基于连续步态影像的性别识别方法.pdf

上传人:a*** 文档编号:6232462 上传时间:2019-05-23 格式:PDF 页数:12 大小:1.26MB
返回 下载 相关 举报
摘要
申请专利号:

CN201310518235.5

申请日:

2013.10.28

公开号:

CN103577805A

公开日:

2014.02.12

当前法律状态:

驳回

有效性:

无权

法律详情:

发明专利申请公布后的驳回IPC(主分类):G06K 9/00申请公布日:20140212|||实质审查的生效IPC(主分类):G06K 9/00申请日:20131028|||公开

IPC分类号:

G06K9/00; G06K9/62

主分类号:

G06K9/00

申请人:

汕头大学

发明人:

庄礼鸿; 吴明霓; 林信安

地址:

515063 广东省汕头市金平区大学路243号汕头大学

优先权:

专利代理机构:

广州三环专利代理有限公司 44202

代理人:

温旭

PDF下载: PDF下载
内容摘要

本发明公开了一种基于连续步态影像的性别识别方法,包括获取行人的步态影像;将行人步态影像的图像提取前景影像;对图像做侵蚀再膨胀处理将图像去除杂讯平滑化,再将影像正规化;对影像执行撷取连续步态影像处理;对图像进行降噪处理去除杂讯;对处理后的图像提取特征;利用支持向量机SVM分类器对图像进行分类训练;将待测影像提取特征,再将获得的特征与SVM中训练的特征进行比较。本发明通过利用连续步态影像对人的影像特征进行提取,提取时综合了图像的垂直像素特征和水平像素特征,有效地提高了性别识别的准确率,同时还可以适应不同角度拍摄的人体步态影像的性别识别。

权利要求书

权利要求书
1.  一种基于连续步态影像的性别识别方法,其特征在于,包括如下步骤:
S1:获取行人的步态影像;
S2:将行人步态影像的图像提取前景影像;
S3:对图像做侵蚀再膨胀处理将图像去除杂讯平滑化,再将影像正规化;
S4:对S3的影像执行撷取连续步态影像处理;
S5:对图像进行降噪处理去除杂讯;
S6:对S5处理后的图像提取特征;
S7:利用支持向量机SVM分类器对图像进行分类训练;
S8:将待测影像按照S1~S6的步骤提取特征,再将获得的特征与S7中训练的特征进行比较。

2.  根据权利要求1所述的识别方法,其特征在于,步骤S2提取前景影像的方法为背景相减法。

3.  根据权利要求1所述的识别方法,其特征在于,步骤S2提取前景影像的方法为将影像二值化。

4.  根据权利要求1所述的识别方法,其特征在于,在提取行人步态影像的前景图像后还包括水平扫描影像像素及垂直扫描影像像素的步骤。

5.  根据权利要求1所述的识别方法,其特征在于,连续步态影像处理是将单位时间段里连续前景影像数据进行加权平均。

6.  根据权利要求1所述的识别方法,其特征在于,步骤S5设置一阈值,将小于所述阈值的数据作为杂讯去除,从而对图像进行降噪。

7.  根据权利要求6所述的识别方法,其特征在于,将影像里的最大像素系数乘以比例系数得到所述阈值。

8.  根据权利要求7所述的识别方法,其特征在于,所述比例系数为0.6~0.9。

9.  根据权利要求1所述的识别方法,其特征在于,提取图像特征时将图像的水平特征参数及垂直特征参数分别进行提取。

10.  根据权利要求1或9所述的识别方法,其特征在于,所述图像的水平特征的像素参数及垂直特征的像素参数分为9个区域。

说明书

说明书基于连续步态影像的性别识别方法
技术领域
本发明涉及一种性别识别方法,尤其涉及一种基于连续步态影像的性别识别方法
背景技术
在一些监控环境中,由于环境限制不能准确识别出目标的身份,或者不需要识别出具体的目标身份,而对目标的一些类别属性更感兴趣,例如:性别、年龄、携带状况、步行姿态是否正常等。
在社会治安方面,性别辨识为现今重要的研究方向,早期的性别研究大多是以人脸或是轮廓的特征为根据,但人脸影像在监控系统下常会因解析度低或其他因素使得辨识率降低。且计划犯案的人会故意穿着隐密,隐藏人脸特征导致性别辨识困难。此外,人脸影像对远距离监控性别的帮助也很有限,导致以人脸为特征的方法并不适用于我们的应用中。在探讨分析动作者的资料后发现,人在行走时的身体摆动和脚步比例的确存在着性别差异,男性通常肩膀摆动与跨步的大小远大於女性。女性则以头发长短与胸部背部的差异来区分。根据这些特性,对往后的性别辨识颇有帮助。
性别辨识研究运用在卖场商店,可减轻人力且又便利。以固定式摄影机架设于店门口,当顾客进入卖场时辨识性别,卖场可提供该性别的特价商品与商品的放置位置,一来可以减少顾客搜寻商品的时间,而来也可以得知卖场的特价商品,还可减少卖场印刷卖场目录的成本。
现有的利用影像进行性别识别的方法,大多采用静态的、单一的人体影像作为训练及判断的客体,这种方式没法将男女性行走时身体状态变化的差异因素作为判断的参数,仅以静态的身体形态参数作为判断基准,而男女性之间的身体形态并没有一个严格的分界基准,因此会产生较大的误差,从而降低判断的准确性。
发明内容
本发明所要解决的技术问题在于,提供一种基于连续步态影像的性别识别方法,包括如下步骤:
S1:获取行人的步态影像;
S2:将行人步态影像的图像提取前景影像;
所述提取前景影像的方式可以是采用二值化或背景相减。
S3:对图像做侵蚀再膨胀处理将图像去除杂讯平滑化,再将影像正规化;
将提取到的影像正规化后执行GEI(步态能量图像即连续步态影像)处理可得到这一序列步态的差异性。
S4:对S3的影像执行撷取连续步态影像处理;
S5:对图像进行降噪处理去除杂讯;
S6:对S5处理后的图像提取特征;
S7:利用支持向量机SVM分类器对图像进行分类训练;
S8:将待测影像按照S1~S6的步骤提取特征,再将获得的特征与S7中训练的特征进行比较。
进一步地,步骤S2提取前景影像的方法为背景相减法,将相邻的影像数据进行相减从而得到前景影像。
进一步地,步骤S2提取前景影像的方法还可以为将影像二值化。
进一步地,在提取行人步态影像的前景图像后还包括水平扫描影像像素及垂直扫描影像像素的步骤。
进一步地,连续步态影像处理是将单位时间段里连续前景影像数据进行加权平均。
进一步地,步骤S5设置一阈值,把影像的每个像素值与该阈值做比较,将小于所述阈值的数据作为杂讯去除,从而对图像进行降噪。
进一步地,将影像里的最大像素系数乘以比例系数得到所述阈值。
更进一步地,所述比例系数为0.6~0.9。
进一步地,提取图像特征时将图像的水平特征参数及垂直特征参数分别进行提取。
更进一步地,所述图像的水平特征的像素参数及垂直特征的像素参数都分 为9个区域,每个区域块对应有一定数量的像素。
实施本发明,具有如下有益效果:
本发明通过利用连续步态影像对人的影像特征进行提取,提取时综合了图像的垂直像素特征和水平像素特征,通过人行走时的连续影像进行特征提取,以男女性行走时身体状态变化之间的差异作为判断的参数,有效地提高了性别识别的准确率,同时还可以适应不同角度拍摄的人体步态影像的性别识别。
附图说明
图1是本发明流程示意图;
图2是本发明GEI影像处理示意图;
图3是本发明GEI影像处理的原理示意图;
图4是本发明DEI处理的原理示意图;
图5是本发明水平撷取特征示意图;
图6是本发明垂直撷取特征示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述。
如图1所示,本发明的流程包括:
S1:获取行人的步态影像;
S2:将行人步态影像的图像提取前景影像;
S3:对图像做侵蚀再膨胀处理将图像去除杂讯平滑化,再将影像正规化;
将影片中撷取步态序列影像经过二值化或背景相减处理并得到前景影像,再将影像正规化后执行GEI(步态能量图像)处理可得到这一序列步态的差异性。
S4对S3的影像执行撷取步态能量图像处理;
S5:对图像进行降噪处理去除杂讯;
S6:对S5处理后的图像提取特征;
S7:利用支持向量机SVM分类器对图像进行分类训练;
S8:将待测影像按照S1~S6的步骤提取特征,再将获得的特征与S7中训练的特征进行比较。
图2是本发明GEI影像处理示意图,如图所示,从摄影机拍摄得到的步态影格画面,经过二值化或背景相减处理后取出前景影像并正规化,同一序列的正规化步态影格经由公式(1)计算得到GEI影像。
Gc(x,y)=1NcΣt∈AcB(x,y,t),---(1)]]>
其中,Gc(x,y)为GEI影像,Nc为步态序列影像总数,一个步态序列时间长度Ac,B(x,y,t)代表在t时间的影像,其中x跟y为影像中像素的坐标。
其处理的原理范例如图3所示,假设两张正规化后的3×3影像,白色区块为步态前景影像,黑色区块为背景影像,将两张影像总平均变可得到GEI影像。范例中GEI影像像素值为1表示第一张影像与第2张影像没有变化,像素值为0.5的表示第1张影像与第2张影像有变化,于是就可以看出每个人行走时的特征。
DEI主要是用来去除GEI影像的杂讯,同时可以得到男女步态差异性。DEI如公式(2)所示。
Dc(x,y)=1,ifGc(x,y)≥U,0,otherwise,---(2)]]>
Dc(x,y)为去除杂讯后的影像,Gc(x,y)为GEI影像,U为一个门槛值。图4为GEI影像作DEI处理范例,一张3×3的GEI影像,门槛值为GEI影像里面最大像素值(范例为1)乘以比例系数0.8,得到门槛值U=0.8后,将GEI影像的每个像素值与U作比较,当GEI该像素值大于等于U的话则DEI影像值等于1,当小于U,则DEI影像值等于0。如图4在上方的GEI影像经去杂讯处理后可得右方的DEI影像,处理过后的DEI影像只保留原GEI中较重要的部分。
参照图5、图6所示为水平与垂直特征撷取范例,令Xi表示由DEI影像撷取的第i个特征值,其撷取方法如公式(3)。
Xi=Σk=19cik---(3)]]>
当k=1~8,cik公式如下:
cik={bi((k-1)×18+l)|l=1~18}
当k=9,cik公式如下:
cik={bi((k-1)×18+l)|l=1~6}
Yj=Σk=19dkj]]>
当k=1~8,dkj公式如下:
dkj={b((k-1)×18+l)j|l=1~18}
当k=9,dkj公式如下:
dkj={b((k-1)×18+l)j|l=1~6}
其中i代表影像的列,j代表影像的行,k代表区块编号。Xi代表每一列计算后特征,Yj代表每一行计算后特征,cik代表每一列分割区块,dkj代表每一行分割区块。bij代表影像像素位置。
Xi是由DEI影像中第i列像素计算而得,本文方法DEI影像大小为150×150像素故1≤i≤150,Xi由DEI中第i列的150个像素及j行的150个像素求得,经实验求得将每列与每行像素分为9个区块。其中ci1至ci8与d1j至d8j每个区块对应18个bits,ci9与d9j对应该列最后剩余的6个bits,将此9个区块数值加总成为该列与行的特征值Xi、Yj。故一张DEI影像有300个特征参数作为性 别辨识特征。
本发明方案采用的SVM用于分类的核心函数有Linear、Polynomial、Radial Basis Function三种,本方案采用CASIA数据库的影像资料作为实验样本,并采用LIBSVM进行训练及测试,训练的数据有18位男性及14位女性,根据训练模型对剩余的18位男性及13位女性进行测试,并以75×75及150×150两种影像大小进行测试,测试结果如表1、表2所示。
实施例1
由表1、表2数据可知,采取垂直特征结合水平特征撷取的准确率会大大高于单独垂直特征撷取或水平特征撷取。
表1

表2

本方法在人行走在90°时,性别辨识在中可达100%的准确率,但在日常生活中,人行走在不同角度,本论文方法在不同角度情况下也作了实验,以75×75大小的影像为例,以垂直特征撷取平均准确率为63.64%,以水平特征撷取平均准确率为72.21%,以水平+垂直特征撷取的平均准确率为70.97%;以150×150大小的影像为例,以垂直特征撷取平均准确率为72.43%,以水平特征撷取平均准确率为82.11%,以水平+垂直特征撷取的平均准确率为87.98%。
实施例2
当摄影机拍摄角度为90°、0°与180°时的训练资料,而待测资料以18°的偏差为例,测得的准确率如表3所示
表3三种角度步态性别辨识准确率


以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

基于连续步态影像的性别识别方法.pdf_第1页
第1页 / 共12页
基于连续步态影像的性别识别方法.pdf_第2页
第2页 / 共12页
基于连续步态影像的性别识别方法.pdf_第3页
第3页 / 共12页
点击查看更多>>
资源描述

《基于连续步态影像的性别识别方法.pdf》由会员分享,可在线阅读,更多相关《基于连续步态影像的性别识别方法.pdf(12页珍藏版)》请在专利查询网上搜索。

1、(10)申请公布号 CN 103577805 A (43)申请公布日 2014.02.12 CN 103577805 A (21)申请号 201310518235.5 (22)申请日 2013.10.28 G06K 9/00(2006.01) G06K 9/62(2006.01) (71)申请人 汕头大学 地址 515063 广东省汕头市金平区大学路 243 号汕头大学 (72)发明人 庄礼鸿 吴明霓 林信安 (74)专利代理机构 广州三环专利代理有限公司 44202 代理人 温旭 (54) 发明名称 基于连续步态影像的性别识别方法 (57) 摘要 本发明公开了一种基于连续步态影像的性别 识别。

2、方法, 包括获取行人的步态影像 ; 将行人步 态影像的图像提取前景影像 ; 对图像做侵蚀再膨 胀处理将图像去除杂讯平滑化, 再将影像正规化 ; 对影像执行撷取连续步态影像处理 ; 对图像进行 降噪处理去除杂讯 ; 对处理后的图像提取特征 ; 利用支持向量机 SVM 分类器对图像进行分类训 练 ; 将待测影像提取特征, 再将获得的特征与 SVM 中训练的特征进行比较。本发明通过利用连续步 态影像对人的影像特征进行提取, 提取时综合了 图像的垂直像素特征和水平像素特征, 有效地提 高了性别识别的准确率, 同时还可以适应不同角 度拍摄的人体步态影像的性别识别。 (51)Int.Cl. 权利要求书 1。

3、 页 说明书 6 页 附图 4 页 (19)中华人民共和国国家知识产权局 (12)发明专利申请 权利要求书1页 说明书6页 附图4页 (10)申请公布号 CN 103577805 A CN 103577805 A 1/1 页 2 1. 一种基于连续步态影像的性别识别方法, 其特征在于, 包括如下步骤 : S1 : 获取行人的步态影像 ; S2 : 将行人步态影像的图像提取前景影像 ; S3 : 对图像做侵蚀再膨胀处理将图像去除杂讯平滑化, 再将影像正规化 ; S4 : 对 S3 的影像执行撷取连续步态影像处理 ; S5 : 对图像进行降噪处理去除杂讯 ; S6 : 对 S5 处理后的图像提取特。

4、征 ; S7 : 利用支持向量机 SVM 分类器对图像进行分类训练 ; S8 : 将待测影像按照 S1 S6 的步骤提取特征, 再将获得的特征与 S7 中训练的特征进 行比较。 2. 根据权利要求 1 所述的识别方法, 其特征在于, 步骤 S2 提取前景影像的方法为背景 相减法。 3. 根据权利要求 1 所述的识别方法, 其特征在于, 步骤 S2 提取前景影像的方法为将影 像二值化。 4. 根据权利要求 1 所述的识别方法, 其特征在于, 在提取行人步态影像的前景图像后 还包括水平扫描影像像素及垂直扫描影像像素的步骤。 5. 根据权利要求 1 所述的识别方法, 其特征在于, 连续步态影像处理是。

5、将单位时间段 里连续前景影像数据进行加权平均。 6.根据权利要求1所述的识别方法, 其特征在于, 步骤S5设置一阈值, 将小于所述阈值 的数据作为杂讯去除, 从而对图像进行降噪。 7. 根据权利要求 6 所述的识别方法, 其特征在于, 将影像里的最大像素系数乘以比例 系数得到所述阈值。 8. 根据权利要求 7 所述的识别方法, 其特征在于, 所述比例系数为 0.6 0.9。 9. 根据权利要求 1 所述的识别方法, 其特征在于, 提取图像特征时将图像的水平特征 参数及垂直特征参数分别进行提取。 10. 根据权利要求 1 或 9 所述的识别方法, 其特征在于, 所述图像的水平特征的像素参 数及垂。

6、直特征的像素参数分为 9 个区域。 权 利 要 求 书 CN 103577805 A 2 1/6 页 3 基于连续步态影像的性别识别方法 技术领域 0001 本发明涉及一种性别识别方法, 尤其涉及一种基于连续步态影像的性别识别方法 背景技术 0002 在一些监控环境中, 由于环境限制不能准确识别出目标的身份, 或者不需要识别 出具体的目标身份, 而对目标的一些类别属性更感兴趣, 例如 : 性别、 年龄、 携带状况、 步行 姿态是否正常等。 0003 在社会治安方面, 性别辨识为现今重要的研究方向, 早期的性别研究大多是以人 脸或是轮廓的特征为根据, 但人脸影像在监控系统下常会因解析度低或其他因。

7、素使得辨识 率降低。且计划犯案的人会故意穿着隐密, 隐藏人脸特征导致性别辨识困难。此外, 人脸 影像对远距离监控性别的帮助也很有限, 导致以人脸为特征的方法并不适用于我们的应用 中。在探讨分析动作者的资料后发现, 人在行走时的身体摆动和脚步比例的确存在着性别 差异, 男性通常肩膀摆动与跨步的大小远大於女性。女性则以头发长短与胸部背部的差异 来区分。根据这些特性, 对往后的性别辨识颇有帮助。 0004 性别辨识研究运用在卖场商店, 可减轻人力且又便利。以固定式摄影机架设于店 门口, 当顾客进入卖场时辨识性别, 卖场可提供该性别的特价商品与商品的放置位置, 一来 可以减少顾客搜寻商品的时间, 而来。

8、也可以得知卖场的特价商品, 还可减少卖场印刷卖场 目录的成本。 0005 现有的利用影像进行性别识别的方法, 大多采用静态的、 单一的人体影像作为训 练及判断的客体, 这种方式没法将男女性行走时身体状态变化的差异因素作为判断的参 数, 仅以静态的身体形态参数作为判断基准, 而男女性之间的身体形态并没有一个严格的 分界基准, 因此会产生较大的误差, 从而降低判断的准确性。 发明内容 0006 本发明所要解决的技术问题在于, 提供一种基于连续步态影像的性别识别方法, 包括如下步骤 : 0007 S1 : 获取行人的步态影像 ; 0008 S2 : 将行人步态影像的图像提取前景影像 ; 0009 所。

9、述提取前景影像的方式可以是采用二值化或背景相减。 0010 S3 : 对图像做侵蚀再膨胀处理将图像去除杂讯平滑化, 再将影像正规化 ; 0011 将提取到的影像正规化后执行 GEI(步态能量图像即连续步态影像) 处理可得到 这一序列步态的差异性。 0012 S4 : 对 S3 的影像执行撷取连续步态影像处理 ; 0013 S5 : 对图像进行降噪处理去除杂讯 ; 0014 S6 : 对 S5 处理后的图像提取特征 ; 0015 S7 : 利用支持向量机 SVM 分类器对图像进行分类训练 ; 说 明 书 CN 103577805 A 3 2/6 页 4 0016 S8 : 将待测影像按照 S1 。

10、S6 的步骤提取特征, 再将获得的特征与 S7 中训练的特 征进行比较。 0017 进一步地, 步骤 S2 提取前景影像的方法为背景相减法, 将相邻的影像数据进行相 减从而得到前景影像。 0018 进一步地, 步骤 S2 提取前景影像的方法还可以为将影像二值化。 0019 进一步地, 在提取行人步态影像的前景图像后还包括水平扫描影像像素及垂直扫 描影像像素的步骤。 0020 进一步地, 连续步态影像处理是将单位时间段里连续前景影像数据进行加权平 均。 0021 进一步地, 步骤 S5 设置一阈值, 把影像的每个像素值与该阈值做比较, 将小于所 述阈值的数据作为杂讯去除, 从而对图像进行降噪。 。

11、0022 进一步地, 将影像里的最大像素系数乘以比例系数得到所述阈值。 0023 更进一步地, 所述比例系数为 0.6 0.9。 0024 进一步地, 提取图像特征时将图像的水平特征参数及垂直特征参数分别进行提 取。 0025 更进一步地, 所述图像的水平特征的像素参数及垂直特征的像素参数都分为 9 个 区域, 每个区域块对应有一定数量的像素。 0026 实施本发明, 具有如下有益效果 : 0027 本发明通过利用连续步态影像对人的影像特征进行提取, 提取时综合了图像的垂 直像素特征和水平像素特征, 通过人行走时的连续影像进行特征提取, 以男女性行走时身 体状态变化之间的差异作为判断的参数, 。

12、有效地提高了性别识别的准确率, 同时还可以适 应不同角度拍摄的人体步态影像的性别识别。 附图说明 0028 图 1 是本发明流程示意图 ; 0029 图 2 是本发明 GEI 影像处理示意图 ; 0030 图 3 是本发明 GEI 影像处理的原理示意图 ; 0031 图 4 是本发明 DEI 处理的原理示意图 ; 0032 图 5 是本发明水平撷取特征示意图 ; 0033 图 6 是本发明垂直撷取特征示意图。 具体实施方式 0034 为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明作进一 步地详细描述。 0035 如图 1 所示, 本发明的流程包括 : 0036 S1 : 。

13、获取行人的步态影像 ; 0037 S2 : 将行人步态影像的图像提取前景影像 ; 0038 S3 : 对图像做侵蚀再膨胀处理将图像去除杂讯平滑化, 再将影像正规化 ; 0039 将影片中撷取步态序列影像经过二值化或背景相减处理并得到前景影像, 再将影 说 明 书 CN 103577805 A 4 3/6 页 5 像正规化后执行 GEI(步态能量图像) 处理可得到这一序列步态的差异性。 0040 S4 对 S3 的影像执行撷取步态能量图像处理 ; 0041 S5 : 对图像进行降噪处理去除杂讯 ; 0042 S6 : 对 S5 处理后的图像提取特征 ; 0043 S7 : 利用支持向量机 SVM。

14、 分类器对图像进行分类训练 ; 0044 S8 : 将待测影像按照 S1 S6 的步骤提取特征, 再将获得的特征与 S7 中训练的特 征进行比较。 0045 图 2 是本发明 GEI 影像处理示意图 , 如图所示, 从摄影机拍摄得到的步态影格画 面, 经过二值化或背景相减处理后取出前景影像并正规化, 同一序列的正规化步态影格经 由公式 (1) 计算得到 GEI 影像。 0046 0047 其中, Gc(x,y) 为 GEI 影像, Nc为步态序列影像总数, 一个步态序列时间长度 Ac, B(x,y,t) 代表在 t 时间的影像, 其中 x 跟 y 为影像中像素的坐标。 0048 其处理的原理范。

15、例如图 3 所示, 假设两张正规化后的 33 影像, 白色区块为步态 前景影像, 黑色区块为背景影像, 将两张影像总平均变可得到 GEI 影像。范例中 GEI 影像像 素值为 1 表示第一张影像与第 2 张影像没有变化, 像素值为 0.5 的表示第 1 张影像与第 2 张影像有变化, 于是就可以看出每个人行走时的特征。 0049 DEI 主要是用来去除 GEI 影像的杂讯, 同时可以得到男女步态差异性。DEI 如公式 (2) 所示。 0050 0051 Dc(x,y) 为去除杂讯后的影像, Gc(x,y) 为 GEI 影像, U 为一个门槛值。图 4 为 GEI 影像作 DEI 处理范例, 一。

16、张 33 的 GEI 影像, 门槛值为 GEI 影像里面最大像素值 ( 范例为 1) 乘以比例系数 0.8, 得到门槛值 U=0.8 后, 将 GEI 影像的每个像素值与 U 作比较, 当 GEI 该像素值大于等于 U 的话则 DEI 影像值等于 1, 当小于 U, 则 DEI 影像值等于 0。如图 4 在上 方的 GEI 影像经去杂讯处理后可得右方的 DEI 影像, 处理过后的 DEI 影像只保留原 GEI 中 较重要的部分。 0052 参照图 5、 图 6 所示为水平与垂直特征撷取范例, 令 Xi表示由 DEI 影像撷取的第 i 个特征值, 其撷取方法如公式 (3) 。 0053 0054。

17、 当 k=1 8, cik公式如下 : 0055 cik bi(k-1)18+l)|l 1 18 0056 当 k=9, cik公式如下 : 0057 cik bi(k-1)18+l)|l 1 6 说 明 书 CN 103577805 A 5 4/6 页 6 0058 0059 当 k=1 8, dkj公式如下 : 0060 dkj b(k-1)18+l)j|l 1 18 0061 当 k=9, dkj公式如下 : 0062 dkj b(k-1)18+l)j|l 1 6 0063 其中 i 代表影像的列, j 代表影像的行, k 代表区块编号。Xi代表每一列计算后特 征, Yj代表每一行计算后。

18、特征, cik代表每一列分割区块, dkj代表每一行分割区块。bij代表 影像像素位置。 0064 Xi是由 DEI 影像中第 i 列像素计算而得, 本文方法 DEI 影像大小为 150150 像素 故 1 i 150, Xi由 DEI 中第 i 列的 150 个像素及 j 行的 150 个像素求得, 经实验求得将 每列与每行像素分为 9 个区块。其中 ci1至 ci8与 d1j至 d8j每个区块对应 18 个 bits, ci9与 d9j对应该列最后剩余的6个bits, 将此9个区块数值加总成为该列与行的特征值Xi、 Yj。 故 一张 DEI 影像有 300 个特征参数作为性别辨识特征。 0。

19、065 本发明方案采用的SVM用于分类的核心函数有Linear、 Polynomial、 Radial Basis Function 三种, 本方案采用 CASIA 数据库的影像资料作为实验样本, 并采用 LIBSVM 进行训 练及测试, 训练的数据有 18 位男性及 14 位女性, 根据训练模型对剩余的 18 位男性及 13 位 女性进行测试, 并以 7575 及 150150 两种影像大小进行测试, 测试结果如表 1、 表 2 所 示。 0066 实施例 1 0067 由表 1、 表 2 数据可知, 采取垂直特征结合水平特征撷取的准确率会大大高于单独 垂直特征撷取或水平特征撷取。 0068。

20、 表 1 说 明 书 CN 103577805 A 6 5/6 页 7 0069 0070 表 2 0071 0072 本方法在人行走在 90时, 性别辨识在中可达 100% 的准确率, 但在日常生活中, 人行走在不同角度, 本论文方法在不同角度情况下也作了实验, 以 7575 大小的影像为 例, 以垂直特征撷取平均准确率为 63.64%, 以水平特征撷取平均准确率为 72.21%, 以水平 + 垂直特征撷取的平均准确率为 70.97% ; 以 150150 大小的影像为例, 以垂直特征撷取平均 准确率为 72.43%, 以水平特征撷取平均准确率为 82.11%, 以水平 + 垂直特征撷取的平。

21、均准 说 明 书 CN 103577805 A 7 6/6 页 8 确率为 87.98%。 0073 实施例 2 0074 当摄影机拍摄角度为 90、 0与 180时的训练资料, 而待测资料以 18的偏差 为例, 测得的准确率如表 3 所示 0075 表 3 三种角度步态性别辨识准确率 0076 0077 0078 以上所述是本发明的优选实施方式, 应当指出, 对于本技术领域的普通技术人员 来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这些改进和润饰也视为 本发明的保护范围。 说 明 书 CN 103577805 A 8 1/4 页 9 图 1 说 明 书 附 图 CN 103577805 A 9 2/4 页 10 图 2 图 3 图 4 说 明 书 附 图 CN 103577805 A 10 3/4 页 11 图 5 说 明 书 附 图 CN 103577805 A 11 4/4 页 12 图 6 说 明 书 附 图 CN 103577805 A 12 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 物理 > 计算;推算;计数


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1