一种测井地层成像系统及其方法.pdf

上传人:00062****4422 文档编号:733039 上传时间:2018-03-08 格式:PDF 页数:15 大小:1.54MB
返回 下载 相关 举报
摘要
申请专利号:

CN201310589744.7

申请日:

2013.11.20

公开号:

CN103615239A

公开日:

2014.03.05

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效IPC(主分类):E21B 49/00申请日:20131120|||公开

IPC分类号:

E21B49/00

主分类号:

E21B49/00

申请人:

中国石油天然气集团公司; 中国石油集团测井有限公司

发明人:

李剑浩; 汤天知; 余春昊; 周军; 杜钦波; 李国军

地址:

100007 北京市东城区东直门北大街9号中国石油大厦

优先权:

专利代理机构:

北京华沛德权律师事务所 11302

代理人:

刘杰

PDF下载: PDF下载
内容摘要

本发明公开了一种测井地层成像系统及其方法,属于测井技术领域。该系统包括泥岩地层因素模块、砂岩地层因素模块、平均地层因素模块、砂泥岩剖面模块、过渡带的地层水电阻率模块、地层水电阻率剖面模块、流体因素剖面模块、油气含量剖面模块、原状地层油气含量模块和地层水含量模块。本发明利用阵列感应成像测井和微电阻率成像测井两种方法进行联合计算,得到沿井眼方向的地层剖面成像图,该成像图能精准地反映了地层的含油气情况,与常规方法相比精度更高,可视化效果更加直观。

权利要求书

1.  一种测井地层成像系统,其特征在于,包括泥岩地层因素模块、砂岩地层因素模块、平均地层因素模块、砂泥岩剖面模块、过渡带的地层水电阻率模块、地层水电阻率剖面模块、流体因素剖面模块、油气含量剖面模块、原状地层油气含量模块和地层水含量模块;
其中,所述泥岩地层因素模块,选取井筒中的纯泥岩段,对所述纯泥岩段的纯泥岩测量,得到泥岩地层因素值;
所述砂岩地层因素模块,选取井筒中纯砂岩段,对所述纯砂岩段的纯砂岩测量,得到砂岩地层因素值;
所述平均地层因素模块,选取砂泥岩段,用阵列感应反演电阻率分别对所述泥岩地层因素值和所述砂岩地层因素值进行线性刻度,得到平均地层因素;
所述砂泥岩剖面模块用于根据所述泥岩地层因素值、所述砂岩地层因素值和所述平均地层因素,计算得到泥质含量和含砂量;
所述过渡带地层水电阻率模块用于根据冲洗带地层水电阻率和原状地层地层水电阻率过渡插值,计算得到过渡带地层水电阻率;
所述地层水电阻率剖面模块用于分别通过阵列感应反演方法得到冲洗带半径和过渡带半径,根据所述冲洗带地层水电阻率、所述过渡带地层水电阻率、所述原状地层地层水电阻率、所述冲洗带半径和所述过渡带半径,计算得到地层水电阻率剖面;
所述流体因素剖面模块用于根据所述阵列感应反演电阻率和所述地层水电阻率剖面,计算得到流体因素剖面;
所述油气含量剖面模块用于根据所述平均地层因素和所述流体因素剖面,计算得到油气含量剖面;
所述原状地层油气含量模块用于将所述流体因素剖面中径向剖面探测到最远的值作为原状地层流体因素,根据所述平均地层因素、所述油气含量剖面和所述原状地层流体因素,计算得到原状地层油气含量;
所述地层水含量模块用于根据所述原状地层油气含量,计算得到地层水含量。

2.
  一种测井地层成像方法,其特征在于,包括如下步骤:
步骤101:选取井筒中的纯泥岩段,对所述纯泥岩段的纯泥岩测量,得到泥岩地层因素值;
步骤102:选取井筒中纯砂岩段,对所述纯砂岩段的纯砂岩测量,得到砂岩地层因素值;
步骤103:选取砂泥岩段,用阵列感应反演电阻率分别对所述泥岩地层因素值和所述砂岩地层因素值进行线性刻度,得到平均地层因素;
步骤104:根据所述泥岩地层因素值、所述砂岩地层因素值和所述平均地层因素,计算得到泥质含量和含砂量;
步骤105:将冲洗带地层水电阻率和原状地层的地层水电阻率过渡插值,计算得到过渡带的地层水电阻率;
步骤106:通过阵列感应反演方法得到冲洗带半径和过渡带半径,根据所述冲洗带地层水电阻率、所述过渡带地层水电阻率、所述原状地层地层水电阻率、所述冲洗带半径和所述过渡带半径,计算得到地层水电阻率剖面;
步骤107:根据所述阵列感应反演电阻率和所述地层水电阻率剖面,计算得到流体因素剖面;
步骤108:根据所述平均地层因素和所述流体因素剖面,计算得到油气含量剖面;
步骤109:将所述流体因素剖面中径向剖面探测到最远的值作为原状地层流体因素,根据所述平均地层因素、所述油气含量剖面和所述原状地层流体因素,计算得到原状地层油气含量;
步骤1010:根据所述原状地层油气含量,计算得到地层水含量。

3.
  根据权利要求2所述的方法,其特征在于,在所述步骤101中,所 述得到泥岩地层因素值的方法如式(1)所示:
F=Rxo/Rmf    (1)
式中,F为泥岩地层因素值,单位为无量纲数,Rxo为冲洗带地层水电阻率,单位为Ω·m,Rmf为井筒中泥浆电阻率,单位为Ω·m。

4.
  根据权利要求2所述的方法,其特征在于,在所述步骤102中,所述得到砂岩地层因素值的方法如式(2)所示:
F=Rxo/Rmd    (2)
式中,F为砂岩地层因素值,单位为无量纲数,Rxo为冲洗带地层水电阻率,单位为Ω·m,Rmd为井筒中砂岩电阻率,单位为Ω·m。

5.
  根据权利要求2所述的方法,其特征在于,在所述步骤103中,所述得到平均地层因素的方法包括如下步骤:
步骤1031:用所述阵列感应反演电阻率分别对所述泥岩地层因素值和所述砂岩地层因素值进行线性刻度,得到线性刻度系数;
步骤1032:根据所述线性刻度系数对所述井筒全段进行刻度,得到多个地层真电阻率成像;
步骤1033:将所述多个地层真电阻率成像除以所述泥浆电阻率,计算得到多个极板地层因素图像,将所述多个极板地层因素图像进行合成,得到井周360度的地层因素图像;
步骤1034:通过算术平均方法对所述井周360度的地层因素图像进行统计,计算得到平均地层因素。

6.
  根据权利要求2所述的方法,其特征在于,在所述步骤104中,所述计算得到泥质含量和含砂量的方法如式(3)所示:
F=Vsand*F+Vsh*F    (3)
其中,F为平均地层因素,单位为无量纲数,Vsand为含砂量,%,F为砂岩地层因素值,单位为无量纲数,Vsh为泥质含量,%,F为泥岩地层因素值,单位为无量纲数。

7.
  根据权利要求2所述的方法,其特征在于,在所述步骤107中,所述计算流体因素剖面的方法如式(4)所示:
IImage=InvImage/RwImage    (4)
其中,IImage为流体因素剖面,单位为Ω·m,InvImage为阵列感应反演电阻率,单位为Ω·m,RwImage代表为地层水电阻率剖面,单位为Ω·m。

8.
  根据权利要求2所述的方法,其特征在于,在所述步骤108中,所述计算油气含量剖面的方法如式(5)所示:
OilImage=Por-(C/F*IImage)*100    (5)
其中,OilImage为油气含量剖面,单位为Ω·m,Por为中子和密度计算的孔隙度,%;C为油气含量系数,缺省值为1;F:平均地层因素,单位为无量纲数,IImage为流体因素剖面,单位为Ω·m。

9.
  根据权利要求2所述的方法,其特征在于,在所述步骤109中,所述计算原状地层油气含量的方法如式(6)所示:
Oil=Por-(C/F*I)*100    (6)
其中,Oil为原状地层油气含量,%,Por为中子和密度计算的孔隙度,%,C为油气含量系数,缺省值为1;F为平均地层因素,单位为无量纲数,I为原状地层流体因素,单位为无量纲数,Oil为原状地层油气含量,%。

10.
  根据权利要求2所述的方法,其特征在于,在所述1010中,计算地层水含量的方法如式(7)所示:
Vrw=Por-Oil    (7)
其中,Vrw为地层水含量,%,Por为中子和密度计算的孔隙度,%,Oil为原状地层油气含量,%。

说明书

一种测井地层成像系统及其方法
技术领域
本发明属于测井技术领域,特别涉及一种测井地层成像系统及其方法。
背景技术
测井数据是仪器在穿透地层的井孔中做上提或下放移动,在测井技术中,“成像”通常指具备空间描述能力[x,y,z]的信息,在此期间通过测量地层的电学、声学、放射性等物理响应而得到的。测井的目的是通过计算地层的物理响应,根据已知模型,得到地层的含油气情况。测井提交结果往往表示为成果图和成果表。
虽然测井经过近100年的发展已经全面进入成像测井时代,但目前测井分析得到的地层含油气结果依然还是采用比较抽象的“油层”、“气层”、“水层”、“干层”、“油水同层”等来表示,虽然其中也有一些指示油气含量比例的参数,但在提交结果上没有比较好的直观表现手段,一定程度上影响了测井成果的提交效果。
发明内容
本发明所要解决的技术问题是提供一种测井地层成像系统及其方法,解决了现有技术中测井成像不精准的技术问题。
为解决上述技术问题,本发明提供了一种测井地层成像系统,包括泥岩地层因素模块、砂岩地层因素模块、平均地层因素模块、砂泥岩剖面模块、过渡带的地层水电阻率模块、地层水电阻率剖面模块、流体因素剖面模块、油气含量剖面模块、原状地层油气含量模块和地层水含量模块;
其中,所述泥岩地层因素模块,选取井筒中的纯泥岩段,对所述纯泥岩段的纯泥岩测量,得到泥岩地层因素值;
所述砂岩地层因素模块,选取井筒中纯砂岩段,对所述纯砂岩段的纯 砂岩测量,得到砂岩地层因素值;
所述平均地层因素模块,选取砂泥岩段,用阵列感应反演电阻率分别对所述泥岩地层因素值和所述砂岩地层因素值进行线性刻度,得到平均地层因素;
所述砂泥岩剖面模块用于根据所述泥岩地层因素值、所述砂岩地层因素值和所述平均地层因素,计算得到泥质含量和含砂量;
所述过渡带地层水电阻率模块用于根据冲洗带地层水电阻率和原状地层地层水电阻率过渡插值,计算得到过渡带地层水电阻率;
所述地层水电阻率剖面模块用于分别通过阵列感应反演方法得到冲洗带半径和过渡带半径,根据所述冲洗带地层水电阻率、所述过渡带地层水电阻率、所述原状地层地层水电阻率、所述冲洗带半径和所述过渡带半径,计算得到地层水电阻率剖面;
所述流体因素剖面模块用于根据所述阵列感应反演电阻率和所述地层水电阻率剖面,计算得到流体因素剖面;
所述油气含量剖面模块用于根据所述平均地层因素和所述流体因素剖面,计算得到油气含量剖面;
所述原状地层油气含量模块用于将所述流体因素剖面中径向剖面探测到最远的值作为原状地层流体因素,根据所述平均地层因素、所述油气含量剖面和所述原状地层流体因素,计算得到原状地层油气含量;
所述地层水含量模块用于根据所述原状地层油气含量,计算得到地层水含量。
一种测井地层成像方法,包括如下步骤:
步骤101:选取井筒中的纯泥岩段,对所述纯泥岩段的纯泥岩测量,得到泥岩地层因素值;
步骤102:选取井筒中纯砂岩段,对所述纯砂岩段的纯砂岩测量,得到砂岩地层因素值;
步骤103:选取砂泥岩段,用阵列感应反演电阻率分别对所述泥岩地层因素值和所述砂岩地层因素值进行线性刻度,得到平均地层因素;
步骤104:根据所述泥岩地层因素值、所述砂岩地层因素值和所述平均地层因素,计算得到泥质含量和含砂量;
步骤105:将冲洗带地层水电阻率和原状地层的地层水电阻率过渡插值,计算得到过渡带地层水电阻率;
步骤106:通过阵列感应反演方法得到冲洗带半径和过渡带半径,根据所述冲洗带地层水电阻率、所述过渡带地层水电阻率、所述原状地层地层水电阻率、所述冲洗带半径和所述过渡带半径,计算得到地层水电阻率剖面;
步骤107:根据所述阵列感应反演电阻率和所述地层水电阻率剖面,计算得到流体因素剖面;
步骤108:根据所述平均地层因素和所述流体因素剖面,计算得到油气含量剖面;
步骤109:将所述流体因素剖面中径向剖面探测到最远的值作为原状地层流体因素,根据所述平均地层因素、所述油气含量剖面和所述原状地层流体因素,计算得到原状地层油气含量;
步骤1010:根据所述原状地层油气含量,计算得到地层水含量。
进一步地,在所述步骤101中,所述得到泥岩地层因素值的方法如式(1)所示:
F=Rxo/Rmf    (1)
式中,F为泥岩地层因素值,单位为无量纲数,Rxo为冲洗带地层水电阻率,单位为Ω·m,Rmf为井筒中泥浆电阻率,单位为Ω·m。
进一步地,在所述步骤102中,所述得到砂岩地层因素值的方法如式(2)所示:
F=Rxo/Rmd    (2)
式中,F为砂岩地层因素值,单位为无量纲数,Rxo为冲洗带地层水电阻率,单位为Ω·m,Rmd为井筒中砂岩电阻率,单位为Ω·m。
进一步地,在所述步骤103中,所述得到平均地层因素的方法包括如下步骤:
步骤1031:用所述阵列感应反演电阻率分别对所述泥岩地层因素值和所述砂岩地层因素值进行线性刻度,得到线性刻度系数;
步骤1032:根据所述线性刻度系数对所述井筒全段进行刻度,得到多个地层真电阻率成像;
步骤1033:将所述多个地层真电阻率成像除以所述泥浆电阻率,计算得到多个极板地层因素图像,将所述多个极板地层因素图像进行合成,得到井周360度的地层因素图像;
步骤1034:通过算术平均方法对所述井周360度的地层因素图像进行统计,计算得到平均地层因素。
进一步地,在所述步骤104中,所述计算得到泥质含量和含砂量的方法如式(3)所示:
F=Vsand*F+Vsh*F    (3)
其中,F为平均地层因素,单位为无量纲数,Vsand为含砂量,%,F为砂岩地层因素值,单位为无量纲数,Vsh为泥质含量,%,F为泥岩地层因素值,单位为无量纲数。
进一步地,在所述步骤105中,所述计算得到过渡带的地层水电阻率的具体方法如下:
将所述冲洗带的地层水电阻率作为所述泥浆电阻率,将设定的地层水电阻率作为所述原状地层的地层水电阻率,将所述冲洗带的地层水电阻率和所述原状地层的地层水电阻率过渡插值,计算得到所述过渡带的地层水电阻率。
进一步地,在所述步骤107中,所述计算流体因素剖面的方法如式(4) 所示:
IImage=InvImage/RwImage    (4)
其中,IImage为流体因素剖面,单位为Ω·m,InvImage为阵列感应反演电阻率,单位为Ω·m,RwImage代表为地层水电阻率剖面,单位为Ω·m。进一步地,在所述步骤108中,所述计算油气含量剖面的方法如式(5)所示:
OilImage=Por-(C/F*IImage)*100    (5)
其中,OilImage为油气含量剖面,单位为Ω·m,Por为中子和密度计算的孔隙度,%;C为油气含量系数,缺省值为1;F:平均地层因素,单位为无量纲数,IImage为流体因素剖面,单位为Ω·m。
进一步地,在所述步骤109中,所述计算原状地层油气含量的方法如式(6)所示:
Oil=Por-(C/F*I)*100    (6)
其中,Oil为原状地层油气含量,%,Por为中子和密度计算的孔隙度,%,C为油气含量系数,缺省值为1;F为平均地层因素,单位为无量纲数,I为原状地层流体因素,单位为无量纲数,Oil为原状地层油气含量,%。
进一步地,在所述1010中,计算地层水含量的方法如式(7)所示:
Vrw=Por-Oil    (7)
其中,Vrw为地层水含量,%,Por为中子和密度计算的孔隙度,%,Oil为原状地层油气含量,%。
本发明提供的测井地层成像系统及其方法,针对沙泥岩地层情况下,具备阵列感应成像方法,分别计算得到泥质含量、含砂量、原状地带油气含量和地层水含量,最后能够直接得到砂泥岩地层的含油气剖面图,生成的结果更加精确、直观。
附图说明
图1为本发明实施例提供的测井地层成像方法步骤图;
图2为本发明实施例提供的测井结构示意图;
图3为本发明实施例提供的平均地层因素示意图;
图4为本发明实施例提供的地层水电阻率剖面示意图;
图5为本发明实施例提供的油气含量剖面示意图;
附图标记:
1、冲洗带,2、过渡带,3、原状地带。
具体实施方式
本发明实施例提供的一种测井地层成像系统,包括泥岩地层因素模块、砂岩地层因素模块、平均地层因素模块、砂泥岩剖面模块、过渡带的地层水电阻率模块、地层水电阻率剖面模块、流体因素剖面模块、油气含量剖面模块、原状地层油气含量模块和地层水含量模块;
其中,泥岩地层因素模块用于选取井筒中的纯泥岩段,对纯泥岩段的纯泥岩测量,得到泥岩地层因素值;
砂岩地层因素模块选取井筒中纯砂岩段,对纯砂岩段的纯砂岩测量,得到砂岩地层因素值;
平均地层因素模块用于选取砂泥岩段,用阵列感应反演电阻率分别对泥岩地层因素值和砂岩地层因素值进行线性刻度,得到平均地层因素;
砂泥岩剖面模块用于根据泥岩地层因素值、砂岩地层因素值和平均地层因素,计算得到泥质含量和含砂量;
过渡带地层水电阻率模块用于将冲洗带地层水电阻率和原状地层的地层水电阻率过渡插值,计算得到过渡带地层水电阻率;
地层水电阻率剖面模块用于分别通过阵列感应反演方法得到冲洗带半径和过渡带半径,根据冲洗带地层水电阻率、过渡带地层水电阻率、原状地层地层水电阻率、冲洗带半径和过渡带半径,得到地层水电阻率剖面;
流体因素剖面模块用于根据阵列感应反演电阻率和地层水电阻率剖 面,计算得到流体因素剖面;
油气含量剖面模块用于根据平均地层因素和流体因素剖面,计算得到油气含量剖面;
原状地层油气含量模块用于将流体因素剖面中径向剖面探测到最远的值作为原状地层流体因素,根据平均地层因素、油气含量剖面和原状地层流体因素,计算得到原状地层油气含量;
地层水含量模块用于根据原状地层油气含量,计算得到地层水含量。
参见图1,本发明实施例提供的一种测井地层成像方法,参见图2,将该测井依次划分为冲洗带1、过渡带2和原状地带3,包括如下步骤:
步骤101:选取井筒中的纯泥岩段,对纯泥岩测量,得到泥岩地层因素值;
其中,得到泥岩地层因素值的方法如式(1)所示:
F=Rxo/Rmf    (1)
式中,F为泥岩地层因素值,单位为无量纲数,Rxo为冲洗带地层水电阻率,单位为Ω·m,Rmf为井筒中泥浆电阻率,单位为Ω·m。
步骤102:选取井筒中纯砂岩段,对纯砂岩测量,得到砂岩地层因素值;
其中,得到砂岩地层因素值的方法如式(2)所示:
F=Rxo/Rmd    (2)
式中,F为砂岩地层因素值,单位为无量纲数,Rxo为冲洗带地层水电阻率,单位为Ω·m,Rmd为井筒中砂岩电阻率,单位为Ω·m。
步骤103:选取砂泥岩段,用阵列感应反演电阻率分别对泥岩地层因素值和砂岩地层因素值进行线性刻度,得到平均地层因素,具体参见图3;
其中,得到平均地层因素的方法包括如下步骤:
步骤1031:用阵列感应反演电阻率分别对泥岩地层因素值和砂岩地层因素值进行线性刻度,得到线性刻度系数;
步骤1032:根据线性刻度系数对井筒全段进行刻度,得到8个地层真电阻率成像;
步骤1033:将8个地层真电阻率成像除以井筒中泥浆电阻率,计算得到8个极板地层因素图像,将8个极板地层因素图像进行合成,得到井周360度的地层因素图像;
步骤1034:因为360度范围内数据量较大,很多时候不便于显示,通过算术平均方法对井周360度的地层因素图像进行统计,计算得到平均地层因素,通过平均可以降低显示的复杂度;
步骤104:根据泥岩地层因素值、砂岩地层因素值和平均地层因素,计算得到泥质含量和含砂量;
其中,计算得到泥质含量和含砂量的方法如式(3)所示:
F=Vsand*F+Vsh*F    (3)
其中,F为平均地层因素,单位为无量纲数,Vsand为含砂量,%,F为砂岩地层因素值,单位为无量纲数,Vsh为泥质含量,%,F为泥岩地层因素值,单位为无量纲数。
步骤105:将冲洗带地层水电阻率和原状地层的地层水电阻率过渡插值,计算得到过渡带的地层水电阻率;
步骤106:分别通过阵列感应反演方法得到冲洗带半径和过渡带半径,具体参见表1:
表1:阵列感应反演冲洗带和过渡带半径列表


根据冲洗带地层水电阻率、过渡带地层水电阻率、原状地层地层水电阻率、冲洗带半径和过渡带半径,得到地层水电阻率剖面;
地层水电阻率剖面是地层水电阻率空间分布剖面,在不同的井筒深度,得到不同的冲洗带半径和过渡带半径,按照冲洗带地层水电阻率的两个端点处和冲洗带半径进行线性插值,得到该冲洗带范围内的所有位置的地层水电阻率,其中两端点处的地层水电阻率分别是过渡带的地层水电阻率和原状地层地层水电阻率,在需要计算的深度段内,对所有深度点重复以上步骤,依次得到该过渡带范围内的所有位置的地层水电阻率和该原状地带范围内的所有位置的地层水电阻率,进而得到了地层水电阻率随地层深度(纵向)和从井筒向地层(横向)两个方向的图像(剖面),最后得到地层水电阻率剖面,具体见图4。
步骤107:根据阵列感应反演电阻率和地层水电阻率剖面,计算得到流体因素剖面;
其中,计算流体因素剖面的方法如式(4)所示:
IImage=InvImage/RwImage    (4)
其中,IImage为流体因素剖面,单位为Ω·m,InvImage为阵列感应反演电阻率,单位为Ω·m,RwImage代表为地层水电阻率剖面,单位为 Ω·m。
步骤108:根据平均地层因素和流体因素剖面,计算得到油气含量剖面,参见图5;
其中,计算油气含量剖面的方法如式(5)所示:
OilImage=Por-(C/F*IImage)*100    (5)
其中,OilImage为油气含量剖面,单位为Ω·m,Por为中子和密度计算的孔隙度,%;C为油气含量系数,缺省值为1;F:平均地层因素,单位为无量纲数,IImage为流体因素剖面,单位为Ω·m。
步骤109:将流体因素剖面中径向剖面探测到最远的值作为原状地层流体因素,根据平均地层因素、油气含量剖面和原状地层流体因素,计算得到原状地层油气含量;
其中,计算原状地层油气含量的方法如式(6)所示:
Oil=Por-(C/F*I)*100    (6)
其中,Oil为原状地层油气含量,%,Por为中子和密度计算的孔隙度,%,C为油气含量系数,缺省值为1;F为平均地层因素,单位为无量纲数,I为原状地层流体因素,单位为无量纲数,Oil为原状地层油气含量,%。
步骤1010:根据原状地层油气含量,计算得到地层水含量;
其中,计算地层水含量的方法如式(7)所示:
Vrw=Por-Oil    (7)
其中,Vrw为地层水含量,%,Por为中子和密度计算的孔隙度,%,Oil为原状地层油气含量,%。
本发明实施例提供的测井地层成像系统及其方法,针对沙泥岩地层情况下,具备阵列感应成像方法,分别计算得到泥质含量、含砂量、原状地带油气含量和地层水含量,最后能够直接得到砂泥岩地层的含油气剖面图,生成的结果更加精确、直观。
最后所应说明的是,以上具体实施方式仅用以说明本发明的技术方案 而非限制,尽管参照实例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

一种测井地层成像系统及其方法.pdf_第1页
第1页 / 共15页
一种测井地层成像系统及其方法.pdf_第2页
第2页 / 共15页
一种测井地层成像系统及其方法.pdf_第3页
第3页 / 共15页
点击查看更多>>
资源描述

《一种测井地层成像系统及其方法.pdf》由会员分享,可在线阅读,更多相关《一种测井地层成像系统及其方法.pdf(15页珍藏版)》请在专利查询网上搜索。

1、10申请公布号CN103615239A43申请公布日20140305CN103615239A21申请号201310589744722申请日20131120E21B49/0020060171申请人中国石油天然气集团公司地址100007北京市东城区东直门北大街9号中国石油大厦申请人中国石油集团测井有限公司72发明人李剑浩汤天知余春昊周军杜钦波李国军74专利代理机构北京华沛德权律师事务所11302代理人刘杰54发明名称一种测井地层成像系统及其方法57摘要本发明公开了一种测井地层成像系统及其方法,属于测井技术领域。该系统包括泥岩地层因素模块、砂岩地层因素模块、平均地层因素模块、砂泥岩剖面模块、过渡带的。

2、地层水电阻率模块、地层水电阻率剖面模块、流体因素剖面模块、油气含量剖面模块、原状地层油气含量模块和地层水含量模块。本发明利用阵列感应成像测井和微电阻率成像测井两种方法进行联合计算,得到沿井眼方向的地层剖面成像图,该成像图能精准地反映了地层的含油气情况,与常规方法相比精度更高,可视化效果更加直观。51INTCL权利要求书3页说明书7页附图4页19中华人民共和国国家知识产权局12发明专利申请权利要求书3页说明书7页附图4页10申请公布号CN103615239ACN103615239A1/3页21一种测井地层成像系统,其特征在于,包括泥岩地层因素模块、砂岩地层因素模块、平均地层因素模块、砂泥岩剖面模。

3、块、过渡带的地层水电阻率模块、地层水电阻率剖面模块、流体因素剖面模块、油气含量剖面模块、原状地层油气含量模块和地层水含量模块;其中,所述泥岩地层因素模块,选取井筒中的纯泥岩段,对所述纯泥岩段的纯泥岩测量,得到泥岩地层因素值;所述砂岩地层因素模块,选取井筒中纯砂岩段,对所述纯砂岩段的纯砂岩测量,得到砂岩地层因素值;所述平均地层因素模块,选取砂泥岩段,用阵列感应反演电阻率分别对所述泥岩地层因素值和所述砂岩地层因素值进行线性刻度,得到平均地层因素;所述砂泥岩剖面模块用于根据所述泥岩地层因素值、所述砂岩地层因素值和所述平均地层因素,计算得到泥质含量和含砂量;所述过渡带地层水电阻率模块用于根据冲洗带地层。

4、水电阻率和原状地层地层水电阻率过渡插值,计算得到过渡带地层水电阻率;所述地层水电阻率剖面模块用于分别通过阵列感应反演方法得到冲洗带半径和过渡带半径,根据所述冲洗带地层水电阻率、所述过渡带地层水电阻率、所述原状地层地层水电阻率、所述冲洗带半径和所述过渡带半径,计算得到地层水电阻率剖面;所述流体因素剖面模块用于根据所述阵列感应反演电阻率和所述地层水电阻率剖面,计算得到流体因素剖面;所述油气含量剖面模块用于根据所述平均地层因素和所述流体因素剖面,计算得到油气含量剖面;所述原状地层油气含量模块用于将所述流体因素剖面中径向剖面探测到最远的值作为原状地层流体因素,根据所述平均地层因素、所述油气含量剖面和所。

5、述原状地层流体因素,计算得到原状地层油气含量;所述地层水含量模块用于根据所述原状地层油气含量,计算得到地层水含量。2一种测井地层成像方法,其特征在于,包括如下步骤步骤101选取井筒中的纯泥岩段,对所述纯泥岩段的纯泥岩测量,得到泥岩地层因素值;步骤102选取井筒中纯砂岩段,对所述纯砂岩段的纯砂岩测量,得到砂岩地层因素值;步骤103选取砂泥岩段,用阵列感应反演电阻率分别对所述泥岩地层因素值和所述砂岩地层因素值进行线性刻度,得到平均地层因素;步骤104根据所述泥岩地层因素值、所述砂岩地层因素值和所述平均地层因素,计算得到泥质含量和含砂量;步骤105将冲洗带地层水电阻率和原状地层的地层水电阻率过渡插值。

6、,计算得到过渡带的地层水电阻率;步骤106通过阵列感应反演方法得到冲洗带半径和过渡带半径,根据所述冲洗带地层水电阻率、所述过渡带地层水电阻率、所述原状地层地层水电阻率、所述冲洗带半径和所述过渡带半径,计算得到地层水电阻率剖面;步骤107根据所述阵列感应反演电阻率和所述地层水电阻率剖面,计算得到流体因权利要求书CN103615239A2/3页3素剖面;步骤108根据所述平均地层因素和所述流体因素剖面,计算得到油气含量剖面;步骤109将所述流体因素剖面中径向剖面探测到最远的值作为原状地层流体因素,根据所述平均地层因素、所述油气含量剖面和所述原状地层流体因素,计算得到原状地层油气含量;步骤1010根。

7、据所述原状地层油气含量,计算得到地层水含量。3根据权利要求2所述的方法,其特征在于,在所述步骤101中,所述得到泥岩地层因素值的方法如式(1)所示F泥RXO/RMF(1)式中,F泥为泥岩地层因素值,单位为无量纲数,RXO为冲洗带地层水电阻率,单位为M,RMF为井筒中泥浆电阻率,单位为M。4根据权利要求2所述的方法,其特征在于,在所述步骤102中,所述得到砂岩地层因素值的方法如式(2)所示F砂RXO/RMD(2)式中,F砂为砂岩地层因素值,单位为无量纲数,RXO为冲洗带地层水电阻率,单位为M,RMD为井筒中砂岩电阻率,单位为M。5根据权利要求2所述的方法,其特征在于,在所述步骤103中,所述得到。

8、平均地层因素的方法包括如下步骤步骤1031用所述阵列感应反演电阻率分别对所述泥岩地层因素值和所述砂岩地层因素值进行线性刻度,得到线性刻度系数;步骤1032根据所述线性刻度系数对所述井筒全段进行刻度,得到多个地层真电阻率成像;步骤1033将所述多个地层真电阻率成像除以所述泥浆电阻率,计算得到多个极板地层因素图像,将所述多个极板地层因素图像进行合成,得到井周360度的地层因素图像;步骤1034通过算术平均方法对所述井周360度的地层因素图像进行统计,计算得到平均地层因素。6根据权利要求2所述的方法,其特征在于,在所述步骤104中,所述计算得到泥质含量和含砂量的方法如式(3)所示FVSANDF砂VS。

9、HF泥(3)其中,F为平均地层因素,单位为无量纲数,VSAND为含砂量,F砂为砂岩地层因素值,单位为无量纲数,VSH为泥质含量,F泥为泥岩地层因素值,单位为无量纲数。7根据权利要求2所述的方法,其特征在于,在所述步骤107中,所述计算流体因素剖面的方法如式(4)所示IIMAGEINVIMAGE/RWIMAGE(4)其中,IIMAGE为流体因素剖面,单位为M,INVIMAGE为阵列感应反演电阻率,单位为M,RWIMAGE代表为地层水电阻率剖面,单位为M。8根据权利要求2所述的方法,其特征在于,在所述步骤108中,所述计算油气含量剖面的方法如式(5)所示OILIMAGEPOR(C/FIIMAGE)。

10、100(5)权利要求书CN103615239A3/3页4其中,OILIMAGE为油气含量剖面,单位为M,POR为中子和密度计算的孔隙度,;C为油气含量系数,缺省值为1;F平均地层因素,单位为无量纲数,IIMAGE为流体因素剖面,单位为M。9根据权利要求2所述的方法,其特征在于,在所述步骤109中,所述计算原状地层油气含量的方法如式(6)所示OILPOR(C/FI)100(6)其中,OIL为原状地层油气含量,POR为中子和密度计算的孔隙度,C为油气含量系数,缺省值为1;F为平均地层因素,单位为无量纲数,I为原状地层流体因素,单位为无量纲数,OIL为原状地层油气含量,。10根据权利要求2所述的方法。

11、,其特征在于,在所述1010中,计算地层水含量的方法如式(7)所示VRWPOROIL(7)其中,VRW为地层水含量,,POR为中子和密度计算的孔隙度,OIL为原状地层油气含量,。权利要求书CN103615239A1/7页5一种测井地层成像系统及其方法技术领域0001本发明属于测井技术领域,特别涉及一种测井地层成像系统及其方法。背景技术0002测井数据是仪器在穿透地层的井孔中做上提或下放移动,在测井技术中,“成像”通常指具备空间描述能力X,Y,Z的信息,在此期间通过测量地层的电学、声学、放射性等物理响应而得到的。测井的目的是通过计算地层的物理响应,根据已知模型,得到地层的含油气情况。测井提交结果。

12、往往表示为成果图和成果表。0003虽然测井经过近100年的发展已经全面进入成像测井时代,但目前测井分析得到的地层含油气结果依然还是采用比较抽象的“油层”、“气层”、“水层”、“干层”、“油水同层”等来表示,虽然其中也有一些指示油气含量比例的参数,但在提交结果上没有比较好的直观表现手段,一定程度上影响了测井成果的提交效果。发明内容0004本发明所要解决的技术问题是提供一种测井地层成像系统及其方法,解决了现有技术中测井成像不精准的技术问题。0005为解决上述技术问题,本发明提供了一种测井地层成像系统,包括泥岩地层因素模块、砂岩地层因素模块、平均地层因素模块、砂泥岩剖面模块、过渡带的地层水电阻率模块。

13、、地层水电阻率剖面模块、流体因素剖面模块、油气含量剖面模块、原状地层油气含量模块和地层水含量模块;0006其中,所述泥岩地层因素模块,选取井筒中的纯泥岩段,对所述纯泥岩段的纯泥岩测量,得到泥岩地层因素值;0007所述砂岩地层因素模块,选取井筒中纯砂岩段,对所述纯砂岩段的纯砂岩测量,得到砂岩地层因素值;0008所述平均地层因素模块,选取砂泥岩段,用阵列感应反演电阻率分别对所述泥岩地层因素值和所述砂岩地层因素值进行线性刻度,得到平均地层因素;0009所述砂泥岩剖面模块用于根据所述泥岩地层因素值、所述砂岩地层因素值和所述平均地层因素,计算得到泥质含量和含砂量;0010所述过渡带地层水电阻率模块用于根。

14、据冲洗带地层水电阻率和原状地层地层水电阻率过渡插值,计算得到过渡带地层水电阻率;0011所述地层水电阻率剖面模块用于分别通过阵列感应反演方法得到冲洗带半径和过渡带半径,根据所述冲洗带地层水电阻率、所述过渡带地层水电阻率、所述原状地层地层水电阻率、所述冲洗带半径和所述过渡带半径,计算得到地层水电阻率剖面;0012所述流体因素剖面模块用于根据所述阵列感应反演电阻率和所述地层水电阻率剖面,计算得到流体因素剖面;0013所述油气含量剖面模块用于根据所述平均地层因素和所述流体因素剖面,计算得说明书CN103615239A2/7页6到油气含量剖面;0014所述原状地层油气含量模块用于将所述流体因素剖面中径。

15、向剖面探测到最远的值作为原状地层流体因素,根据所述平均地层因素、所述油气含量剖面和所述原状地层流体因素,计算得到原状地层油气含量;0015所述地层水含量模块用于根据所述原状地层油气含量,计算得到地层水含量。0016一种测井地层成像方法,包括如下步骤0017步骤101选取井筒中的纯泥岩段,对所述纯泥岩段的纯泥岩测量,得到泥岩地层因素值;0018步骤102选取井筒中纯砂岩段,对所述纯砂岩段的纯砂岩测量,得到砂岩地层因素值;0019步骤103选取砂泥岩段,用阵列感应反演电阻率分别对所述泥岩地层因素值和所述砂岩地层因素值进行线性刻度,得到平均地层因素;0020步骤104根据所述泥岩地层因素值、所述砂岩。

16、地层因素值和所述平均地层因素,计算得到泥质含量和含砂量;0021步骤105将冲洗带地层水电阻率和原状地层的地层水电阻率过渡插值,计算得到过渡带地层水电阻率;0022步骤106通过阵列感应反演方法得到冲洗带半径和过渡带半径,根据所述冲洗带地层水电阻率、所述过渡带地层水电阻率、所述原状地层地层水电阻率、所述冲洗带半径和所述过渡带半径,计算得到地层水电阻率剖面;0023步骤107根据所述阵列感应反演电阻率和所述地层水电阻率剖面,计算得到流体因素剖面;0024步骤108根据所述平均地层因素和所述流体因素剖面,计算得到油气含量剖面;0025步骤109将所述流体因素剖面中径向剖面探测到最远的值作为原状地层。

17、流体因素,根据所述平均地层因素、所述油气含量剖面和所述原状地层流体因素,计算得到原状地层油气含量;0026步骤1010根据所述原状地层油气含量,计算得到地层水含量。0027进一步地,在所述步骤101中,所述得到泥岩地层因素值的方法如式(1)所示0028F泥RXO/RMF(1)0029式中,F泥为泥岩地层因素值,单位为无量纲数,RXO为冲洗带地层水电阻率,单位为M,RMF为井筒中泥浆电阻率,单位为M。0030进一步地,在所述步骤102中,所述得到砂岩地层因素值的方法如式(2)所示0031F砂RXO/RMD(2)0032式中,F砂为砂岩地层因素值,单位为无量纲数,RXO为冲洗带地层水电阻率,单位为。

18、M,RMD为井筒中砂岩电阻率,单位为M。0033进一步地,在所述步骤103中,所述得到平均地层因素的方法包括如下步骤0034步骤1031用所述阵列感应反演电阻率分别对所述泥岩地层因素值和所述砂岩地层因素值进行线性刻度,得到线性刻度系数;0035步骤1032根据所述线性刻度系数对所述井筒全段进行刻度,得到多个地层真电阻率成像;说明书CN103615239A3/7页70036步骤1033将所述多个地层真电阻率成像除以所述泥浆电阻率,计算得到多个极板地层因素图像,将所述多个极板地层因素图像进行合成,得到井周360度的地层因素图像;0037步骤1034通过算术平均方法对所述井周360度的地层因素图像进。

19、行统计,计算得到平均地层因素。0038进一步地,在所述步骤104中,所述计算得到泥质含量和含砂量的方法如式(3)所示0039FVSANDF砂VSHF泥(3)0040其中,F为平均地层因素,单位为无量纲数,VSAND为含砂量,F砂为砂岩地层因素值,单位为无量纲数,VSH为泥质含量,F泥为泥岩地层因素值,单位为无量纲数。0041进一步地,在所述步骤105中,所述计算得到过渡带的地层水电阻率的具体方法如下0042将所述冲洗带的地层水电阻率作为所述泥浆电阻率,将设定的地层水电阻率作为所述原状地层的地层水电阻率,将所述冲洗带的地层水电阻率和所述原状地层的地层水电阻率过渡插值,计算得到所述过渡带的地层水电。

20、阻率。0043进一步地,在所述步骤107中,所述计算流体因素剖面的方法如式(4)所示0044IIMAGEINVIMAGE/RWIMAGE(4)0045其中,IIMAGE为流体因素剖面,单位为M,INVIMAGE为阵列感应反演电阻率,单位为M,RWIMAGE代表为地层水电阻率剖面,单位为M。进一步地,在所述步骤108中,所述计算油气含量剖面的方法如式(5)所示0046OILIMAGEPOR(C/FIIMAGE)100(5)0047其中,OILIMAGE为油气含量剖面,单位为M,POR为中子和密度计算的孔隙度,;C为油气含量系数,缺省值为1;F平均地层因素,单位为无量纲数,IIMAGE为流体因素剖。

21、面,单位为M。0048进一步地,在所述步骤109中,所述计算原状地层油气含量的方法如式(6)所示0049OILPOR(C/FI)100(6)0050其中,OIL为原状地层油气含量,POR为中子和密度计算的孔隙度,C为油气含量系数,缺省值为1;F为平均地层因素,单位为无量纲数,I为原状地层流体因素,单位为无量纲数,OIL为原状地层油气含量,。0051进一步地,在所述1010中,计算地层水含量的方法如式(7)所示0052VRWPOROIL(7)0053其中,VRW为地层水含量,,POR为中子和密度计算的孔隙度,OIL为原状地层油气含量,。0054本发明提供的测井地层成像系统及其方法,针对沙泥岩地层。

22、情况下,具备阵列感应成像方法,分别计算得到泥质含量、含砂量、原状地带油气含量和地层水含量,最后能够直接得到砂泥岩地层的含油气剖面图,生成的结果更加精确、直观。附图说明0055图1为本发明实施例提供的测井地层成像方法步骤图;说明书CN103615239A4/7页80056图2为本发明实施例提供的测井结构示意图;0057图3为本发明实施例提供的平均地层因素示意图;0058图4为本发明实施例提供的地层水电阻率剖面示意图;0059图5为本发明实施例提供的油气含量剖面示意图;0060附图标记00611、冲洗带,2、过渡带,3、原状地带。具体实施方式0062本发明实施例提供的一种测井地层成像系统,包括泥岩。

23、地层因素模块、砂岩地层因素模块、平均地层因素模块、砂泥岩剖面模块、过渡带的地层水电阻率模块、地层水电阻率剖面模块、流体因素剖面模块、油气含量剖面模块、原状地层油气含量模块和地层水含量模块;0063其中,泥岩地层因素模块用于选取井筒中的纯泥岩段,对纯泥岩段的纯泥岩测量,得到泥岩地层因素值;0064砂岩地层因素模块选取井筒中纯砂岩段,对纯砂岩段的纯砂岩测量,得到砂岩地层因素值;0065平均地层因素模块用于选取砂泥岩段,用阵列感应反演电阻率分别对泥岩地层因素值和砂岩地层因素值进行线性刻度,得到平均地层因素;0066砂泥岩剖面模块用于根据泥岩地层因素值、砂岩地层因素值和平均地层因素,计算得到泥质含量和。

24、含砂量;0067过渡带地层水电阻率模块用于将冲洗带地层水电阻率和原状地层的地层水电阻率过渡插值,计算得到过渡带地层水电阻率;0068地层水电阻率剖面模块用于分别通过阵列感应反演方法得到冲洗带半径和过渡带半径,根据冲洗带地层水电阻率、过渡带地层水电阻率、原状地层地层水电阻率、冲洗带半径和过渡带半径,得到地层水电阻率剖面;0069流体因素剖面模块用于根据阵列感应反演电阻率和地层水电阻率剖面,计算得到流体因素剖面;0070油气含量剖面模块用于根据平均地层因素和流体因素剖面,计算得到油气含量剖面;0071原状地层油气含量模块用于将流体因素剖面中径向剖面探测到最远的值作为原状地层流体因素,根据平均地层因。

25、素、油气含量剖面和原状地层流体因素,计算得到原状地层油气含量;0072地层水含量模块用于根据原状地层油气含量,计算得到地层水含量。0073参见图1,本发明实施例提供的一种测井地层成像方法,参见图2,将该测井依次划分为冲洗带1、过渡带2和原状地带3,包括如下步骤0074步骤101选取井筒中的纯泥岩段,对纯泥岩测量,得到泥岩地层因素值;0075其中,得到泥岩地层因素值的方法如式(1)所示0076F泥RXO/RMF(1)0077式中,F泥为泥岩地层因素值,单位为无量纲数,RXO为冲洗带地层水电阻率,单位说明书CN103615239A5/7页9为M,RMF为井筒中泥浆电阻率,单位为M。0078步骤10。

26、2选取井筒中纯砂岩段,对纯砂岩测量,得到砂岩地层因素值;0079其中,得到砂岩地层因素值的方法如式(2)所示0080F砂RXO/RMD(2)0081式中,F砂为砂岩地层因素值,单位为无量纲数,RXO为冲洗带地层水电阻率,单位为M,RMD为井筒中砂岩电阻率,单位为M。0082步骤103选取砂泥岩段,用阵列感应反演电阻率分别对泥岩地层因素值和砂岩地层因素值进行线性刻度,得到平均地层因素,具体参见图3;0083其中,得到平均地层因素的方法包括如下步骤0084步骤1031用阵列感应反演电阻率分别对泥岩地层因素值和砂岩地层因素值进行线性刻度,得到线性刻度系数;0085步骤1032根据线性刻度系数对井筒全。

27、段进行刻度,得到8个地层真电阻率成像;0086步骤1033将8个地层真电阻率成像除以井筒中泥浆电阻率,计算得到8个极板地层因素图像,将8个极板地层因素图像进行合成,得到井周360度的地层因素图像;0087步骤1034因为360度范围内数据量较大,很多时候不便于显示,通过算术平均方法对井周360度的地层因素图像进行统计,计算得到平均地层因素,通过平均可以降低显示的复杂度;0088步骤104根据泥岩地层因素值、砂岩地层因素值和平均地层因素,计算得到泥质含量和含砂量;0089其中,计算得到泥质含量和含砂量的方法如式(3)所示0090FVSANDF砂VSHF泥(3)0091其中,F为平均地层因素,单位。

28、为无量纲数,VSAND为含砂量,F砂为砂岩地层因素值,单位为无量纲数,VSH为泥质含量,F泥为泥岩地层因素值,单位为无量纲数。0092步骤105将冲洗带地层水电阻率和原状地层的地层水电阻率过渡插值,计算得到过渡带的地层水电阻率;0093步骤106分别通过阵列感应反演方法得到冲洗带半径和过渡带半径,具体参见表10094表1阵列感应反演冲洗带和过渡带半径列表0095说明书CN103615239A6/7页1000960097根据冲洗带地层水电阻率、过渡带地层水电阻率、原状地层地层水电阻率、冲洗带半径和过渡带半径,得到地层水电阻率剖面;0098地层水电阻率剖面是地层水电阻率空间分布剖面,在不同的井筒深。

29、度,得到不同的冲洗带半径和过渡带半径,按照冲洗带地层水电阻率的两个端点处和冲洗带半径进行线性插值,得到该冲洗带范围内的所有位置的地层水电阻率,其中两端点处的地层水电阻率分别是过渡带的地层水电阻率和原状地层地层水电阻率,在需要计算的深度段内,对所有深度点重复以上步骤,依次得到该过渡带范围内的所有位置的地层水电阻率和该原状地带范围内的所有位置的地层水电阻率,进而得到了地层水电阻率随地层深度(纵向)和从井筒向地层(横向)两个方向的图像(剖面),最后得到地层水电阻率剖面,具体见图4。0099步骤107根据阵列感应反演电阻率和地层水电阻率剖面,计算得到流体因素剖面;0100其中,计算流体因素剖面的方法如。

30、式(4)所示0101IIMAGEINVIMAGE/RWIMAGE(4)0102其中,IIMAGE为流体因素剖面,单位为M,INVIMAGE为阵列感应反演电阻率,单位为M,RWIMAGE代表为地层水电阻率剖面,单位为M。0103步骤108根据平均地层因素和流体因素剖面,计算得到油气含量剖面,参见图5;说明书CN103615239A107/7页110104其中,计算油气含量剖面的方法如式(5)所示0105OILIMAGEPOR(C/FIIMAGE)100(5)0106其中,OILIMAGE为油气含量剖面,单位为M,POR为中子和密度计算的孔隙度,;C为油气含量系数,缺省值为1;F平均地层因素,单位。

31、为无量纲数,IIMAGE为流体因素剖面,单位为M。0107步骤109将流体因素剖面中径向剖面探测到最远的值作为原状地层流体因素,根据平均地层因素、油气含量剖面和原状地层流体因素,计算得到原状地层油气含量;0108其中,计算原状地层油气含量的方法如式(6)所示0109OILPOR(C/FI)100(6)0110其中,OIL为原状地层油气含量,POR为中子和密度计算的孔隙度,C为油气含量系数,缺省值为1;F为平均地层因素,单位为无量纲数,I为原状地层流体因素,单位为无量纲数,OIL为原状地层油气含量,。0111步骤1010根据原状地层油气含量,计算得到地层水含量;0112其中,计算地层水含量的方法。

32、如式(7)所示0113VRWPOROIL(7)0114其中,VRW为地层水含量,,POR为中子和密度计算的孔隙度,OIL为原状地层油气含量,。0115本发明实施例提供的测井地层成像系统及其方法,针对沙泥岩地层情况下,具备阵列感应成像方法,分别计算得到泥质含量、含砂量、原状地带油气含量和地层水含量,最后能够直接得到砂泥岩地层的含油气剖面图,生成的结果更加精确、直观。0116最后所应说明的是,以上具体实施方式仅用以说明本发明的技术方案而非限制,尽管参照实例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。说明书CN103615239A111/4页12图1说明书附图CN103615239A122/4页13图2说明书附图CN103615239A133/4页14图3说明书附图CN103615239A144/4页15图4图5说明书附图CN103615239A15。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 固定建筑物 > 土层或岩石的钻进;采矿


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1