X-Y平面的热传导率为100W/(m·K),Z轴方向为10W/(m·K)。

如表1所示,根据本发明,使用由沥青类碳纤维制成的碳纤维叠层体的本发明的碳纤维强化复合材料在X轴及Y轴的面方向得到高的热传导率。

[扫描型电子显微镜(SEM)观察]

图3是本发明的实施例2的碳纤维强化复合材料截面的SEM照片。如图3所示,本发明的实施例中,在碳纤维的周围形成有由热分解碳形成的包覆层。由该热分解碳形成的包覆层具有同心圆状的洋葱结构。

如图2所示,如上所述操作制成的本发明的碳纤维强化碳复合材料能够作为用于冷却半导体装置的散热材料使用。另外,本发明的碳纤维强化碳复合材料也可以熔融含浸铝合金或铜等金属而使用。

图2是表示在基座5之上经由散热材料4载置有半导体装置3的状态的立体图。如图2所示,在基座5和半导体装置3之间设置散热材料4。由半导体装置3产生的热量经由散热材料4传递到基座5。

碳纤维碳复合成型体、碳纤维强化碳复合体材料及其制造方法.pdf_第1页
第1页 / 共14页
碳纤维碳复合成型体、碳纤维强化碳复合体材料及其制造方法.pdf_第2页
第2页 / 共14页
碳纤维碳复合成型体、碳纤维强化碳复合体材料及其制造方法.pdf_第3页
第3页 / 共14页
点击查看更多>>
资源描述

《碳纤维碳复合成型体、碳纤维强化碳复合体材料及其制造方法.pdf》由会员分享,可在线阅读,更多相关《碳纤维碳复合成型体、碳纤维强化碳复合体材料及其制造方法.pdf(14页珍藏版)》请在专利查询网上搜索。

1、10申请公布号CN102007090A43申请公布日20110406CN102007090ACN102007090A21申请号200980113117822申请日20090406200810453920080414JPC04B35/83200601C04B41/88200601C30B15/10200601H01L23/36200601H01L23/37320060171申请人东洋炭素株式会社地址日本大阪府72发明人武田章义74专利代理机构北京尚诚知识产权代理有限公司11322代理人龙淳54发明名称碳纤维碳复合成型体、碳纤维强化碳复合体材料及其制造方法57摘要本发明得到一种沿X轴及Y轴的面方向。

2、的所有方向均显示优异的热传导率的碳纤维强化碳复合材料。本发明在于提供碳纤维碳复合成型体和使用该成型体得到的碳纤维强化碳复合材料,该碳纤维复合成型体的特征在于,通过在叠层有沿X轴及Y轴的面方向随机分散有沥青类碳纤维的片状分散体的碳纤维叠层体的碳纤维的表面上堆积热分解碳而包覆该碳纤维的周围,在上述碳纤维叠层体内填充热分解碳。30优先权数据85PCT申请进入国家阶段日2010101486PCT申请的申请数据PCT/JP2009/0015832009040687PCT申请的公布数据WO2009/128215JA2009102251INTCL19中华人民共和国国家知识产权局12发明专利申请权利要求书2页。

3、说明书10页附图1页CN102007103A1/2页21一种碳纤维碳复合成型体,其特征在于通过在沿X轴及Y轴的面方向随机分散有碳纤维的碳纤维叠层体的碳纤维的表面上堆积热分解碳而包覆该碳纤维的周围,在所述碳纤维叠层体内填充热分解碳。2如权利要求1所述的碳纤维碳复合成型体,其特征在于所述碳纤维碳叠层体是将沿X轴及Y轴的面方向随机分散有碳纤维的片状分散体叠层而得到的。3如权利要求2所述的碳纤维碳复合成型体,其特征在于所述碳纤维碳叠层体是使树脂含浸于沿X轴及Y轴的面方向随机分散有碳纤维的分散体中,形成预浸渍材料,将该预浸渍材料叠层多层而加压成型后,进行热处理而得到的。4如权利要求1所述的碳纤维碳复合成。

4、型体,其特征在于所述碳纤维碳叠层体是使用碳纤维进行梳理,通过粘合剂无光泽化而得到的无光泽状分散体。5如权利要求14中任一项所述的碳纤维碳复合成型体,其特征在于所述碳纤维为沥青类碳纤维。6如权利要求15中任一项所述的碳纤维碳复合成型体,其特征在于密度为150180MG/M3。7如权利要求15中任一项所述的碳纤维碳复合成型体,其特征在于填充热分解碳之后,含浸沥青。8如权利要求7所述的碳纤维碳复合成型体,其特征在于密度为160200MG/M3。9一种碳纤维强化碳复合材料,其特征在于使权利要求7或8所述的碳纤维碳复合成型体的石墨晶体成长。10如权利要求9所述的碳纤维强化碳复合材料,其特征在于由X射线衍。

5、射测得的石墨晶体的112面的厚度为6NM以上。11一种碳纤维强化碳复合材料的制造方法,用于制造权利要求9或10所述的碳纤维强化碳复合材料,其特征在于,包括制备密度为010040MG/M3的所述碳纤维叠层体的工序,在所述碳纤维叠层体的碳纤维的表面上堆积热分解碳,制备密度为150180MG/M3的碳纤维碳复合成型体的工序,在所述碳纤维碳复合成型体中含浸沥青,直至密度为160200MG/M3的工序,和对含浸有沥青的所述碳纤维碳复合成型体进行热处理,直至由X射线衍射测得的石墨晶体的112面的厚度为6NM以上的工序。12一种散热材料,其特征在于使用权利要求9或10所述的碳纤维强化碳复合材料或通过权利要求。

6、11所述的方法制造的碳纤维强化碳复合材料。13如权利要求12所述的散热材料,其特征在于在所述碳纤维碳复合材料中含浸有金属。14如权利要求13所述的散热材料,其特征在于所述金属为铜或铝合金。权利要求书CN102007090ACN102007103A2/2页315一种散热材料,其特征在于在所述碳纤维强化碳复合材料或权利要求13或14所述的散热材料的表面包覆有金属。16如权利要求15所述的散热材料,其特征在于用于包覆的所述金属为选自铁、铜、铝、铁合金、铜合金和铝合金中的一种以上的金属。权利要求书CN102007090ACN102007103A1/10页4碳纤维碳复合成型体、碳纤维强化碳复合体材料及其。

7、制造方法技术领域0001本发明涉及碳纤维碳复合成型体、碳纤维强化碳复合体材料及其制造方法。背景技术0002在使用硅或化合物半导体的电子设备领域,现在的技术进步飞快,推测所使用的频率或电力变换容量将进一步提高。随之,由电子设备产生的热量也不断增加,因此能够将更多的热量更迅速地按照设计散热的所谓的散热材料必不可少。0003目前,作为散热材料使用的材料为铜钼、铜钨、氮化铝等。这些散热材料的热传导率低于250W/MK,随着上述的半导体技术的技术进步,希望得到具有比铜或银等400W/MK更高的热传导率的材料。0004上述的半导体装置通过焊料或银焊等与散热材料接合。焊料或银焊的热传导率低至数W/MK,另外。

8、,还产生界面连接的热电阻,因此接合引起实际的热传导率比初始值减少数成。因此,考虑界面的热传导率损失,散热材料所要求的热传导率期望为450W/MK以上,优选500W/MK以上。0005作为热传导率高的材料,已知有由金刚石成分构成的材料或石墨片材等。但是,这些材料所能够制造的厚度为数MM左右,在散热设计的阶段产生限制。另外,存在金刚石成分高价的问题。0006作为热传导率高的其它的材料,已知有碳纤维强化碳复合材料。作为碳纤维强化碳复合材料,已知有使用由碳纤维和树脂等基材前体制成的预浸渍材料,将预浸渍材料热压成型后进行石墨化处理的材料,或将预浸渍材料的基材前体碳化后,使预浸渍材料内部含有热分解碳,之后。

9、进行石墨化处理形成的材料专利文献1和2等。0007通过上述的方法形成的碳纤维强化碳复合材料的热传导率,根据并线碳纤维的方式、所谓的碳纤维成型体的结构不同而有较大差异。其原因在于,根据碳纤维的并线方向、密度、有无波纹,极大地左右热分解碳含有的成分。例如,是由于应用热分解碳通过甲烷、乙烷、乙烯、丙烷等有机气体的热分解从而它们的碳成分和一部分氢等附着于碳纤维表面的碳纤维强化碳复合材料。气体的碰撞次数受成型体的结构和密度的影响大,气体分解的大部分在成型体表面附近完成,因此有时气体达不到成型体内部。另外,即使在到达的情况下,根据碳纤维的种类形成的热分解碳的晶体形态不同,有时也达不到充分高的热传导率。00。

10、08作为并线碳纤维的具体的方式,可以列举1向一个方向并线的方式;2向两个方向并线的方式包括编织的平纹编织方式或缎纹编织的方式等;3将碳纤维分别向X轴、Y轴、及Z轴的方向分开编织的毛毡的方式等。0009在上述1的情况下,在并线碳纤维的方向上得到700W/MK以上的热传导率。另外,在3的方式中,在X轴、Y轴、及Z轴的三个方向上得到300400W/MK的热传导率。0010如上所述,碳纤维强化碳复合材料作为散热材料使用。对由半导体产生的热量进行散热的散热材料通常设于基座上,并在其上配置有半导体。由半导体产生的热量经由散说明书CN102007090ACN102007103A2/10页5热材料传递到基座。。

11、为了将半导体的发热而产生的热量有效地向基座进行热传递,重要的是使热量一边在散热材料中放射状进行扩散,一边进行传递。0011如上述1所示的向一个方向并线碳纤维的方式中,以碳纤维垂直半导体的方式设置散热材料时,其方向为具有700W/MK以上的热传导率的方向,因此向下方的热传递迅速。但是,不能期望向基座扩散,半导体产生的热量难以迅速传递到基座。0012另外,以碳纤维的方向相对于半导体平行的方式设置时,由于与碳纤维的轴方向垂直的方向的热传导率为100W/MK以下,因此难以传递来自半导体的热量。0013另外,在上述3的方式中,没有报道X轴和Y轴的各自方向的热传导率的平均值超过400W/MK的情况,绝对的。

12、热传导率不足。0014在上述2的向二各方向并线碳纤维的方式及编织的平纹编织或缎纹编织的方式中,如果以在两个方向上得到高的热传导率为前提考虑,则能够使来自半导体的热量优先在垂直方向和横向传递,能够一边放射状进行扩散一边进行传递。另外,三个方向内剩余的一个方向难以传递热量,由于在半导体的周边也存在对热敏感的设备,因此通过有意识地将难以传递散热材料的热量的方向朝向该设备的方向,也能够保护设备。0015但是,将碳纤维沿上述2的两个方向并线的方式的碳纤维强化碳复合材料中,不能够得到充分高的热传导率,另外,存在在X轴及Y轴的面方向上热传导率具有各向异性的问题。例如,存在热传导率在X轴和Y轴之间的中间方向低。

13、于X轴方向和Y轴方向的问题。0016专利文献1日本特开200423088号公报0017专利文献2日本特开200491256号公报发明内容0018本发明的目的在于提供沿X轴及Y轴的面方向的任意方向都能够得到优异的热传导率的碳纤维碳复合成型体、碳纤维强化碳复合材料及其制造方法。0019本发明的碳纤维碳复合成型体的特征在于,通过在沿X轴及Y轴的面方向随机分散有碳纤维的碳纤维叠层体的碳纤维的表面上堆积热分解碳而包覆该碳纤维的周围,在碳纤维叠层体内填充热分解碳。0020本发明中,作为填充热分解碳的碳纤维叠层体,使用沿X轴及Y轴的面方向随机分散有碳纤维的碳纤维叠层体。由于在面方向的随机方向上存在碳纤维,因。

14、此沿X轴及Y轴的面方向的热传导率的各向异性小,在X轴及Y轴的面方向的任意方向上均能够得到优异的热传导率。0021本发明的碳纤维叠层体优选将沿X轴及Y轴的面方向随机分散有碳纤维的片状分散体叠层而成的叠层体或后述的无光泽状分散体。另外,作为碳纤维叠层体中使用的碳纤维,优选使用沥青类碳纤维,通过使用沥青类碳纤维,能够在碳纤维的表面上沿碳纤维的周面形成具有同心圆状致密洋葱结构的热分解碳的包覆层。如果对该同心圆状的包覆层进行热处理而石墨化,则能够沿碳纤维的长度方向生成石墨的六元环结构,能够使石墨沿碳纤维的长度方向晶体成长。因此,能够在碳纤维的长度方向上得到高的热传导率。0022另外,本发明的碳纤维叠层体。

15、为空隙率高的碳纤维叠层体,因此能够使大量的热分解碳堆积在碳纤维的表面上。因此能够在碳纤维叠层体内填充大量的热分解碳,因此能说明书CN102007090ACN102007103A3/10页6够大量含有容易石墨化的热分解碳,从而能够得到高的热传导率。例如,能够在碳纤维叠层体中填充体积比为碳纤维的510倍量的热分解碳。0023本发明的碳纤维叠层体中使用的的碳纤维优选沥青类碳纤维,更优选短纤维。例如优选10150MM的长度,更优选30100MM。这样的短纤维能够将市场上出售的碳纤维切断而制造,另外,优选平均直径为812M范围内的碳纤维。另外,优选密度为150200MG/M3。0024本发明的热分解碳能。

16、够通过现有公知的方法进行堆积。例如,能够使碳数为18、优选碳数为3的烃气体或烃和卤的化合物等烃化合物进行热分解而堆积在碳纤维表面。优选烃气体和烃化合物的气体以氢气等稀释使用。此时,优选烃浓度为515体积。另外,处理温度为1300以下,压力为100TORR以下,优选50TORR以下。如果处理温度超过1300,则热分解碳在气相中进行反应,从而有时不能将热分解碳导入碳纤维叠层体的深层部。另外,在压力高于100TORR的情况下,原料气体的平均自由程的距离增大,从而气体向碳纤维叠层体的扩散变差,有时不能将热分解碳导入碳纤维叠层体的深层部。0025作为堆积热分解碳的方法,能够采用现有的等温法、温度梯度法、。

17、压力梯度法、脉冲法等。使热分解碳堆积时的方法及条件并不重要,只要是能够在碳纤维叠层体的深层部填充热分解碳的方法即可,可以使用任何方法。0026如上所述,本发明的碳纤维叠层体中沿X轴及Y轴的面方向随机分散有碳纤维。这样的碳纤维叠层体例如能够通过如下方法制造使树脂含浸于沿X轴及Y轴的面方向随机分散有碳纤维的分散体中,形成预浸渍材料,将该预浸渍材料叠层多层而加压成型后,进行热处理。另外,能够通过如下方法制造将在碳纤维中涂布或含浸树脂或者使碳纤维在树脂中浸渍而使树脂附着在碳纤维表面而成的碳纤维叠层体沿X轴及Y轴的面方向随机分散,形成分散体,将该分散体叠层多层而加压成型后,进行热处理。此时,为了提高碳纤。

18、维强化碳复合成型体的热传导率,作为碳纤维优选使用沥青类碳纤维。0027作为碳纤维叠层体的制作方法,例如涂布相对于碳纤维的分散体100质量部为2070质量部的树脂并使之干燥。更优选2050质量部。为预浸渍材料的情况下,厚度优选0120MM的范围,更优选0110MM的范围。将这样的预浸渍材料叠层多层而将其加压成型。作为叠层的预浸渍材料层,优选10100层。加压成型优选通过热压机进行,优选压力为001MPA以上,更优选为03MPA以上。加压成型时的温度优选为100300的范围。更优选100200。0028另外,作为碳纤维叠层体的其它的制作方法,通过使用短的碳纤维进行梳理,利用粘合剂进行无光泽化,也能。

19、够得到无光泽状分散体。作为粘合剂,优选使用有机粘合剂。但是,如一般的成型隔热材料,不优选产生碳纤维密度差的材料或通过针刺处理碳纤维三维取向的材料,而由于碳纤维沿X轴及Y轴的面方向随机分散的方式的材料密度差尽可能小,故而优选使用。即,能够使对短的碳纤维进行梳理且以粘合剂进行无光泽化的无光泽状分散体形成碳纤维叠层体。这样的无光泽状分散体为具有一定厚度的分散体,因此能够直接作为碳纤维叠层体使用。这样,本发明的要点在于使用沿X轴及Y轴的面方向随机分散有碳纤维方式的碳纤维叠层体。0029优选碳纤维叠层体的密度为0104MG/M3的范围。如果碳纤维叠层体的密度过低,则在之后的工序中,大多伴随破损,不能够维。

20、持形状,如果碳纤维叠层体的密度过高,说明书CN102007090ACN102007103A4/10页7则难以将热分解碳堆积直至碳纤维叠层体的内部。0030图1是表示本发明的碳纤维叠层体的一例的模式图。如图1所示,通过使沿X轴及Y轴的面方向随机分散有沥青类碳纤维的片状分散体1叠层,形成碳纤维叠层体2。0031优选上述的碳纤维叠层体或碳纤维叠层成型体中填充热分解碳后的碳纤维碳复合成型体的密度为150180MG/M3。如果碳纤维碳复合成型体的密度过低,则得到的热传导率低,如果密度过高,则碳纤维碳复合成型体的内部和外周部的密度差增大。0032热处理后的碳纤维的晶体形成洋葱结构,优选堆积在碳纤维上的热分。

21、解碳的厚度大于碳纤维的截面直径。如果小于碳纤维的截面直径,则碳纤维强化碳复合成型体的密度低,得到的热传导率低。0033本发明中,优选如上所述填充热分解碳后,进一步含浸沥青。通过含浸沥青,能够对碳纤维碳复合成型体赋予机械强度。这样操作而含浸的沥青在碳纤维碳复合成型体中作为粘合剂起作用,能够包覆相对脆弱的热分解碳的包覆层,填满碳纤维碳复合成型体的空隙部分。优选含浸沥青后的碳纤维碳复合成型体的密度为160200MG/M3。如果密度过低,则热传导率低,在密度高于该范围时,需要特别的设备而无法实现。0034本发明的碳纤维强化碳复合材料的特征在于,使沥青含浸于上述本发明的碳纤维碳复合成型体后,进行热处理,。

22、使碳纤维碳复合成型体的石墨晶体成长。0035本发明的碳纤维强化碳复合材料由于是使上述本发明的含浸有沥青后的碳纤维碳复合成型体的石墨晶体成长而形成的,因此石墨在良好的状态下沿碳纤维的方向晶体成长,能够得到优异的热传导率。0036另外,由于使用沿X轴及Y轴的面方向随机分散有碳纤维的碳纤维碳复合成型体,因此在X轴及Y轴的面方向的所有方向上均能够得到高的热传导率。0037优选对碳纤维碳复合成型体进行热处理而使石墨晶体成长时的热处理温度为2800以上,更优选为28003100的范围。如果热处理温度过低,则石墨晶体的成长不充分,得到的热传导率低。0038使石墨晶体成长后的碳纤维强化碳复合材料,优选由X射线。

23、衍射测得的石墨晶体的112面的厚度为6NM以上。更优选为8NM以上。0039通过使由X射线衍射测得的石墨晶体的112面的厚度为6NM以上,能够得到高的热传导率。0040本发明的碳纤维强化碳复合材料,例如作为X轴及Y轴的面方向的热传导率,能够得到450W/MK以上的值。另外,作为Z轴方向的热传导率,例如能够得到50200W/MK以上的值。0041本发明的碳纤维强化碳复合材料的制造方法为能够制造上述本发明的碳纤维强化碳复合材料的方法,其特征在于,包括使用沥青类碳纤维,制备密度为010040MG/M3的上述碳纤维叠层体的工序;在碳纤维叠层体的碳纤维的表面上堆积热分解碳,制备密度为150180MG/M。

24、3的碳纤维碳复合成型体的工序;使碳纤维碳复合成型体含浸沥青直至密度为160200MG/M3的工序;对含浸有沥青的碳纤维碳复合成型体进行热处理,直至由X射线衍射测得的石墨晶体的112面的厚度为6NM以上的工序。0042根据本发明,使用上述本发明的碳纤维碳复合成型体制造上述本发明的碳纤维强化碳复合材料,因此能够制造在X轴及Y轴的面方向的任何方向上均具有优异的热传导率说明书CN102007090ACN102007103A5/10页8的碳纤维强化碳复合材料。0043本发明的散热材料的特征在于使用上述本发明的碳纤维强化碳复合材料或通过上述本发明的制造方法制造的碳纤维强化碳复合材料。0044本发明的散热材。

25、料使用上述本发明的碳纤维强化碳复合材料或通过上述本发明的制造方法制造的碳纤维强化碳复合材料,因此在X轴及Y轴的面方向的所有方向上均表示优异的热传导率。因此能够作为用于冷却半导体装置的散热材料合适地使用。0045另外,本发明的散热材料也可以是使金属熔融而含浸于上述本发明的碳纤维强化碳复合材料而成的散热材料。0046通过使金属熔融而含浸,能够进一步减少碳纤维强化碳复合材料的空隙,能够提高与电子部件等端子的金属接合性。作为这样的金属,例如可以列举铜、铝合金等。0047本发明的金属含浸能够通过现有公知的方法进行含浸。例如,通过将无氧铜在非活性气体中溶解,且在其中浸入碳纤维强化碳复合材料,以110MPA。

26、进行加压而得到。0048另外,本发明的散热材料也可以是以铁、铜、铝、或铁合金、铜合金、铝合金包覆上述本发明的碳纤维强化碳复合材料或使金属熔融含浸于碳纤维强化碳复合材料的表面形成的散热材料。0049本发明的铁、铜、铝、或铁合金、铜合金、铝合金进行的包覆能够通过现有公知的方法进行包覆。作为包覆的方法,能够采用现有的无电解或电镀法等。0050电镀法,例如有在含有离子化的金属的水溶液中通过电流,通过电化学的氧化还原反应使金属析出于材料的表面的电镀;在溶液中溶解含有析出的金属的化合物和还原剂,将材料浸泡于溶液而在材料表面析出金属的无电解电镀法;和利用不同金属的离子化倾向的差值电位差的浸渍电镀法等。005。

27、1铁、铜、铝、或铁合金、铜合金、铝合金进行包覆的方法及条件,只要是能够满足作为散热条件的使用环境的方法即可,可以使用任何方法。0052发明的效果0053使用本发明的碳纤维碳复合成型体,形成本发明的碳纤维强化碳复合材料,由此能够形成在X轴及Y轴的面方向的所有方向上均表示优异的热传导率的碳纤维强化碳复合材料。0054根据本发明的制造方法,能够制造在X轴及Y轴的面方向的所有方向上均表示优异的热传导率的碳纤维强化碳复合材料。0055由于本发明的散热材料使用本发明的碳纤维强化碳复合材料,因此在X轴及Y轴的面方向的所有方向上均表示优异的热传导率。附图说明0056图1是模式表示本发明的碳纤维叠层体的立体图。。

28、0057图2是表示设于半导体和基座之间的散热材料的结构的立体图。0058图3是表示本发明的实施例的碳纤维强化碳复合材料的截面的扫描型电子显微镜照片。0059符号说明00601片状分散体说明书CN102007090ACN102007103A6/10页900612碳纤维叠层体00623半导体装置00634散热材料00645基座具体实施方式0065以下,通过具体的实施例说明本发明,但本发明并不受以下的实施例限定。0066实施例10067将沥青类碳纤维12K的丝线,平均直径9M,密度193MG/M3切断为30100MM左右,使用丙酮等除去施胶剂。使该碳纤维在随机的方向分散,使用相对于碳纤维100质量部。

29、为30质量部的酚醛树脂固定碳纤维,制成在X轴及Y轴的面方向上随机分散有碳纤维的片状的预浸渍材料厚度约05MM。将该预浸渍材料在干燥机中以约100进行预干燥。将干燥后的预浸渍材料重叠约100层,使用热压机,以压力03MPA、温度150的条件加压成型。接着,以约2000进行热处理,由此得到50MM50MM50MM大小的碳纤维叠层体。该碳纤维叠层体的密度为015MG/M3。0068使上述的碳纤维叠层体含有具有易石墨化性的大致柱状组织的热分解碳。使热分解碳堆积在构成碳纤维叠层体的碳纤维的表面上,包覆该碳纤维的周围,由此在碳纤维叠层体内填充热分解碳。填充热分解碳后的碳纤维碳复合成型体的密度为165MG/。

30、M3。0069接着,使易石墨化性的热沥青含浸于如上所述填充有热分解碳的碳纤维碳复合成型体,反复进行五次该含浸和热处理,使之含浸有沥青。沥青含浸后的密度为185MG/M3。0070如上所述含浸有沥青后,以约3000进行热处理,使碳纤维碳复合成型体石墨化。0071表1中表示碳纤维叠层体的密度及体积率、热分解碳填充后的密度及体积率、沥青含浸后的密度及体积率、石墨化热处理后的碳纤维后的密度、石墨晶体的D112面的晶体厚度、石墨化热处理后的碳纤维强化碳复合材料的热传导率。另外,密度为各工序后的密度,体积率为体积。各工序后的密度、面间隔D112面及热传导率如下求出。0072密度的测定0073从碳纤维强化碳。

31、复合材料切出10MM10MM60MM形状的试样,在将表面加工成比RZ12M更平滑的状态下,使用秤测定质量,使用千分尺测出长度。将三个方向的长度相乘求出体积。密度通过质量除以体积而求出。0074热传导率的测定0075依照JIS日本工业规格R16111997,由热传导率热扩散率比热容量体积密度的式子求出热传导率。制成直径10MM3MM的试样,使用ULVAC公司制的激光闪光法热常数测定装置TC7000UVH测定热扩散率。0076另外,比热容量由新碳材料入门新炭素材料入門,碳材料学会编,第45页,表1,石墨的热力学的各函数求出。0077表1所示的热传导率的“XY面方向”表示从X轴及Y轴的面方向的所有方。

32、向测定时的最小的热传导率最大的热传导率。另外,“Z轴方向”表示Z轴方向的热传导率。0078晶体结构面间隔D112的测定0079使用X射线衍射装置,通过NI过滤器将CUK射线单色化,以高纯度硅为标准物说明书CN102007090ACN102007103A7/10页10质,通过学振法进行了测定。关于石墨晶体的D112面的测定,通过将碳纤维强化碳复合材料粉末化,使用该粉末进行测定。0080实施例20081与实施例1同样操作,在碳纤维叠层体中填充热分解碳,接着,反复进行易石墨化性的喹啉不溶部分少的沥青的浸渍和热处理,之后,进行用于石墨化的热处理。0082碳纤维叠层体的密度为025MG/M3,填充热分解。

33、碳后的密度为175MG/M3,沥青的浸渍和热处理后的密度为182MG/M3。另外,石墨化处理后的石墨晶体的D112面的晶体厚度为8NM。0083与实施例1同样操作进行测定,表1中表示测定结果。0084实施例30085与实施例1同样操作,使碳纤维叠层体含有热分解碳,之后,反复进行沥青的浸渍和热处理,之后,进行石墨化的热处理,得到碳纤维强化碳复合材料。0086碳纤维叠层体的密度为020MG/M3,含有热分解碳后的密度为175MG/M3,含浸沥青后的密度为195MG/M3,石墨晶体的D112面的晶体厚度为8NM。0087与实施例1同样操作进行测定,表1中表示测定结果。0088实施例40089与实施例。

34、1同样操作,使碳纤维叠层体含有热分解碳,之后,反复进行沥青的浸渍和热处理,之后,进行用于石墨化的热处理。碳纤维叠层体的密度为025MG/M3,含有热分解碳后的密度为165MG/M3,进行沥青的含浸和热处理后的密度为185MG/M3,石墨化热处理后的石墨晶体的D112面的晶体厚度为8NM。0090与实施例1同样操作进行测定,表1中表示测定结果。0091实施例50092在密度020MG/M3的碳纤维叠层体中填充热分解碳,使密度为150MG/M3。接着,反复进行焦油沥青的含浸和热处理,使浸渍后的密度为185MG/M3。之后,进行用于石墨化的热处理。石墨化热处理后的石墨晶体的D112面的晶体厚度为8N。

35、M。得到的碳纤维强化碳复合成型体的XY平面的热传导率为400450W/MK,Z轴方向为140W/MK。0093表1中表示与实施例1同样操作进行测定后的测定结果。0094实施例60095在密度020MG/M3的碳纤维叠层体中填充热分解碳,使密度为165MG/M3。接着,反复进行焦油沥青的浸渍和热处理,使浸渍后的密度为185MG/M3。之后,进行用于石墨化的热处理。石墨化热处理后的石墨晶体的D112面的晶体厚度为6NM。得到的碳纤维强化碳复合成型体的XY平面的热传导率为400450W/MK,Z轴方向为100W/MK。0096与实施例1同样操作进行测定,表1中表示测定结果。0097实施例70098使。

36、用实施例1的沥青类碳纤维,即长度30100MM的短的碳纤维,进行梳理,使用有机粘合剂进行无光泽状,由此,得到在X轴及Y轴的面方向随机分散有碳纤维的、50MM50MM50MM的无光泽状分散体密度为015MG/M3。填充具有易石墨化性的大致柱状组织的热分解碳,使密度为165MG/M3。接着,反复进行焦油沥青的浸渍和热处理,使浸渍后的密度为185MG/M3。之后,进行用于石墨化的热处理。石墨化热处理后的石墨晶体的说明书CN102007090ACN102007103A8/10页11D112面的晶体厚度为8NM。得到的碳纤维强化碳复合成型体的XY平面的热传导率为450550W/MK,Z轴方向为140W/。

37、MK。0099与实施例1同样操作进行测定,表1中表示测定结果。0100另外,在上述实施例17的碳纤维强化碳复合材料的表面,通过电镀法分别包覆铁、铜、铝、铁合金、铜合金、铝合金,得到金属包覆碳纤维强化碳复合材料。所得到的金属包覆碳纤维强化碳复合材料,其散热性优异,适合作为散热部件。0101比较例10102为密度005MG/M3的碳纤维叠层体时,在其后的工序中,大多伴随破损,不能够维持形状。0103比较例20104为密度05MG/M3的碳纤维叠层体时,即使填充热分解碳,密度为100MG/M3,含量也少,之后在约3000下进行热处理,得到的碳纤维强化碳复合成型体的XY平面的热传导率为100W/MK,。

38、Z轴方向为10W/MK。0105说明书CN102007090ACN102007103A9/10页120106如表1所示,根据本发明,使用由沥青类碳纤维制成的碳纤维叠层体的本发明的碳纤维强化复合材料在X轴及Y轴的面方向得到高的热传导率。0107扫描型电子显微镜SEM观察说明书CN102007090ACN102007103A10/10页130108图3是本发明的实施例2的碳纤维强化复合材料截面的SEM照片。如图3所示,本发明的实施例中,在碳纤维的周围形成有由热分解碳形成的包覆层。由该热分解碳形成的包覆层具有同心圆状的洋葱结构。0109如图2所示,如上所述操作制成的本发明的碳纤维强化碳复合材料能够作为用于冷却半导体装置的散热材料使用。另外,本发明的碳纤维强化碳复合材料也可以熔融含浸铝合金或铜等金属而使用。0110图2是表示在基座5之上经由散热材料4载置有半导体装置3的状态的立体图。如图2所示,在基座5和半导体装置3之间设置散热材料4。由半导体装置3产生的热量经由散热材料4传递到基座5。说明书CN102007090ACN102007103A1/1页14图1图2图3说明书附图CN102007090A。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 化学;冶金 > 水泥;混凝土;人造石;陶瓷;耐火材料〔4〕


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1