记录/再现全息数据的设备及调整记录层的位置的方法 本申请要求于2008年8月28日提交到韩国知识产权局的第10-2008-0084741号韩国专利申请的利益,其公开完整地包含于此,以资参考。
【技术领域】
本发明的各方面涉及一种全息数据存储装置,更为具体地涉及这样一种记录/再现全息数据的设备及调整记录层的位置的方法,即,在记录期间可有效地调整记录层的初始位置和期望的记录层的位置。
背景技术
使用全息图(hologram)存储信息的技术被广泛地使用。在这种技术中,以光干涉条纹将信息存储在对光敏感的有机晶体中或根据光的强度反应的诸如光致聚合物(photo polymer)的材料中。使用两束相干激光束形成光干涉条纹。换言之,当具有不同路径的参考光和信号光相互干涉时形成干涉条纹,从而在光敏信息存储介质中引起化学或物理反应,并在其上进行记录。与用于记录信息的光相似的参考光照射在信息存储介质上的干涉条纹上,以从记录的干涉条纹再现信息。由于干涉条纹,这将引起衍射。恢复信号光并再现信息。
使用全息图存储信息的技术的示例包括体(volume)全息方法和微全息方法,其中,所述体全息方法使用体全息以一个页为单位记录/再现信息,所述微全息方法使用微全息以单字节为单位记录/再现信息。在体全息方法中,可同时处理大量的信息。但是,由于应非常精确地调整光学系统,不易于将该方法适用在消费装置中。
在微全息方法中,两束会聚的光束在焦点相互干涉,从而形成精细的干涉条纹(微全息图)。形成干涉条纹的位置在信息存储介质的平面移动,从而在信息存储介质上记录多个干涉条纹以形成多个记录层。沿信息存储介质的深度方向叠加记录层以形成多层机构,从而可将信息三维地记录在信息存储介质上。
在微全息方法中,将信息沿信息存储介质的深度方向记录在多个层中,从而增加信息存储介质的记录容量。在诸如蓝光盘(BD)的多层光盘中,在每个记录层中存在反射层,根据反射光的强度信号的等级和信号的极性来分辨多个记录层,在期望的层中形成光焦点。
但是,在用于微全息方法的信息存储介质中,与现有光盘不同,反射层不存在于每个记录层中。当在全息信息存储介质中的每个记录层中存在反射层时,由于反射层而降低记录光的效率。因此,无法沿信息存储介质的深度方向记录多个层,可无法增加记录容量。
因此,在用于微全息方法的信息存储介质中,反射层不存在于每个层中。这样,不易于在信息存储介质的期望的记录层上形成光焦点。当光焦点没有形成在期望的记录层上时,记录层间的距离可不一致。结果,相邻层间的串扰(crosstalk)可不一致,并且在每个记录层中的再现信号的性能可不同。另外,光焦点可形成在与记录层较远的部分中,甚至当记录开始时,可能无法适当地执行记录。
【发明内容】
本发明的各方面提供了一种用于记录/再现全息数据的设备及调整记录层的位置的方法,其中,在记录期间,使用从全息数据存储介质反射的光信号,可有效地调整初始记录层的位置和期望的记录层的位置。
根据本发明的一方面,提供了一种用于记录/再现全息数据的设备,在所述设备中调整在全息数据存储介质中的记录层的位置。全息数据存储介质包括包括基底、反射具有第一波长的第一光的第一反射层、反射具有第二波长的第二光的第二反射层、记录全息数据的全息介质层,其中,第二反射层与全息介质层相邻,第一反射层被设置为比第二反射层离光入射的侧面更近或者比第二反射层离光入射的侧面更远,第一反射层和第二反射层地反射层中的设置为离光入射的侧面更近的反射层是透反层,具有第一波长和第二波长的第一光和第二光中的具有其中一个波长的光透射通过所述透反层,并且具有另一波长的光从所述透反层反射。所述设备包括:第一光源和第二光源,分别发射第一光和第二光;物镜,在全息数据存储介质上会聚第一光和第二光;驱动单元,驱动物镜;焦点移动单元,沿光轴的方向移动第二光的焦点;第一光电检测器,检测从全息数据存储介质反射的第一光,并产生第一检测信号;第二光电检测器,检测从全息数据存储介质反射的第二光,并产生第二检测信号;控制器,控制用于记录/再现全息数据的设备以基于第一光调整第二光在全息介质层中的焦点位置。
根据本发明的另一方面,控制器可控制焦点移动单元以移动第二光的焦点位置,从而当物镜沿光轴的方向往复移动时将第二光的焦点位置调整到期望的记录层的位置;焦点移动单元沿光轴的方向移动第二光的焦点,直到当第一光从第一反射层反射时产生第一检测信号的时间与当第二光从第二反射层反射时产生第二检测信号的时间之间的时间差等于与期望的记录层的位置相应的值。
根据本发明的另一方面,第一检测信号产生的时间与第二检测信号产生的时间之间的时间差可与第一时间间隔ts与第二时间间隔tr之差相应;第一时间间隔是从全息数据存储介质的表面反射的第一光产生第一检测信号与从第一反射层反射的第一光产生第一检测信号之间的时间间隔;第二时间间隔是相对于从全息数据存储介质的表面反射的第一光的第一检测信号,从第二反射层反射的第二光产生第二检测信号的时间间隔。
根据本发明的另一方面,可通过校正由于全息数据存储介质的表面产生的第一检测信号的球面像差引起的误差和根据期望的记录位置相对于第二反射层偏离的程度产生的第二检测信号的球面像差引起的误差,获得产生第一检测信号的时间与产生第二检测信号的时间的时间差。
根据本发明的另一方面,当由于全息数据存储介质的表面产生的第一检测信号的球面像差引起的误差是zr,以及由于第二光的焦点位置和第二反射层的分离造成的球面像差引起的误差是zb时,通过校正由球面像差引起的误差获得的第一检测信号之间的时间间隔tsc满足tsc=ts+tz,并且相对于从全息数据存储介质的表面反射的第一光的第一检测信号通过校正球面像差引起的误差获得的第二检测信号的时间间隔trc满足trc=tr+zr+zb;其中,zb、zr=-2W40/NA2Vact,其中,W40是球面像差系数,Vact是当物镜往复移动时的前进速度,NA是物镜的数值孔径。
根据本发明的另一方面,当物镜沿光轴的方向往复移动时,控制器控制焦点移动单元移动第二光的焦点位置,从而焦点移动单元沿光轴的方向移动第二光的焦点直到从第一反射层反射的第一光的第一检测信号的位置与基于从第二反射层反射的第二光的第二检测信号的位置相同,控制器将这样的位置设置为焦点移动单元的参考位置,在该位置上从第一反射层反射的第一光的第一检测信号的位置与基于从第二反射层反射的第二光的第二检测信号的位置相同,控制器通过物镜控制第一光被聚焦在第一反射层上,控制器控制焦点移动单元从参考位置移动位移,从而第二光的焦点沿光轴的方向移动以将第二光的焦点位置调整到期望的位置。
根据本发明的另一方面,焦点移动单元的位移与第二光的焦点移动量成比例。
根据本发明的另一方面,第一光电检测和第二光电检测器包括多个光接收区域,第一检测信号是通过第一光电检测器检测的第一光的光接收信号的和信号或聚焦误差信号,第二检测信号通过第二光电检测器检测的第二光的光接收信号的和信号或聚焦误差信号。
根据本发明的另一方面,第一光源和第二光源中的一个光源发射伺服光,另一光源发射光以记录或再现数据。
根据本发明的另一方面,当设备操作在记录模式时:将从所述另一光源发射的光划分为信号光和参考光;信号光从第二反射层或第一反射层反射,在焦点聚焦,并且参考光直接聚焦在焦点,从而形成形成和记录全息数据的精细干涉条纹。当设备操作在再现模式时,基于从所述另一光源发射的光,再现记录在全息介质层中的全息图。
根据本发明的另一方面,当设备操作在记录模式时:信号光和参考光以第一正交圆偏振状态和第二圆偏振状态入射在全息数据存储介质上;第二反射层或第一反射层具有圆偏振分离功能;处于第一圆偏振状态的信号光从第二反射层或第一反射层反射;处于第二圆偏振状态的参考光在全息数据存储介质的部分区域中反射,或处于第二偏振状态的参考光的的一部分从全息数据存储介质的所有区域反射。
根据本发明的另一方面,提供了一种调整在在全息数据存储介质中的记录层的位置的方法。全息数据存储介质包括基底、反射具有第一波长的第一光的第一反射层、反射具有第二波长的第二光的第二反射层、记录全息数据的全息介质层,其中,第二反射层与全息介质层相邻,第一反射层被设置为比第二反射层离光入射的侧面更近或者比第二反射层离光入射的侧面更远,与第一反射层和第二反射层的光入射的侧面更近的反射层是透反层,具有第一波长和第二波长的第一光和第二光中的具有一个波长的光透射通过所述透反层,并且具有另一波长的光从所述透反层反射。所述方法包括:根据从第一反射层反射的第一光的第一检测信号和从第二反射层反射的第二光的第二检测信号,调整第二光的焦点位置。
根据本发明的另一方面,所述方法还包括:控制焦点移动单元以移动第二光的焦点,从而当将第一光和第二光聚焦在全息数据存储介质上的物镜沿光轴的方向往复移动时,将第二光的焦点调整到期望的记录层的位置,其中,焦点移动单元沿光轴的方向移动第二光的焦点,直到当第一光从第一反射层反射时产生第一检测信号的时间与当第二光从第二反射层反射时产生第二检测信号的时间之间的时间差等于与期望的记录层的位置相应的值。
根据本发明的另一方面,所述方法还包括:当物镜沿光轴的方向往复移动时,控制焦点移动单元以移动第二光的焦点位置,直到从第一反射层反射的第一光的第一检测信号的位置与基于从第二反射层反射的第二光的第二检测信号的位置相同;将这样的位置设置为焦点移动单元的参考位置,在该位置上从第一反射层反射的第一光的第一检测信号的位置与基于从第二反射层反射的第二光的第二检测信号的位置相同,;通过物镜将第一光聚焦在第一反射层上,焦点移动单元从参考位置移动位移,并且沿光轴的方向移动第二光的焦点以将其调整到期望的位置。
在下面的描述中将部分地阐明本发明另外的方面和/或优点,通过描述,其会变得更加清楚,或者通过实施本发明可以了解。
【附图说明】
通过下面结合附图对实施例进行的描述,本发明的这些和/或其他方面和优点将会变得清楚和更易于理解,其中:
图1示出根据本发明实施例的可在用于记录/再现全息数据的设备中使用的反射型全息数据存储介质;
图2是根据本发明实施例的当参考光和信号光在图1中示出的反射型全息数据存储介质的全息介质层中相互干涉时形成的记录标记全息图的感光图像;
图3示出根据本发明实施例的可调整记录层的位置的记录/再现全息数据的设备的结构;
图4示出根据本发明实施例的图3中示出的记录/再现全息数据的设备中的伺服光的光路;
图5示出根据本发明实施例的图3中示出的记录/再现全息数据的设备的记录模式中的信号光的光路;
图6示出根据本发明实施例的在图3中示出的记录/再现全息数据的设备的记录/再现模式中的参考光的光路;
图7A示出根据本发明实施例的图3的记录/再现全息数据设备的第一光电检测器;
图7B示出根据本发明实施例的图3的记录/再现全息数据设备的第二光电检测器;
图8示出根据本发明实施例的输入到图3中的控制器、第一光电检测器、第二光电检测器、焦点调整单元和物镜驱动单元中的信号之间的关系;
图9示出根据本发明实施例的被物镜在全息数据存储介质上聚焦的伺服光和参考光;
图10示出根据本发明实施例的当随着驱动单元被驱动物镜被对焦搜索时获得的伺服光的检测信号和参考光的检测信号;
图11是根据本发明实施例的调整记录层的位置的方法的流程图;
图12示出根据本发明实施例的当物镜被对焦搜索时通过将伺服光和参考光相加产生的和信号;
图13是根据本发明另一实施例的调整记录层的位置的方法的流程图;
图14是示出根据本发明实施例的全息信息数据介质中参考光的焦点移动距离与致动透镜的位移之间的线性关系的曲线。
【具体实施方式】
现在对本发明实施例进行详细的描述,其示例表示在附图中,其中,相同的标号始终表示相同部件。下面通过参照附图对实施例进行描述以解释本发明。
根据本发明实施例的用于记录/再现全息数据的设备的全系数据存储介质包括:基底;第一反射层,反射具有第一波长的第一光;第二反射层,反射具有第二波长的第二光;全息介质层,记录全息数据。第二反射层与全息介质层相邻。第一反射层比第二反射层离光入射的侧面更近,或比第二入射层离光入射的侧面更远。在第一入射层和第二入射层中,离光入射的侧面更近的侧面可以是透反(transreflective)层,具有第一波长和第二波长的第一光和第二光中的具有其中一个波长的光透射通过所述透反层,并且具有另一波长的光从所述透反层反射。
另外,用于在全息数据存储介质中调整记录层的位置的记录/再现全息数据的设备可包括分别发射第一光和第二光的第一光源和第二光源、在全息数据存储介质上会聚第一光和第二光的物镜、驱动物镜的驱动单元、焦点移动单元、第一光电检测器、第二光电检测器和控制器。焦点移动单元沿光轴的方向移动第二光的焦点。第一光电检测器检测从全息数据存储介质反射的第一光,并产生第一检测信号。第二光电检测器检测从全息数据存储介质反射的光,并产生第二检测信号。控制器控制记录/再现全息数据的设备以基于第一光调整在全息介质层中的第二光的位置。
根据如下描述的本发明的一方面,第一反射层是反射层,第二反射层是透反层,具有第一波长的第一光透过所述透反层并且具有第二波长的第二光从所述透反层反射,第一光是伺服光,第二光是从用于记录/再现全息图的光源发射的光。本发明的各方面不限于此,但是,包括但不限于如上讨论的变化的各种变化和等效的其他实施例是可行的。
图1示出根据本发明实施例的可用于记录/再现全息数据的设备的反射型全息数据存储介质10。参照图1,反射型全息数据存储介质10包括:基底14和15;反射层11,反射具有第一波长的第一光;透反层12;全息介质层13,以干涉条纹记录全息数据。第一光可以是红光,并且还可以是伺服光。相似的,第二光可以是蓝光,并且可以是记录/再现全息图的光。第一光透射通过透反层12,并且第二光通过透反层12被反射。全息数据以干涉条纹记录在全息介质层13中。
全息介质层13是可形成记录标记全息图的介质层。记录标记全息图可以是例如微全息图。记录标记全息图形成在平面,从而形成单记录层。另外,可沿全息介质层13的深度方向形成多个记录层。图1中,Lr1和Lr2分别表示入射在反射层11上的伺服光和从反射层11反射的伺服光。Lb1和Lb3分别表示在焦点Fb聚焦的参考光,以及在焦点Fb聚焦随后发散并从透反层12反射的参考光。Lb2和Lb4分别表示从透反层12反射并随后在焦点Fb聚焦的信号光和通过焦点Fb并发散的反射信号光。Fb表示参考光的焦点。
全息数据存储介质10可以是具有120mm直径的盘,例如,CD、DVD或BD的形式。在全息数据存储介质10的中心可形成有孔(未示出)。如图1所示,基底14和15可分别形成在全息数据存储介质10的底侧和顶侧,以保护全息介质层13和反射层11。基底14和15可由诸如聚碳酸酯、玻璃等材料形成。
全息介质层13可由光致聚合物形成,该光致聚合物具有根据入射光的强度变化的折射率。例如,全息介质层13可形成为与具有大约405nm波长的蓝光(例如,参考光Lb1和信号光Lb2)反应。如图2所示,当参考光Lb1和信号光Lb2在全息介质层13中相互干涉时,形成构成记录标记的全息图。在这种情况下,记录标记全息图可以是微全息图。基底14和15可具有与全息介质层13的折射率相同或相似的折射率。
全息介质层13的厚度d2充分地大于记录标记的深度。例如,全息介质层13可设计为具有大约150μm的厚度。图1中,d1表示从全息数据存储介质10的底表面至全息介质层13范围的基底14的厚度,d2表示全息介质层13的厚度,d3是透反层12与反射层11之间的距离。
根据信号光Lb2与参考光Lb1之间的干涉引起的全息图记录,一个记录层可形成在全息介质层13中。当执行全息图记录的位置沿全息介质层13的深度方向变化时执行记录,从而形成多个记录层。在此,可通过在相同平面形成记录标记全息图来获得一个记录层。
岸(land)、沟(groove)、凹坑等可形成在反射层11中,以执行寻轨和聚焦伺服操作。通过基底14入射的具有第一波长的第一光被反射层11反射返回到基底14。第一光可以是,例如,作为红光的伺服光Lr1。
透反层12是波长选择反射层,伺服光(红光)从所述透反层12透射并且第二光从所述透反层12反射。如上所述,第二光具有第二波长,并且可以是,例如,蓝光(用于记录/再现全息图的光)。透反层12可以形成为胆甾(cholesteric)液晶层以具有圆偏振分离功能。胆甾液晶层具有选择反射特性,从而当液晶的螺旋旋转方向(右旋与左旋)与入射光的圆偏振方向一致并且入射光的波长是液晶的螺距时,胆甾液晶层仅选择性地反射其圆偏振分量。例如,当蓝光在基底14上入射为右旋圆偏振光时,从透反层12反射的光变为右旋圆偏振。
如稍后所述,当形成干涉条纹时,信号光Lb2从透反层12反射并随后在焦点Fb聚焦,参考光Lb1直接在焦点Fb聚焦。在这种情况下,信号光Lb2可在全息数据存储介质10上入射为右旋圆偏振光,参考光Lb1在全息数据存储介质10上入射为左旋圆偏振光。考虑到这些,可形成透反层12,从而信号光Lb2可从透反层12反射,并且参考光Lb1可透射通过透反层12。另外,可形成透反层12,从而左旋圆偏振的蓝光的一部分可从透反层12反射。在这种情况下,参考光Lb1可被用于将在稍后描述的调整记录层的位置。
作为更特殊的实施例,可形成透反层12,从而左旋圆偏振蓝光从仅在全息数据存储介质10的部分区域(例如,孔附近的中心的周围)的透反层12反射,右旋圆偏振蓝光从在全息存储介质10的剩余区域中的透反层12反射。可选地,可形成透反层12,从而右旋圆偏振的蓝光主要地从全息数据存储介质10的整个区域中的透反层12反射,并且左旋圆偏振蓝光的部分从透反层12反射。
图3示出根据本发明实施例的可调整记录层的位置的用于记录/再现全息数据的设备的结构。参照图3,根据当前实施例的用于记录/再现全息数据的设备包括分别发射具有第一波长的第一光和具有第二波长的第二光的第一光源71和第二光源72、物镜100、驱动单元44、焦点移动单元、第一光电检测器79、第二光电检测器48和控制器160。根据本发明的另一方面,所述设备可包括其它和/或单元。相似的,多个功能或两个或以上的上述单元可被集成到单个部件。
物镜100将第一光和第二光会聚在全息数据存储介质10上。驱动单元44驱动物镜100。焦点移动单元沿光轴的方向移动第二光的焦点。第一光电检测器79检测从全息数据存储介质10的反射层11反射的第一光,并产生第一检测信号。第二光电检测器48检测从全息数据存储介质10的透反层12反射的第二光,并产生第二检测信号。控制器150控制用于记录/再现全息数据的设备以基于第一光调整在全息数据存储介质10的全息介质层13中的第二光的焦点位置。
图4、图5和图6分别示出根据本发明实施例的图3的用于记录/再现全息数据的设备中的伺服光的光路、在记录模式中的信号光的光路和在记录/再现模式中的参考光的光路。参照图4,伺服光系统70可将具有第一波长的从第一光源71发射的第一光,即,具有红波长的伺服光Lr1照射在基底14上并且可接收从反射层11反射的伺服光Lr2。
伺服光Lr1可具有,例如,大约660nm的波长。从第一光源71发散的伺服光Lr1可被光栅72划分为包括一个主光束和两个次光束的三个光束。这些光束可透射通过偏振分束器73,并入射到准直透镜74上。
光栅72可将主光束的光量分配为大于或等于次光束的光量。在图4中,省略了次光束的示图。偏振分束器73可入射的伺服光Lr1的p偏振分量并且可反射入射伺服光Lr1的s偏振分量。准直透镜74将从第一光源71发散的伺服光Lr1转换为平行光。转换为平行光的伺服光Lr1入射到校正透镜(correcting lens)75上。校正透镜75可包括两个聚焦透镜76和77。透射通过校正透镜75的伺服光Lr1透射通过二向色棱镜(dichroic prism)40和41,在反射镜42上反射,入射到四分之一波片(QWP)43上,转换为圆偏振光,并入射在物镜100上。物镜100在反射层11上会聚伺服光Lr1以在反射层11上形成焦点Fr(未示出),并从反射层11反射,从而反射伺服光Lr2沿与入射伺服光Lr1的方向相反的方向传播。
物镜100被设计为最适宜于具有第二波长的从第二光源发射的第二光,即,最适应于用于记录/再现全息图的蓝光,并被设计为最适宜于具有第一波长的第一光,即,伺服光Lr1,从而校正透镜75与物镜100之间的光程(opticaldistance)可引起伺服光Lr1被会聚在反射层11上。例如,物镜100可用作对于伺服光Lr1的具有大约0.63的数值孔径(NA)的聚光透镜。在此给出的数值孔径仅是示例,还可采用其他数值孔径。
可按这种方式形成二向色棱镜40,即几乎100%的红光(伺服光)透射通过所述二向色棱镜40,并且几乎100%的蓝光(用于记录/再现全息图并在图3的光学系统中的光,参考光)被所述二向色棱镜40反射。可按这种方式形成二向色棱镜41,即,几乎100%的红光透射通过所述二向色棱镜41,并例如,几乎100%的蓝光的p偏振分量透射通过所述二向色棱镜41,以及几乎100%的蓝光的s偏振分量可被所述二向色棱镜41反射。可按这种方式形成镜子42,即,几乎100%的红光和蓝光的可被所述反射镜42反射。QWP 43可将线性偏振的所有红光和蓝光转换为圆偏振光。
反射伺服光Lr2顺序地透射通过物镜100、QWP 43、镜子42、二向色棱镜40和41以及校正透镜75。反射伺服光Lr2随后被转换为平行光束,被校正透镜74聚光,被偏振分束器73反射并且被第一光电检测器79接收。用于记录/再现全息数据的设备还可包括设置在偏振分束器73与第一光电检测器79之间的像散(astigmatism)透镜,以执行在反射伺服光Lr2中产生的像散引起的聚焦伺服操作。在图4中像散透镜被示出为柱面透镜78,但是可使用其他安排。
由于在用于记录/再现全息数据的设备中旋转的全息数据存储介质10可偏转或偏心,所以存在目标轨道和相应的焦点位置可变化的可能性。因此,在伺服光学系统70中的伺服光Lr1的焦点应位于目标轨道和相应的焦点位置中。由此,伺服光Lr1应沿聚焦方向和寻轨方向移动,该聚焦方向和寻轨方向分别与全息数据存储介质10的厚度方向和旋转方向相应。
驱动单元44可以是双轴致动器。可沿聚焦方向和寻轨方向的双轴方向驱动物镜100,从而伺服光Lr1可沿聚焦方向和寻轨方向移动。根据另一方面,驱动单元44可以是三轴致动器,可相对于除聚焦方向和寻轨方向之外的径向倾斜驱动物镜100。伺服光Lr1被物镜100会聚在反射层11上,并且第一光电检测器79接收反射伺服光Lr2。第一光电检测器79接收的反映伺服光Lr2反射聚焦状态和寻轨状态。
图7A示出根据本发明实施例的第一光电检测器79。为了检测聚焦误差信号和寻轨误差信号,第一光电检测器79可包括主光电检测器79a和第一子光电检测器79b和第二子光电检测器79c。主光电检测器79a包括四个光接收区域Ar、Br、Cr和Dr以接收主光束。第一子光电检测器79b和第二子光电检测器79c分别包括分别沿径向设置在主光电检测器79a的两侧的两个光接收区域Er、Fr以及Hr、Gr,用于接收次光束。
可使用主光电检测器79a检测的信号的像散来执行聚焦控制。可从式1获得使用主光电检测器79a接收的主光束检测信号的聚焦误差信号FESr。聚焦误差信号FESr被输入到控制器150并用于物镜100的聚焦控制。为便于解释,用相同的标号表示光电检测器的光接收区域和光电检测器检测的信号。
FESr=(Ar+Cr)-(Br+Dr) (1)
可通过基于第一次光电检测器79b和第二次光电检测器79c检测信号的差分推挽(push pull)方法,执行寻轨控制。使用差分推挽方法获得的寻轨误差信号DPPr表示与伺服光Lr1从目标轨道偏离的量相应的量,并可由式2表示。在式2中,k是增益。
MPPr=(Ar+Dr)-(Br+Cr)
SPPr1=Er-FR
SPPr2=G1-Hr
DPPr=MPPr-k(SPPr1+SPPr2) (2)
如上所述,使用伺服光Lr1的伺服光学系统70将伺服光Lr1照射在全息数据存储介质10的反射层11上,并通过使用反射伺服光Lr2的检测信号来执行物镜100的聚焦和寻轨控制。
用于记录/再现全息图的光学系统可被配置为将从第二光源21发射的具有第二波长的第二波长光,即,蓝光Lb照射在基底14上,并接收从透反层12反射的蓝光Lb。用于记录/再现全息图的光学系统可包括用于在记录模式中透射信号光Lb2的信号光系统50和用于在记录模式和再现期间透射参考光Lb1的参考光系统20。
参照图5和图6,具有第二波长的第二光(例如,具有大约405nm波长的蓝光Lb)被发散并从用于记录/再现全息图的光学系统的第二光源21发射。蓝光Lb入射到准直透镜22上并被转换为平行光。转换为平行光的蓝光Lb透射通过主动半波片26,并被偏振分束器27反射或者透射通过偏振分束器27。现在将描述偏振分束器27反射的蓝光Lb用作信号光Lb2,透射通过偏振分束器27的光用作参考光Lb1的情况。
主动半波片26是on/off型半波片。如果将电源施加到主动半波片26,则主动半波片26可起半波片的作用。如果没有将电源施加到主动半波片26,则主动半波片26可不起半波片的作用。因此,当将电源施加到主动半波片26时,入射的蓝光Lb的偏振方向被主动半波片26旋转预定角度,具有s偏振分量的信号光Lb2被偏振分束器27反射,具有p偏振分量的参考光Lb1透射通过偏振分束器27。在再现模式下,不将电源施加到主动半波片26,主动半波片26不起半波片的作用。这样,从第二光源21发射的蓝光Lb透射通过偏振分束器27并沿着记录模式中的参考光Lb1的传播路径传播。全部或者大部分偏振的蓝光Lb可如上所述透射。尽管不是在所有方面都是必需的,但是这里假设从第二光源21发射的蓝光Lb是p偏振。
作为另一个实施例,主动半波片26可包括置于半波片之上的旋转驱动单元,以使得偏振方向旋转预定角度,并且可根据旋转角度调整s偏振和p偏振的强度分布。
从第二光源21发射的蓝光Lb被偏振分束器27分割为大约50%的参考光Lb1和大约50%的信号光Lb2。主动半波片26可用于调整该分割比例。
参照图5,在信号光光学系统50中,电流反射镜(galvano mirror)51和56用于改变反射光的角度。s偏振信号光Lb2被电流反射镜51反射,被半波片52转换为p偏振光,透射通过偏振分束器53,被四分之一波片(QWP)54转换为圆偏振光,并被反射镜55再次反射。再次反射的信号光Lb2被QWP54转换为s偏振光,被偏振分束器53反射,并入射到电流反射镜56上。控制器150可控制电流反射镜51和56以调整信号光Lb2的传播方向。
被电流反射镜56反射的信号光Lb2透射通过狭缝57并入射到扩束器(beam expander)58上。扩束器可包括两个致动透镜59和60。信号光Lb2被致动透镜59发散,被致动透镜60改变为聚焦的光,透射通过中继透镜(relaylens)61,入射到半波片64上,并被转换为p偏振光。
如上所述,扩束器58包括两个致动透镜59和60。致动透镜59可利用步进电机或者压电电机沿光轴方向移动,并且可被粗略地控制。致动透镜60可利用与驱动单元44(用于物镜100)相似的致动器沿光轴方向移动,并且可被精细地控制。
例如,当记录层在全息数据存储介质10的厚度方向上移动时,致动透镜59可将信号光Lb2大致定位在记录层的附近,致动透镜60可将信号光Lb2精确定位在记录层上。致动透镜59的移动距离可以大于致动透镜60的移动距离。
中继透镜61用于获得物镜100与扩束器58的致动透镜60之间的距离,并且可包括两个凸透镜62和63。
透射通过半波片64的p偏振信号光Lb2透射通过偏振分束器38,并入射到主动半波片46上。受到驱动的主动半波片46使入射的p偏振信号光Lb2的偏振方向旋转预定角度,将入射的p偏振信号光Lb2转换为主要包括s偏振分量。p偏振信号光Lb2可被主动半波片46转换为包括大约70%的s偏振分量和大约30%的p偏振分量。
信号光Lb2被反射镜45反射,并入射到物镜100上。由于二向色棱镜41,仅信号光Lb2的s偏振分量可以入射到反射镜42上,并且由于QWP 43,信号光Lb2的s偏振分量被转换为例如右旋圆偏振光。信号光Lb2被物镜100会聚并从包括胆甾液晶层的透反层12反射,在点Fb处形成焦点。由于物镜100和扩束器59之间的光程,物镜100可会聚信号光Lb2,并且可用作具有例如大约0.4NA的聚光透镜。
会聚在焦点Fb上的信号光Lb2被发散并再次入射到物镜100上。反射信号光这里被称为Lb4。反射信号光Lb4从包括胆甾液晶层的透反层12反射,并具有与信号光Lb2相同的右旋圆偏振。反射信号光Lb4被QWP 43转换为s偏振光,被反射镜42、二向色棱镜41和反射镜45反射,并入射在主动半波片46上。例如,反射的s偏振信号光Lb4被主动半波片46转换为包括大约30%的s偏振分量和大约70%的p偏振分量。反射信号光Lb4的s偏振分量被偏振分束器38反射。具有反射的s偏振分量的反射信号光Lb4透射通过中继透镜35,并入射到扩束器32上。反射信号光Lb4被半波片31转换为p偏振光,透射通过偏振分束器28,被聚光透镜49会聚,并在具有通过柱面透镜47产生的像散的情况下被第二光电检测器48接收。
中继透镜35和扩束器32可执行与如上所述的中继透镜61和扩束器58相同的功能。中继透镜35可包括两个凸透镜36和37,扩束器32可包括两个致动透镜33和34。
由于全息数据存储介质10可能是偏斜的和偏心的,所以存在目标轨道和相应焦点位置可能改变的可能性。因此,如上所述,由利用作为红光的伺服光和控制器150的伺服光学系统来执行聚焦和寻轨控制。然而,由于物镜100的移动,信号光Lb2可能偏离于参考光Lb1的焦点Fb的位置。因此,在信号光光学系统50中,可通过反映这样的状态来调整各个光学部件的光学位置:其中,根据信号光Lb2相对于被定位在全息介质层13中的参考光Lb1的焦点Fb偏离的量,由第二光电检测器48接收反射信号光Lb4。
在记录模式下,为了对信号光Lb2执行执行聚焦和寻轨控制,如图7B所示,第二光电检测器48可包括四个光接收区域Ab、Bb、Cb和Db。第二光电检测器48从四个光接收区域Ab、Bb、Cb和Db检测反射信号光Lb4。信号处理单元(未示出)由于像散执行聚焦控制,利用下面的等式3从四个光接收区域Ab、Bb、Cb和Db中所产生的检测信号计算聚焦误差信号(FESb),并将计算出的聚焦误差信号FESb提供给控制器150。
FESb=(Ab+Cb)-(Bb+Db) ......(3)
聚焦误差信号FESb表示参考光Lb1的焦点Fb与信号光Lb2的焦点之间在聚焦方向上的差异。
利用推挽信号来执行寻轨控制。寻轨误差信号RPPb利用下面的等式4来计算并被提供给控制器150。
RPPb=(Ab+Db)-(Bb+Cb) ......(4)
寻轨误差信号RPPb表示参考光Lb1的焦点Fb与信号光Lb2的焦点之间在寻轨方向上的差异。
可利用下面的等式5产生执行切向控制(tangential control)所需的切向误差信号TPPb。在切向控制中,关于全息数据存储介质10的切线方向将信号光Lb2定位在参考光Lb1的焦点Fb上。
TPPb=(Ab+Bb)-(Cb+Db) ......(5)
切向误差信号TPPb表示参考光Lb1的焦点Fb与信号光Lb2的焦点之间在全息数据存储介质10的切线方向上的差异。
控制器150可基于聚焦误差信号FESb产生聚焦驱动信号,将聚焦驱动信号提供给扩束器58的致动透镜60,对致动透镜60进行聚焦控制,以减小参考光Lb1的焦点Fb与信号光Lb2的焦点之间在聚焦方向上的差异。此外,控制器150可基于寻轨误差信号RPPb产生寻轨驱动信号,将寻轨驱动信号提供给电流反射镜56,控制电流反射镜56的寻轨,以减小参考光Lb1的焦点Fb与信号光Lb2的焦点之间在寻轨方向上的差异。控制器150还可基于切向误差信号TPPb产生切向驱动信号,将切向驱动信号提供给电流反射镜51,对电流反射镜51进行切线控制,以减小参考光Lb1的焦点Fb与信号光Lb2的焦点之间在切线方向上的差异。
信号光光学系统50可将信号光Lb2照射到全息数据存储介质10上,接收从透反层12反射的反射信号光Lb4,并将光接收的结果提供给信号处理单元(未示出)。控制器150可执行扩束器58的致动透镜60的聚焦控制,并且可执行电流反射镜51和56的切向控制和寻轨控制,以使信号光Lb2的焦点形成在参考光Lb1的焦点Fb上。
参照图6,在参考光光学系统22中,从第二光源21发射的蓝光Lb在透射通过准直透镜22的同时被转换为平行光。蓝光Lb在透射通过主动半波片26的同时包括s偏振分量和p偏振分量。如前所述,蓝光Lb的s偏振分量被偏振分束器27反射,并且用作信号光Lb2。
蓝光Lb的p偏振分量可透射通过偏振分束器27,并且可用作参考光Lb1。透射通过偏振分束器27的参考光Lb1入射在偏振分束器28上。透射通过偏振分束器28的p偏振参考光Lb1被QWP 29转换为左旋圆偏振光,被反射镜30反射,被QWP 29转换为s偏振光,被偏振分束器28反射,并向着半波片31传播。s偏振参考光Lb1被半波片31转换为p偏振光,并入射在扩束器32上。
反射镜30可动地设置,并且可通过由于反射镜30的移动而改变参考光Lb1的光路的长度来使参考光Lb1与信号光Lb2的光路的长度相匹配。为了使参考光Lb1和信号光Lb2的光路的长度相匹配,信号光光学系统50中的反射镜55可被驱动,或者信号光光学系统50中的反射镜55和参考光光学系统20中的反射镜30均可被驱动。当激光二极管用作第二光源21时,相干长度大约为几百微米。当参考光Lb1与信号光Lb2的光路的长度差异等于或大于相干长度时,形成在参考光Lb1和信号光Lb2之间的焦点上的记录标记(全息图)可能不会被精确地记录。因此,为了形成好的全息图,应该通过例如调整反射镜30,来调整参考光Lb1与信号光Lb2的光路的长度之间的差异使其等于或小于相关长度。也可进行其它调整,以调整参考光Lb1与信号光Lb2的光路的长度。
入射到扩束器32上的p偏振参考光Lb1被致动透镜33发散,又被致动透镜34会聚。透射通过扩束器32的参考光Lb1透射通过中继透镜35,并入射在偏振分束器38上。如上所述,参考光Lb1是p偏振的,所以参考光Lb1透射通过偏振分束器38并入射在光闸39上。如上所述,扩束器32和中继透镜35可执行与扩束器58和中继透镜61相同的功能。
利用控制器150来控制光闸39,以使得参考光Lb1被光闸39拦截或者透射通过光闸39。当参考光Lb1透射通过光闸39时,参考光Lb1是p偏振蓝光,参考光Lb1被二向色棱镜40反射,透射通过二向色棱镜41,并入射在反射镜42上。参考光Lb1被反射镜42反射,被QWP 43转换为左旋圆偏振光,并被物镜100会聚在全息数据存储介质10上。
由于物镜100和扩束器32之间的光程,物镜100会聚参考光Lb1,并且可用作具有例如大约0.65NA的聚光透镜。物镜100对于参考光Lb1的NA可大于物镜100对于信号光Lb2的NA,这是因为参考光Lb1被物镜100会聚并直接聚焦在焦点Fb处,而信号光Lb2被物镜100会聚,被透反层12反射,并聚焦在点Fb处。因此,信号光Lb2的焦距可大于参考光Lb1的焦距。本发明的各方面不限于参考光Lb1被直接聚焦在点Fb处,而信号光Lb2被透反层12反射,然后聚焦在点Fb处的情况。这里描述的实施例仅是示例。
在记录模式下,几乎没有从全息数据存储介质10的透反层12反射并返回物镜100的参考光Lb1。由于透反层12的特性,仅右旋圆偏振光被透反层12反射,所以作为左旋圆偏振光入射在全息数据存储介质10上的参考光Lb1不被透反层12反射。
如上所述,当在全息数据存储介质10的部分区域(例如,孔附近的中心周围)中左旋圆偏振的蓝光被透反层12反射,在全息数据存储介质10的剩余区域中右旋圆偏振的蓝光被透反层12反射时,可在这样的区域中执行记录:在该区域中,仅右旋圆偏振的蓝光被反射。在这种情况下,在执行记录的区域中,没有参考光Lb1被透反层12反射并返回到物镜100。当在全息数据存储介质10的整个区域上,右旋圆偏振的蓝光被基本反射,并且左旋圆偏振的部分蓝光被部分反射时,在记录期间,右旋圆偏振的信号光Lb2可被透反层12基本反射,左旋圆偏振的参考光Lb1可被透反层12部分反射。在这种情况下,左旋圆偏振的参考光Lb1可以是由于反射而成为右旋圆偏振的反射参考光Lb3。
在再现模式下,主动半波片26不起半波片的作用,从第二光源21发射的p偏振蓝光Lb在不改变偏振的情况下透射通过主动半波片26,透射通过偏振分束器27,并沿着记录模式中的参考光Lb1的光路传播。因此,再现模式中使用的蓝光与记录模式中的参考光Lb1相同,这里假设再现模式中的蓝光是参考光Lb1。
当记录在全息数据存储介质10的全息介质层13中的标记(即,全息图)被再现时,再现全息图的参考光入射在物镜100上。之后,再现全息图的参考光应该被称作再现光。参考光Lb1在左旋圆偏振状态下入射在全息数据存储介质10上,被全息图反射的再现光的传播方向改变,但是场矢量的旋转方向不改变。因此,被全息图反射的再现光变为右旋圆偏振光。右旋圆偏振再现光被QWP 43改变为s偏振光,被反射镜42反射,被二向色棱镜41反射,被反射镜45反射,并入射在主动半波片46上。
由于在再现期间没有将电源施加到主动半波片46,主动半波片46不起半波片的作用,所以s偏振再现光在不改变偏振的情况下透射通过主动半波片46,被偏振分束器38反射,并入射在中继透镜35上。透射通过中继透镜35的s偏振再现光透射通过扩束器32从而被改变为平行光束,被半波片31转换为p偏振光,并透射通过偏振分束器28。透射的p偏振再现光被聚光透镜49会聚,透射通过柱面透镜47,并被第二光电检测器48接收。可从第二光电检测器48所检测的再现光信号中获得记录在预定记录层中的记录标记全息图数据。
图8示出根据本发明实施例的控制器150、第一光电检测器79和第二光电检测器48、聚焦调整单元以及驱动单元之间的信号输入之间的关系。参照图8,为了通过调整第二光(例如,参考光Lb1)在全息介质层13中的焦点Fb来有效地调整期望的记录层的位置,控制器150处理由第一光电检测器79和第二光电检测器48检测的信号,并控制驱动单元44驱动物镜100,控制焦点移动单元调整第二光的焦点位置。焦点移动单元可以是例如扩束器32的致动透镜。这里,控制器150控制若干元件。根据本发明的其它方面,这些元件中的至少一些可由另外的控制器来控制。控制器150可包括信号处理单元(未示出),该信号处理单元用于获得控制中所使用的信号,如和信号、聚焦误差信号、寻轨误差信号和切向误差信号。可选地,可单独地设置信号处理单元(未示出),由该信号处理单元(未示出)获得的信号可被输入给控制器150。
由于控制器150所执行的控制,在物镜100沿光轴方向往复移动的同时,焦点移动单元被控制以使参考光Lb1的焦点位置移动,以使得参考光Lb1的焦点位置可被调整到期望的记录层的期望的位置。焦点移动单元使参考光Lb1的焦点沿光轴方向移动,直到伺服光Lr1被反射层11反射时产生第一检测信号的时间与参考光Lb1被透反层12反射时产生第二检测信号的时间之间的时间差等于与期望的记录层的位置对应的值。
此外,由于控制器150所执行的控制,在物镜100沿光轴方向往复移动的同时,焦点移动单元被控制以使参考光Lb1的焦点位置移动。这里,焦点移动单元使参考光Lb1的焦点Fb沿光轴方向移动,直到从反射层11反射的伺服光Lr的第一检测信号的位置与基于从透反层12反射的参考光Lb3的第二检测信号的位置相同。将这样的位置设置为焦点移动单元的参考位置:在该位置处,从反射层11反射的伺服光Lr2的第一检测信号的位置可以与基于从透反层12反射的参考光Lb3的第二检测信号的位置相同。利用物镜100将伺服光Lr1聚焦在反射层11上,焦点移动单元相对于参考位置移动一定位移,从而使参考光Lb1的焦点Fb沿光轴方向移动,以使得参考光Lb1的焦点位置可以被调整到期望的位置。
在这种情况下,第一检测信号可以是在第一光电检测器79的主光电检测器79a的光接收区域中检测到的信号的和信号(Ar+Br+Cr+Dr)或者聚焦误差信号。此外,第二检测信号可以是在第二光电检测器48的多个光接收区域中检测到的信号的和信号(Ab+Bb+Cb+Db)或者聚焦误差信号。稍后将更详细地描述根据控制器150的控制调整记录层的位置的方法。
如下面所描述的,利用根据本发明各方面的用于记录/再现全息数据的设备来将数据记录在全息数据存储介质10中。
利用伺服光学系统50将伺服光Lr1照射到全息数据存储介质10上,基于从反射层11反射的反射伺服光Lr2的检测结果来执行物镜100的聚焦控制和寻轨控制,伺服光Lr1的焦点Fr被寻轨至目标轨道上。
此外,将蓝信号光Lb2照射在全息数据存储介质10上。利用物镜100将信号光Lb2的焦点Fb定位在目标轨道上。通过调整扩束器58的致动透镜59的位置并且通过调整与焦点Fb对应的目标深度来将蓝信号光Lb2定位在焦点Fb上。
此外,控制器150控制光闸39以使得参考光Lb1透射通过光闸39并入射到全息数据存储介质10上。
通过检测由前光电检测器25接收的光来调整第二光源21的记录功率控制。从第二光源21发射的光的一部分被分束器23偏转,被聚焦透镜24聚焦,并被前光电检测器25接收。
由于全息数据存储介质10可能是偏斜的和偏心的,所以信号光Lb2可能偏离于期望的焦点Fb的位置。因此,基于反射信号光Lb4的检测结果,通过电流反射镜51和56以及扩束器58的致动透镜60来执行切向控制、寻轨控制和聚焦控制。因此,参考光Lb1和信号光Lb2可会聚在焦点Fb的位置。
这样,在参考光Lb1和信号光Lb2会聚在焦点Fb的位置的状态下,使反射镜30移动以使得参考光Lb1和信号光Lb2的光路的长度差异被调整为等于或小于相干长度。这样,可记录好的记录标记全息图。
如下利用根据本发明各方面的用于记录/再现全息数据的设备来在全息数据存储介质10中再现数据。通过利用伺服光学系统50,将伺服光Lr1照射到全息数据存储介质10,基于从反射层11反射的反射伺服光Lr2的检测结果来执行物镜100的聚焦控制和寻轨控制,伺服光Lr1的焦点Fr被寻轨至目标轨道上。
利用参考光光学系统20将参考光Lb1照射在全息数据存储介质10上。参考光Lb1的焦点Fb可由位置已被控制的物镜100来会聚,并且可能在偏离于目标轨道时被定位。
通过扩束器32的致动透镜33来执行粗略控制。通过致动透镜34来执行精细控制,因此参考光Lb1的焦点Fb可被适当地定位。
由于在再现期间没有将电源施加到主动半波片26,使得主动半波片26不起半波片的作用,所以从第二光源21发射的所有(或者几乎所有)蓝光Lb变为参考光Lb1。因此,再现效率可提高,通过控制光闸39来使参考光Lb1透射通过光闸39。
参考光Lb1照射到记录标记全息图上,通过记录标记全息图产生再现光,并且再现光被第二光电检测器48检测,从而获得再现信号。当不将电源施加到主动半波片46,使得主动半波片46不起半波片的作用时,接收再现光的效率可提高。
现在将描述根据本发明实施例的寻找期望的记录层的位置以记录全息图的方法。如上所述,全息数据存储介质10中的透反层12是波长选择反射层,红光透射通过该透反层12,而蓝光被该透反层12反射。此外,透反层12形成为胆甾液晶层,并且具有圆偏振分离功能。透反层12可形成为使得在全息数据存储介质10的部分区域(例如,围绕全息数据存储介质10的中心)中左旋圆偏振的光可被透反层12反射,在全息数据存储介质10的剩余区域中右旋圆偏振的光可被透反层12反射。可选地,透反层12可形成为使得在全息数据存储介质10的整个区域上,左旋圆偏振的光的一部分可被透反层12反射。
为了确定将记录全息图的期望的记录层(初始记录层的位置),将描述这样的情况:用作伺服光的红光Lr被用作从反射层11反射的第一光并被第一光电检测器79检测以产生第一检测信号,参考光Lb1被用作从透反层12反射的第二光并被第二光电检测器48检测以产生第二检测信号。
在全息图记录模式期间,信号光Lb2可用于产生第二检测信号。在这种情况下,用于记录/再现全息数据的设备可具有信号光被直接聚焦在焦点Fb处,而参考光被透反层12反射并被聚焦在焦点Fb处的光学布置。在图3至图5所示的用于记录/再现全息数据的设备中,当使用参考光Lb1来产生用于调整记录层的位置的第二检测信号时,扩束器32可用作使参考光Lb1的焦点沿光轴方向移动的焦点移动单元。当使用信号光Lb2来产生用于调整记录层的位置的第二检测信号时,扩束器58可用作使信号光Lb2的焦点沿光轴方向移动的焦点移动单元。扩束器58的致动透镜59可用于此目的。
通过检测从反射层11反射的伺服光Lr1而获得的和信号可用作第一检测信号。通过检测从透反层12反射的参考光Lb1而获得的和信号可用作第二检测信号。此外,通过检测从反射层11反射的伺服光Lr1而获得的聚焦误差信号可用作第一检测信号,通过检测从透反层12反射的参考光Lb1而获得的聚焦误差信号可用作第二检测信号。
在分别发射伺服光Lr1和蓝光Lb的第一光源71和第二光源21打开,并且伺服光Lr1和参考光Lb1被物镜100会聚的同时,如图9所示,随着驱动单元44被驱动,对物镜100进行焦点搜索,并且产生如图10所示的和信号。对于伺服光Lr1,产生从全息数据存储介质10的表面反射的伺服光Lr1的和信号以及从反射层11反射的伺服光Lr1的和信号,并且通过测量和信号之间的距离ts来测量从全息数据存储介质10的表面到反射层11的距离。在全息数据存储介质10的情况下,其厚度(即,从全息数据存储介质10的表面到反射层11的距离)(ds=d1+d2+d3)是已知的。因此,测量的距离ts可被转换为厚度。这里,d1是基底14(从全息数据存储介质10的表面到全息介质层13)的厚度,d2是全息介质层13的厚度,d3是透反层12和反射层11之间的距离。
对于参考光Lb1,产生从全息数据存储介质10的表面反射的参考光Lb1的和信号以及从透反层12反射的参考光Lb1的和信号。不使用从全息数据存储介质10的表面反射的参考光Lb1的和信号,因此图10中没有示出该和信号。在图9和图10中,①代表参考光Lb1被恰好聚焦在透反层12上的情况,②代表参考光Lb1被聚焦在透反层12之前的情况,③代表参考光Lb1被聚焦在②之前的情况。当参考光Lb1被聚焦在位置①、②和③时,扩束器32的致动透镜33的位置被改变,以使得像差可最小化。当参考光Lb1被聚焦在位置①、②和③时,如果物镜100往复移动,则图10中所示的和信号的位置改变。
由第二光电检测器48接收的反射参考光Lb3被聚焦在位置②和③中的每一个中。参考光Lb1的焦点由于物镜100的往复运动而向上移动直至透反层12,被透反层12反射,然后向着第二光电检测器48传播。在这种情况下,由于与物镜100往复运动之前的初始位置②和③与透反层12之间的距离对应的球面像差被产生,所以与①的情况相比,在②和③的情况下,由第二光电检测器48接收的光的量减少,并且和信号的大小减小。
可基于关于从全息数据存储介质10的表面反射的伺服信号Lr1的和信号来确定关于从反射层11产生的伺服光Lr1的和信号的时间间隔ts。此外,可基于关于从全息数据存储介质10的表面反射的伺服信号Lr1的和信号来确定关于从透反层12产生的参考光Lb1的和信号的时间间隔tr。通过计算两个和信号的时间间隔之差(tsdr=tr-ts),从ds转换tsdr,并且如果需要将已知的透反层12和/或反射层11的厚度与tsdr相加,可确定参考光Lb1的焦点位置距离反射层11有多远。该数据表示参考光Lb1被定位的全息数据存储介质10的位置。因此,当用户知道期望的记录位置的trecord=tr-ts时,将已知的trecord与当前计算的tsdr比较,并且使参考光Lb1移动到trecord与tsdr一致的位置。
当确定期望的记录位置trecord时,可在由于期望的记录位置和透反层12之间的差异而产生的球面像差被校正的状态下确定期望的记录位置trecord。对于伺服光Lr1,反射层11中的像差可被设计为通过校正透镜75和物镜100而优化。对于参考光Lb1,全息介质层13中的像差可被设计为通过扩束器32和物镜100而优化。当通过扩束器32的致动透镜33改变参考光Lb1在全息介质层13中的位置时,不产生像差。然而,当参考光Lb1的焦点远离透反层12时,如果物镜100往复移动,则从透反层12反射的信号是处于这样的状态的信号:其中,由于参考光Lb1的焦点和透反层12之间的距离而产生球面像差。此外,在伺服光Lr1的情况下,在产生球面像差的情况下获得从全息数据存储介质10产生的和信号。当产生球面像差时,焦点形成位置由于球面像差而改变,因此可能需要球面像差的校正。
为了执行记录,参考光Lb1的焦点Fb可被定位在期望的记录层的位置。通过在全息介质层13内的相同的平面上形成记录标记全息图来获得记录层。在全息介质层13中可以按照预定间隔形成多个记录层。因此,寻找期望的记录层的位置指的是在全息介质层13的厚度方向上寻找记录标记全息图将被记录的位置。
通过考虑从反射层11反射的第一伺服光Lr2的第一检测信号(例如,和信号)以及从透反层12反射的参考光Lb3的第二检测信号(例如,和信号)来调整参考光Lb1的焦点位置。
例如,在物镜100沿光轴方向往复移动的同时,焦点移动单元被控制以使参考光Lb1的焦点位置移动,以使得参考光Lb1的焦点位置可被调整到期望的记录层的位置。如上所述,焦点移动单元使参考光Lb1的焦点沿光轴方向移动,直到伺服光Lr1从反射层11反射时产生第一检测信号的时间与参考光Lb1从透反层12反射时产生第二检测信号的时间之间的时间差等于与期望的记录层的位置对应的值,焦点移动单元可以是例如,扩束器32的致动透镜33。这样,在参考光Lb1的焦点Fb被定位在期望的记录层的位置的状态下,当当前模式被改变为记录模式,并且信号光光学系统50被控制以使得信号光Lb2在参考光Lb1的焦点Fb的位置上形成焦点时,记录标记全息图可形成在焦点Fb的位置,即期望的记录层中。这里,信号光光学系统50的控制可包括主动半波片26和46的控制以及扩束器58的致动透镜59和60的控制。
第一和第二检测信号之间的时间差可对应于第一检测信号的时间间隔与第二检测信号的时间间隔之差,其中所述第一检测信号的时间间隔指从全息数据存储介质10的表面反射的伺服光Lr2的第一检测信号与从反射层11反射的伺服光Lr2的第一检测信号之间的时间间隔,所述第二检测信号的时间间隔指从透反层12反射的参考光Lb3的第二检测信号相对于从全息数据存储介质10的表面反射的伺服光Lr2的第一检测信号的时间间隔。
此外,第一和第二检测信号之间的时间差可以是:通过校正由于从全息数据存储介质10的表面产生的第一检测信号的球面像差引起的误差以及由于根据期望的记录位置偏离于透反层12的程度而产生的第二检测信号的球面像差引起的误差而获得的值。
同时,在物镜100沿光轴方向往复移动的同时,焦点移动单元被控制以使参考光Lb1的焦点Fb的位置移动。如上所述,焦点移动单元使参考光Lb1的焦点Fb沿光轴方向移动,直到从反射层11反射的伺服光Lr1的第一检测信号的位置与从透反层12反射的参考光Lb1的第二检测信号的位置相同。将这样的位置设置为焦点移动单元的参考位置:在该位置处,从反射层11反射的伺服光Lr2的第一检测信号的位置与基于从透反层12反射的参考光Lb3的第二检测信号的位置相同。利用物镜100将伺服光Lr1聚焦在反射层11上,焦点移动单元相对于参考位置移动一定位移,参考光Lb1的焦点Fb沿光轴方向移动,以使得参考光Lb1的焦点位置可以被调整到期望的位置。在这种情况下,焦点移动单元的位移可以与参考光Lb1的焦点移动量成比例。这里,焦点移动单元的位移可称为扩束器32的致动透镜33的位移。
现在将参照附图描述根据本发明实施例的调整记录层的位置的更具体的示例。图11是示意性地示出根据本发明实施例的调整记录层的位置的方法的流程图。
参照图11,为了将参考光Lb1的焦点Fb定位在期望的记录层的位置,首先,随着驱动单元44被驱动,对物镜100进行焦点搜索。在物镜100沿光轴方向往复运动的同时对物镜100进行焦点搜索。在对物镜100进行焦点搜索时,如图12所示,产生伺服光Lr1和参考光Lb1的和信号。可测量从反射层11产生的伺服光Lr1的和信号与从全息数据存储介质10的表面产生的伺服光Lr1的和信号之间的时间间隔、以及从透反层12产生的参考光Lb1的和信号与从全息数据存储介质10的表面产生的伺服信号Lr1的和信号之间的时间间隔。在这种情况下,测量的时间间隔分别被设为ts和tr。当全息数据存储介质10的表面与反射层11之间的距离ds为800μm时,ts可对应于800μm的厚度。
当焦点形成在反射层11上时,在伺服光Lr1中不产生像差。因此,从反射层11产生的和信号不具有球面像差。然而,在产生与全息数据存储介质10的表面和反射层11之间的距离对应的球面像差的状态下,产生由从全息数据存储介质10的表面反射的伺服光Lr2产生的和信号。与在不产生球面像差的状态下的伺服光Lr1的焦点形成位置相比,在产生球面像差的状态下的伺服光Lr1的焦点位置由于球面像差而改变。因此,在产生球面像差的状态下从全息数据存储介质10的表面产生的和信号与从反射层11产生的和信号之间的时间间隔不与物理距离ds准确一致。
可利用下面的方法来减小由于球面像差而产生的误差。对于伺服光Lr1,由于伺服光学系统70被优化以使得反射层11中的像差被最小化,所以全息数据存储介质10的表面上的像差具有如下面的等式6中所示的球面像差W40,这样,发生从全息数据存储介质10的表面产生的和信号的移位。全息数据存储介质10的表面上的球面像差被最小化的点是球面像差系数与离焦系数相同的点。由于球面像差而产生的移位量对应于伺服光Lr1离焦的量,这可以利用下面的等式7来确定。
W40=d8n2-1n3(NA)4......(6)]]>
其中,n是折射率,NA是数值孔径,d是全息数据存储介质10的厚度的改变。
z=-2W40/(NA2Vact) ......(7)
其中,z是从全息数据存储介质10的表面产生的和信号发生移位的量。因此,当对于测量的ts,利用等式7,与从全息数据存储介质10的表面产生的球面像差所引起的误差对应的和信号的误差为zr时,可通过zr来校正时间间隔ts以使其与全息数据存储介质10的物理厚度一致。因此,tsc=ts+zr与物理厚度ds一致。
此外,作为球面像差所引起的误差,tr可根据球面像差所引起的误差被校正。当由于参考光Lb1的焦点位置与透反层12之间的距离差而由球面像差引起的误差为zb时,可通过zb以及zr来校正tr:trc=tr+zr+zb。
在等式7中,Vact是物镜44往复移动时的前进速度。
为了检查参考光Lb1的当前焦点位置,可使用等式8。
Rt=(tsc-trc)×ds/tsc ......(8)
当Rt为0时,参考光Lb1的焦点被定位在透反层12上,当Rt=1/8时,参考光Lb1的焦点被定位在距离透反层12为100μm的点处,即,距离全息数据存储介质10的表面为600μm的点处。因此,由于用于将参考光Lb1定位在期望的位置的Rt、zb和zr是已知的,所以当利用测量的tr和ts计算的Rt为Rt,m时,参考光Lb1可被定位在Rt和Rt,m彼此一致的点处。当通过时间项确定期望的记录位置时,trecord=tsc-trc。
通过利用上述方法,可更精确地将参考光Lb1的焦点定位在期望的记录位置。
在图11中,利用ts和tr来搜索记录层的位置。这仅是示例。代替该示例,可以如上所述利用tsc和trc来调整记录层的位置,其中,通过校正球面像差要素来获得tsc和trc。
图13是根据本发明另一实施例的调整记录层的位置的流程图。
为了设置参考光Lb1的初始目标焦点位置,在物镜100沿光轴方向往复移动的状态下,作为焦点移动单元的扩束器32的致动透镜33移动以使得参考光Lb1的焦点形成在透反层12上,其中,焦点移动单元可使参考光Lb1的焦点移动以使得基于从反射层11反射的反射伺服信号Lr2的第一检测信号的位置ts与基于从透反层12反射的参考光Lb3的第二检测信号的位置tr相同。这一状态被设置为参考光Lb1的参考位置并且被设置为扩束器32的致动透镜33的参考位置,并且设置参考光Lb1的初始参考焦点位置。
当参考光Lb1被定位在初始参考焦点处时,参考光Lb1的焦点移动单元的位置,即扩束器32的致动透镜33的位置被设置为参考位置。
利用物镜100将伺服光Lr1聚焦在反射层11上。在伺服光Lr1被聚焦在反射层11上的状态下,致动透镜33移动与目标深度对应的位移,以使得参考光Lb1的焦点沿光轴方向移动,并且参考光Lb1的焦点形成在目标深度。
致动透镜33的位移和参考光Lb1在全息数据存储介质10中的焦点移动距离具有线性关系,如图14所示。例如,当致动透镜33移动1mm时,参考光Lb1的焦点移动大约15μm。
如上所述,在根据本发明各方面的用于记录/再现全息数据的设备和调整记录层的位置的方法中,在记录期间,可利用从全息数据存储介质反射的光信号来有效地调整初始记录层的位置和期望记录层的位置。
尽管已经显示和描述了本发明的若干实施例,但是本领域技术人员应该理解,在不脱离本发明的远离和精神的情况下,可对实施例进行改变,本发明的范围由权利要求及其等同物限定。