半导体器件的电容器及其制造方法.pdf

上传人:t**** 文档编号:684190 上传时间:2018-03-04 格式:PDF 页数:13 大小:431.07KB
返回 下载 相关 举报
摘要
申请专利号:

CN200410102185.3

申请日:

2004.12.15

公开号:

CN1630085A

公开日:

2005.06.22

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效|||公开

IPC分类号:

H01L27/108; H01L27/10; H01L21/82; H01L21/8242

主分类号:

H01L27/108; H01L27/10; H01L21/82; H01L21/8242

申请人:

三星电子株式会社;

发明人:

朴星昊; 李正贤

地址:

韩国京畿道

优先权:

2003.12.15 JP 91170/2003

专利代理机构:

北京市柳沈律师事务所

代理人:

张平元;赵仁临

PDF下载: PDF下载
内容摘要

提供一种半导体器件的电容器和制造该半导体器件电容器的方法。该电容器含下电极层、介电层和上电极层,介电层由钽氧化物和周期表第5族元素的氧化物如铌氧化物或钒氧化物形成。因此,能够通过在低的温度下热处理介电层而使介电层具有电特性,并保证整个电容的结构稳定性。

权利要求书

1: 一种半导体器件的电容器,其包含: 下电极层; 介电层;和 上电极层, 其中,所述介电层含钽氧化物和周期表第5族元素的氧化物。
2: 权利要求1的电容器,其中周期表第5族元素是Nb或V。
3: 权利要求1的电容器,其中介电层含TaO和NbO。
4: 权利要求1的电容器,其中下电极层含TiN层和在该TiN层上形成的 Ru层。
5: 权利要求1的电容器,其中上电极层含TiN层或Ru层。
6: 一种制造半导体器件的电容器的方法,该电容器含下电极层、介电层 和上电极层,所述方法包括: (a)在半导体基片上形成下电极层; (b)在该下电极层上形成介电层,该介电层含钽氧化物层和周期表第5 族元素的氧化物层;和 (c)在该介电层上形成上电极层。
7: 权利要求6的方法,其中(a)包括: 在该半导体基片上形成TiN层,由此可以防止来自半导体基片的杂质扩 散到上层中;和 在该TiN层上形成Ru层。
8: 权利要求6的方法,其中(b)包括: 在该下电极层上形成铌氧化物层; 在该铌氧化物层上形成钽氧化物层;和 在约600℃的温度下热处理该铌氧化物层和该钽氧化物层。
9: 权利要求6的方法,其中(b)包括: 在该下电极层上形成钽氧化物层; 在该钽氧化物层上形成铌氧化物层;和 在约600℃的温度下热处理该钽氧化物层和该铌氧化物层。
10: 权利要求6的方法,其中(b)包括: 在下电极层上顺序形成钽氧化物层、铌氧化物层和另一钽氧化物层;和 在约600℃的温度下热处理钽氧化物层、铌氧化物层和钽氧化物层的叠 层。
11: 权利要求6的方法,其中在(c)中,通过将TiN或Ru沉积在介电层上 形成上电极。

说明书


半导体器件的电容器及其制造方法

    【技术领域】

    本发明涉及一种半导体器件的电容器及其制造方法,更特别地,涉及这样一种半导体器件的电容器和制造该半导体器件电容器的方法,通过形成Nb基Ta2O5层的介电层,该电容器甚至在低温下也可以使该半导体器件电容器的介电层结晶,并可以提高该半导体器件的性能。

    背景技术

    由于半导体加工工艺的精密化(sophistication),所以半导体集成电路的集成密度和配有这种半导体集成电路的半导体器件的运行速度显著提高。已经对许多方式进行了大量的研究以增加具有电容器的半导体存储器设备(semiconductor memory devices)如动态随机存取存储器(DRAMs)的存储容量,同时降低半导体存储器设备的尺寸。此外,为了获得至少最低限度所需的有效电容,同时提高半导体器件的集成密度,已经开发了许多形状的电容器,例如叠层形(stack-type)、圆筒形和针型电容器。而且,即使当使用高介电材料以提高半导体器件的集成密度时,也付出了许多努力来降低数据存储用半导体器件地氧化物厚度(TOX)。

    图1是具有由高介电材料形成的电容器的常规半导体器件的截面图。参考图1,半导体器件包括半导体基片11如硅基片和在半导体基片11上形成的多晶硅层12。在常规半导体器件的电容器中,在多晶硅层12上顺序堆叠下电极层、介电层和上电极层16。下电极层是由TiN层13和Ru层14的双层形成的。这里,TiN层13作为防止来自基片11的杂质扩散到上层中的阻挡层。介电层是由Ta2O5层15形成的。在Ta2O5层15上形成上电极层16。

    可以通过使用化学气相沉积(CVD)法或原子层沉积(ALD)法将高介电材料Ta2O5涂覆在基片11上而形成典型的DRAM。使Ta2O5层结晶,从而使其具有电特性(electrical characteristics)。为了使Ta2O5层15具有电特性,必须通过在约700℃或更高的温度下对Ta2O5层15进行热处理过程而使Ta2O5层15结晶。然而,在热处理Ta2O5层15的过程中,Ru层14中所含的氧自由基可以扩散到位于Ru层14下面的TiN层13中,在这种情况下,TiN层14会不希望地被氧化或变形。为了防止TiN层14氧化或变形,应该在低温下热处理Ta2O5层15。然而,当在低温下进行热处理时,不能使Ta2O5层15结晶,因而使其电特性变差。

    【发明内容】

    本发明提供一种具有电容器的半导体器件和制造该半导体器件的电容器的方法,该电容器可以防止下电极氧化,同时保证电容器介电层(例如,Ta2O5层)优异的电特性。

    根据本发明的一个方面,提供一种半导体器件的电容器。该电容器包括下电极层、介电层和上电极层。该介电层含钽氧化物和周期表第5族元素的氧化物。

    周期表第5族元素可以是Nb或V。

    介电层可以含TaO和NbO。

    下电极层可以包括TiN层和在该TiN层上形成的Ru层。

    上电极层可以包括TiN或Ru层。

    根据本发明的另一个方面,提供一种制造半导体器件的电容器的方法,该电容器含下电极层、介电层和上电极层。该方法包括(a)在半导体基片上形成下电极层;(b)在该下电极层上形成介电层,该介电层含钽氧化物层和周期表第5族元素的氧化物层;和(c)在该介电层上形成上电极层。

    (a)可以包括在半导体基片上形成TiN层,因此可以防止来自半导体基片的杂质扩散到上层中;和在TiN层上形成Ru层。

    (b)可以包括在下电极层上形成铌氧化物层;在该铌氧化物层上形成钽氧化物层;和在约600℃的温度下热处理该铌氧化物层和该钽氧化物层。

    (b)可以包括在下电极层上形成钽氧化物层;在该钽氧化物层上形成铌氧化物层;和在约600℃的温度下热处理该钽氧化物层和该铌氧化物层。

    (b)可以包括在下电极层上顺序形成钽氧化物层、铌氧化物层和另一钽氧化物层;和在约600℃的温度下热处理钽氧化物层、铌氧化物层和钽氧化物层的叠层。

    在(c)中,可以通过将TiN或Ru沉积在介电层上形成上电极。

    【附图说明】

    参考附图,通过详细描述本发明示范性的实施方案,本发明的上述和其它特点和优点将变得更明显,其中:

    图1是常规半导体器件的截面图;

    图2是本发明示范性实施方案的半导体器件的电容器的截面图;

    图3A-3E是说明制造本发明示范性实施方案的半导体器件的电容器的方法的截面图;

    图4A和4B是本发明示范性实施方案的半导体器件的电容器的介电层变化的截面图;

    图5A是说明本发明示范性实施方案的半导体器件的电容器的X-射线衍射图的图;和

    图5B是说明本发明示范性实施方案的半导体器件的电容器的氧化物厚度(TOX)相对于势能的变化的图。

    【具体实施方式】

    现在将参考附图更充分地描述本发明示范性实施方案的具有电容器的半导体器件和制造该半导体器件的方法。

    图2是本发明示范性实施方案的半导体器件的电容器的截面图。参考图2,半导体器件包括半导体基片21如硅基片和在半导体基片21上形成的多晶硅层22。在多晶硅层22上顺序形成下电极层、介电层25和上电极层26。下电极层由TiN层23和Ru层24的双层形成,并作为防止来自基片21的杂质扩散到上层中的阻挡层。介电层25由Ta2O3层形成,并且在介电层25上形成上电极层26。

    在本发明中,介电层25含钽氧化物和铌(Nb)氧化物。这里,可以用周期表第5族中的另一种元素如钒(V)替代Nb。通过形成具有钽氧化物和铌氧化物组合的介电层25,可以甚至在约650℃的低温下热处理介电层25,然后使其结晶。

    图3A-3E是制造本发明示范性实施方案的半导体器件的电容器的方法的截面图。

    参考图3A,在半导体基片21如硅基片上形成多晶硅层22。通过溅射过程在多晶硅层22上形成TiN层23。TiN层23作为防止来自半导体基片21的杂质扩散到上层中的阻挡层。

    参考图3B,与现有技术一样,可以通过汽相沉积工艺在TiN层23上形成Ru层24。

    参考图3C,通过CVD法或ALD法,通过在Ru层24上顺序形成铌氧化物层25a和钽氧化物层25b,由铌氧化物层25a(例如,Nb2O5层)和钽氧化物层25b(例如,Ta2O5层)的双层形成介电层25。优选但不必须地,形成的钽氧化物层25b比铌氧化物层25a厚。可以用周期表第5族中的任意元素的氧化物层替换铌氧化物层25a。可以通过蒸发乙醇铌和乙醇钽至能够与氧气(O2)反应,并在约250-400℃的温度下将反应产物,即铌氧化物和钽氧化物沉积在Ru层24上来形成铌氧化物层25a和钽氧化物层25b。

    这里,可以通过在Ru层24上顺序形成钽氧化物层25b和铌氧化物层25a来形成介电层25。或者,可以通过在Ru层24上顺序形成钽氧化物层25b、铌氧化物层25a和另一钽氧化物层25b来形成介电层25。在图4A和4B中说明了介电层25的这些变化。更具体地说,图4A说明了这样一种介电层25的实例,该介电层含有在Ru层24上形成的钽氧化物层25b和在该钽氧化物层25b上形成的铌氧化物层25a;图4B说明了这样一种介电层25的实例,该介电层含有在Ru层24上形成的钽氧化物层25b、在该钽氧化物层25b上形成的铌氧化物层25a和在该铌氧化物层25a上形成的另一钽氧化物层25b。换句话说,可以通过顺序形成铌氧化物层25a,然后钽氧化物层25b,顺序形成钽氧化物层25b和铌氧化物层25a或顺序形成钽氧化物层25b、铌氧化物层25a和另一钽氧化物层25b来形成介电层25。

    此后,为了使铌氧化物层25a和钽氧化物层25b具有电特性,通过在高温下对介电层25进行热处理过程而使介电层25结晶。优选但不必须地,在约600℃或更低的温度下热处理介电层25以防止Ru层24中所含的氧自由基扩散到TiN层23中。因为可以在约550℃的温度下使铌氧化物层25a结晶,所以可以在相对低的温度,例如600℃下使与铌氧化物层25a接触的钽氧化物层25b结晶,尽管钽氧化物层25b如Ta2O3层通常在约700℃的温度下结晶。一旦通过使用氮气(N2)作为气氛气体而在600℃的温度下热处理介电层25,介电层25就逐渐被冷却下来。热处理介电层25能够使铌氧化物层25a中的铌和钽氧化物层25b中的钽分别扩散到钽氧化物层25b和铌氧化物层25a中。

    参考图3E,在介电层25上形成上电极层26。可以通过将高电导率的材料如TiN或Ru沉积在介电层25上形成上电极层26。

    图5A是说明本发明示范性实施方案的半导体器件的电容器的X-射线衍射(XRD)图的图。参考图5A,通过形成厚度为约60的Nb2O5层25a,形成厚度为约120的Ta2O5层25b,以及在约600℃的温度下热处理Nb2O5层25a和Ta2O5层25b来形成本发明示范性实施方案的半导体器件的电容器。本发明示范性实施方案的半导体器件的电容器的XRD分析表明,Nb2O5层25a和Ta2O5层25b全都结晶,因为在23°检测到Nb2O5层25a的
    晶面的峰,在46°检测到Ta2O5层25b的
    晶面的峰。在33°和42°处检测到的峰是Ru层的晶面峰,Ru层作为本发明示范性实施方案的半导体器件的电容器的电极。

    图5B是说明本发明示范性实施方案的半导体器件的电容器的氧化物厚度(TOX)相对于向其施加的势能的变化的图。参考图5B,本发明示范性实施方案的半导体器件的电容器的TOX在-2至2V的势能范围内达到7.8,这非常低。

    如上所述,根据本发明,通过在低温下热处理介电层以使介电层具有电特性可保证电容器的结构稳定性,并使用该电容器获得高密度的半导体器件。

    虽然已经参考其示范性的实施方案对本发明进行了详细的说明和描述,但本领域普通技术人员可以理解:在形式和细节方面可以进行各种不背离如以下权利要求所限定的本发明精神和范围的变化。

半导体器件的电容器及其制造方法.pdf_第1页
第1页 / 共13页
半导体器件的电容器及其制造方法.pdf_第2页
第2页 / 共13页
半导体器件的电容器及其制造方法.pdf_第3页
第3页 / 共13页
点击查看更多>>
资源描述

《半导体器件的电容器及其制造方法.pdf》由会员分享,可在线阅读,更多相关《半导体器件的电容器及其制造方法.pdf(13页珍藏版)》请在专利查询网上搜索。

提供一种半导体器件的电容器和制造该半导体器件电容器的方法。该电容器含下电极层、介电层和上电极层,介电层由钽氧化物和周期表第5族元素的氧化物如铌氧化物或钒氧化物形成。因此,能够通过在低的温度下热处理介电层而使介电层具有电特性,并保证整个电容的结构稳定性。 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 电学 > 基本电气元件


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1