基片、具有该基片的液晶显示器及其制造方法 技术领域
本发明涉及基片、具有该基片的液晶显示器及其制造方法。
背景技术
在传统液晶显示器的有源矩阵基片中,已知薄膜晶体管的漏极和象素电极是通过接触孔电连接的。该象素电极是在覆盖漏极的绝缘薄膜上形成的,且接触孔是在绝缘薄膜上形成的。
图12为传统有源矩阵基片的平面示意图。
有源矩阵基片110包括多个薄膜晶体管(以下也称为“TFT”)120、多条源信号线114、及多条栅信号线112。薄膜晶体管120排成矩阵形态。源信号线114是沿以列方向排列的薄膜晶体管120彼此相隔预定距离平行设置的。栅信号线112是沿以排方向排列的薄膜晶体管120彼此相隔预定距离平行设置的。
相应的源驱动器118分别连接至多条源信号线114。各源驱动器118将电压施加到相应地源信号线114,且该电压与视频信号相对应。
相应的源驱动器116分别连接至多条栅信号线112。各源驱动器116将电压施加到相应的栅信号线112,且该电压与扫描信号相对应。
每个薄膜晶体管120都包括栅电极122、源电极124和漏极126。栅电极122是从相应的栅信号线112分支出来的,而源电极124是从相应的源信号线114分支出来的。
每个漏极126都与相应的象素电极130相连。每个象素电极130都是相应象素电容器128的一个终端。各象素电容器128的另一个终端是设置在对基片154上的电容器极板132(见图14和15)。电容器极板132通常由多个象素电极130共享。
有源矩阵基片110包括显示区134和终端区136。显示区134用于视频显示,而将终端区围绕显示区134的外围排列。在显示区134中,排列了多个象素电极130和薄膜晶体管120。在终端区136中,排列了多个栅驱动器116和源驱动器118。
传统液晶显示器170(见图14和15)包括有源矩阵基片110、对基片154(见图14和15)及液晶158(见图14)。对基片154与有源矩阵基片110相对。液晶158插在有源矩阵基片110和对基片154之间。
当各薄膜晶体管120相对于由栅驱动器116施加的信号开或关时,将与由源驱动器118施加的视频信号相对应的电压施加到相应的象素电极130上。液晶的取向受根据施加到象素电极130和电容器极板132上的电压控制。藉此,在液晶显示器上显示图象。
图13为传统有源矩阵基片110的示意平面图。
如图13所示的栅驱动器116包括信号输入终端部分138,其中扫描信号是从外部输入的。
象素电极130通过连接孔150连接至漏极126。
图14为传统液晶显示器沿图13中的线P-P的剖面图。
如图14中所示的传统液晶显示器170包括有源矩阵基片110、对基片154、和液晶158。液晶158插在有源矩阵基片110和对基片154之间。
图14示出象素电极130的剖面结构。在有源矩阵基片110的显示区134中,象素电极130与薄膜晶体管120和薄膜晶体管120的漏极126相连。
有源矩阵基片110包括透明绝缘基片139。栅电极122是在透明绝缘基片139上形成的。栅绝缘薄膜140是在透明绝缘基片139上形成的,以覆盖栅电极122。
半导体层146是通过栅绝缘薄膜140在栅电极122上形成的。n+硅(Si)层148是在半导体层146上形成的,以与半导体层146对齐。
从源信号线114分支出来的源电极124在部分栅绝缘薄膜140上形成,以覆盖n+Si层148的部分表面,及n+Si层148和半导体层146的侧面。
漏极126在栅绝缘薄膜140的其它部分上形成,以覆盖n+Si层148的表面的其它部分,及n+Si层148和半导体层146的其它侧面。
源电极124和漏极126相隔预定距离排列在n+Si层148的表面。
薄膜晶体管120包括栅电极122、半导体层146、n+Si层148、源电极124和漏极126。
为了增加液晶显示器的尺寸或提高其分辨率,最好减少栅信号线112、源信号线114、栅电极122、源电极124及漏极126的阻抗。因此,通常将易于加工的具有低阻抗的金属用作这些信号线和电极的材料。
用于栅信号线112、源信号线114、栅电极122、源电极124及漏极126的一般材料是Al、Mo、Ti、Ta等等。
Mo具有较低的电阻系数,而且易于通过用弱酸蚀刻形成图形。因此,Mo最好用作源信号线114、源电极124及漏极126的材料。
虽然在上述材料中,Al的电阻系数最低,但Al最好不与n+Si层148接触,因此最好不要将单层Al用作源电极124及漏极126的材料。因此,当将Al用于源信号线时,需要诸如Al/Ti、Al/Mo之类的层迭结构。
因为Ti的阻抗比Al和Mo高,最好不要将单层Ti用作尺寸增加了的液晶显示器的电极和信号线的材料。
因为Ta同Ti一样也具有高电阻系数,最好不要使用单层Ta。
在栅绝缘薄膜140上形成用于保护薄膜晶体管120的绝缘薄膜152,以覆盖源电极124、漏极126和n+Si层148的的其它部分。绝缘薄膜152的材料是,例如:SiNx。
绝缘薄膜152包括穿过绝缘薄膜152并延伸到漏极126的接触孔150。
在绝缘薄膜152上形成象素电极130,以通过接触孔150与漏电极126相连。象素电极的材料是透明ITO。
在液晶显示器中,特别是透明的TFT液晶显示器,最好使用上述结构,即,包括形成薄膜晶体管120和绝缘薄膜152以覆盖薄膜晶体管120的漏极126,并形成象素电极130以通过在绝缘薄膜152中形成的接触孔150与漏极126电连接的结构。
为何最好使用该结构的原因如下。即,在该结构中,因为用象素电极130形成的表面与用源信号线114形成的表面不一样,可以增加象素电极130的表面面积,同时防止象素电极130和源信号线114之间的短路。象素电极130是在绝缘薄膜152上形成的,且源信号线114与在绝缘薄膜152下形成的源电极124相连。
对基片154包括透明绝缘基片156和设置在透明绝缘基片156上的电容器极板132。
图15为传统液晶显示器沿图13中的线Q-Q的剖面图。
在图15中,在有源矩阵基片110的终端区136中示出栅驱动器116中信号输入终端区138的剖面结构。
栅信号线112是在透明绝缘基片139上形成的。在透明绝缘基片139上形成栅绝缘薄膜140以覆盖栅信号线112的两端。在栅绝缘薄膜140上形成绝缘薄膜152。
形成抗氧化薄膜160以覆盖栅绝缘薄膜140和绝缘薄膜152的侧面及绝缘薄膜152的部分表面。抗氧化薄膜160用于防止栅信号线112氧化,氧化会增加阻抗。此时,抗氧化薄膜160的材料是透明的ITO,并且此ITO是与象素电极130相同的材料。
上述传统的有源矩阵基片110是通过以下过程制造的。
通过溅射法之类的方法沉积用于在透明绝缘基片139上形成栅信号线112和栅电极122的材料。然后形成的层经掩模曝光、显影和干蚀刻后形成具有规定图案的栅信号线112和栅电极122。
接着,通过CVD法将用于形成栅绝缘薄膜140的材料沉积在透明绝缘基片139上以覆盖栅信号线112和栅电极122。
接着,通过CVD法将用于形成半导体层146的材料和用于形成n+Si层148的材料沉积在用于形成栅绝缘薄膜140的材料上。用于形成半导体层146和n+Si层148的沉积的材料经掩模曝光、显影和干蚀刻后形成具有规定图案的半导体层146和n+Si层148。
接着,将用于形成源信号线114、源电极124和漏极126的材料(例如:Mo)沉积在栅绝缘薄膜140上以覆盖半导体层146和n+Si层148。然后形成的Mo层经掩模曝光、显影和干蚀刻后形成具有规定图案的Mo。
接着,湿蚀刻源电极124和漏极126之间的Mo以形成薄膜晶体管120的沟道。然后形成源信号线114、源电极124和漏极126。
接着,将用于形成绝缘薄膜152的材料沉积在栅绝缘薄膜140上以覆盖源电极124、漏极126和n+Si层148的表面其它部分。
接着,用CF4和O2的混合气体通过干蚀刻去除在漏极126上的部分绝缘薄膜152以在绝缘薄膜152中形成接触孔150。连续去除部分绝缘薄膜152和部分栅绝缘薄膜140以使栅信号线112的部分表面曝光。在终端区136栅信号线112的上部形成绝缘薄膜152(图12),并在栅信号线112上形成栅绝缘薄膜140。
接着,沉积ITO,并在沉积的ITO经掩模曝光、显影和干蚀刻后形成具有规定图案的象素电极130和抗氧化薄膜160。此时,在绝缘薄膜152上形成象素电极130以通过接触孔150与漏极126电连接。另一方面,形成抗氧化薄膜160以覆盖栅信号线112的部分表面、栅绝缘薄膜140和绝缘薄膜152的侧面及绝缘薄膜152的部分表面。
在终端区136的信号输入终端部分138中,通过去除用于在栅信号线112的上部形成绝缘薄膜152的材料的一部分而曝光栅信号线112的部分表面,并继续地去除用于在栅信号线112上形成栅绝缘薄膜140的材料的一部分。在显示区134中,通过去除在漏极126上的部分绝缘薄膜152在绝缘薄膜152中形成接触孔150。这些过程由同样的干蚀刻完成。
然而,因为同样的干蚀刻连续地去除显示区134中的部分绝缘薄膜152和终端区136中的部分栅绝缘薄膜140,除了显示区134中的部分绝缘薄膜152之外,还可以去除部分排列在绝缘薄膜152下的漏极126和部分栅绝缘薄膜140。
特别是当将CF4和O2的混合气体用于干蚀刻,将SiNx用作绝缘薄膜152的材料并将Mo用作漏极126的材料时,绝缘薄膜152和漏极126之间的蚀刻选择比就变得不够了。藉此,去除漏极126的一部分。
图16为液晶显示器的剖面图,其中接触孔150A不仅穿过绝缘薄膜152还穿过漏极126到达栅绝缘薄膜140中。
如图16的所示,在液晶显示器170A中,当接触孔150A形成时,象素电极130在漏极126的剖面与漏极126接触。接触孔150A不仅穿过绝缘薄膜152还穿过漏极126到达栅绝缘薄膜140中。与接触孔150A的表面面积相比,漏极126的剖面面积非常小,这样就存在象素电极130和漏极126之间的电连接不足的问题。
为了解决以上问题,在形成漏极126后,在漏极126上沉积ITO以形成保护膜。在该保护薄膜上形成绝缘薄膜152,并通过掩模曝光、显影和干蚀刻在绝缘薄膜152中形成接触孔150。形成的保护薄膜保护漏极126不被干蚀刻,从而防止漏极126被蚀刻。
然而,如果将ITO沉积在漏极126上形成保护薄膜,就会出现增加成本和加工的新问题。
本发明的目的是缓解和/或消除这些问题,且本发明的主要目的是提供一种基片、具有该基片的液晶显示器及其制造方法,同时不增加成本和加工。在基片中,第一电极和第二电极通过接触孔稳定地连接。在覆盖第一电极的绝缘薄膜上形成第二电极,且接触孔是在绝缘薄膜中形成的。
发明内容
根据本发明的基片包括第一电极和第二电极。在至少覆盖了部分第一电极的绝缘薄膜上形成第二电极,且第一电极和第二电极通过在绝缘薄膜上形成的接触孔电连接。第一电极具有金属薄膜和保护薄膜的层迭结构。对于形成金属薄膜和保护薄膜的第一蚀刻而言,金属薄膜的蚀刻速率几乎和保护薄膜的蚀刻速率相等。对于形成接触孔的第二蚀刻而言,保护薄膜的蚀刻速率几乎为0。从而实现了本发明的目的。
所述保护薄膜可以是非晶传导性氧化物。
非晶传导性氧化物可以是包含氧化铟和氧化锌的氧化物。
金属薄膜可以包含钼。
可以相对于保护薄膜在接触孔的一侧形成金属薄膜。
根据本发明的基片还可以包含具有用作漏极的第一电极、源电极和栅电极的薄膜晶体管。第二电极可以用作由薄膜晶体管控制的象素电极。
根据本发明的基片还可以包括栅信号线和栅绝缘薄膜。栅信号线是从薄膜晶体管的栅电极分支出来的,且栅绝缘薄膜覆盖至少部分栅电极和栅信号线。在栅绝缘薄膜上形成薄膜晶体管的漏极,且保护薄膜可以保护漏极下的栅绝缘薄膜不受第二蚀刻。
根据本发明的液晶显示器包括上述基片、与基片相对的对基片、及插在基片和对基片之间的液晶。从而实现了本发明的目的。
根据本发明的制造基片的方法包括以下过程,用于形成第一电极的过程,用于形成绝缘薄膜以覆盖至少部分第一电极的过程,通过去除部分绝缘薄膜在绝缘薄膜中形成接触孔的过程,在绝缘薄膜上形成第二电极以使第一电极和第二电极通过接触孔电连接的过程。用于形成第一电极的过程包括迭加金属薄膜和保护薄膜的过程,且通过第一蚀刻使层迭的金属薄膜和保护薄膜图案化的过程。形成接触孔的过程包括通过第二蚀刻在绝缘薄膜中形成接触孔的过程。第二蚀刻中保护薄膜的蚀刻速率几乎为零。从而实现了本发明的目的。
用于图案化的过程包括用混合的弱酸溶液通过湿蚀刻使金属薄膜和保护薄膜图案化的过程。
根据本发明的制造方法是用于制造基片的方法,其中第一电极用作薄膜晶体管的漏极,而第二电极用作由薄膜晶体管控制的象素电极。该制造方法还包括形成栅信号线,形成薄膜晶体管的栅电极,形成至少覆盖部分栅信号线的栅绝缘薄膜,形成源信号线,和去除在栅信号线上的部分栅绝缘薄膜的过程。栅电极是从栅信号线分支出来的。源电极是从源信号线分支出来的。第二蚀刻为干蚀刻。通过干蚀刻,可以去除部分栅绝缘薄膜,同时形成接触孔。
所述保护薄膜可以是非晶传导性氧化物。
非晶传导性氧化物可以是包含氧化铟和氧化锌的氧化物。
金属薄膜可以包含钼。
附图说明
图1为本发明的一个例子中的液晶显示器的有源矩阵基片的平面示意图。
图2为本发明的一个例子中有源矩阵基片的平面图。
图3为在本发明的一个例子中的液晶显示器沿图2中的线P-P的剖面图。
图4为在本发明的一个例子中的液晶显示器沿图2中的线Q-Q的剖面图。
图5为用于说明本发明的一个例子中有源矩阵基片的制造方法的剖面图。
图6为用于说明本发明的一个例子中有源矩阵基片的制造方法的剖面图。
图7为用于说明本发明的一个例子中有源矩阵基片的制造方法的剖面图。
图8为用于说明本发明的一个例子中有源矩阵基片的制造方法的剖面图。
图9为用于说明本发明的一个例子中有源矩阵基片的制造方法的剖面图。
图10为用于说明本发明的一个例子中有源矩阵基片的制造方法的剖面图。
图11为在本发明的另一例子中液晶显示器剖面图。
图12为传统有源矩阵基片的平面示意图。
图13为传统有源矩阵基片110的剖面图。
图14为传统液晶显示器沿图13中的线P-P的剖面图。
图15为传统液晶显示器沿图13中的线Q-Q的剖面图。
图16为图14中的液晶显示器的剖面图,其中接触孔不仅穿过绝缘薄膜还穿过漏极到达栅绝缘薄膜中。
具体实施方式
以下对液晶显示器,特别是具有有源矩阵基片的液晶显示器进行说明。本发明不限于这些液晶显示器及具有有源矩阵基片的液晶显示器。可以将本发明用于一任意的结构,其中第一电极和第二电极通过接触孔电连接。在覆盖第一电极的绝缘薄膜上形成第二电极,并且在绝缘薄膜中形成接触孔。
在本发明的一个例子中的液晶显示器包括有源矩阵基片,其中漏极和象素电极通过接触孔电连接。象素电极是在覆盖漏极的绝缘薄膜上形成的,而接触孔是在绝缘薄膜中形成的。
图1为本发明的一个例子中的液晶显示器的有源矩阵基片的平面示意图。
有源矩阵基片10包括多个薄膜晶体管(以下也称为“TFT”)20、多条源信号线14、及多条栅信号线12。薄膜晶体管20排成矩阵形态。源信号线14是沿以列方向排列的薄膜晶体管20彼此相隔预定距离平行设置的。栅信号线12是沿以排方向排列的薄膜晶体管20彼此相隔预定距离平行设置的。
相应的源驱动器18分别连接至各条源信号线14。各源驱动器18将电压施加到相应的源信号线14,且该电压与视频信号相对应。
相应的源驱动器16分别连接至各条栅信号线12。各源驱动器16将电压施加到相应的栅信号线12,且该电压与扫描信号相对应。
每个薄膜晶体管20都包括栅电极22、源电极24和栅电极26。栅电极22是从相应的栅信号线12分支出来的,而源电极24是从相应的源信号线14分支出来的。
每个漏极26都与相应的象素电极30相连。每个象素电极30都是相应象素电容器28的一个终端。各象素电容器的另一个终端是设置在对基片54上的电容器极板32(见图3和4)。电容器极板32通常被多个象素电极30共享。
有源矩阵基片10包括显示区34和终端区36。显示区34用于视频显示,而将终端区围绕显示区34的外围排列。在显示区34中,排列了多个象素电极30和薄膜晶体管20。在终端区36中,排列了多个栅驱动器16和源驱动器18。
液晶显示器70(见图3和4)包括有源矩阵10、对基片53(见图3和4)及液晶58(见图3)。对基片54与有源矩阵10相对。液晶58插在有源矩阵10和对基片54之间(见图3和4)。
当各薄膜晶体管20相对于由栅驱动器16施加的信号开或关时,将与由源驱动器18施加的视频信号相对应的电压施加到相应的象素电极30上。液晶的取向是根据施加到象素电极30和电容器极板32上的电压控制的。藉此,在液晶显示器上显示图象(见图3和4)。
图2为本发明的一个例子中有源矩阵基片的平面图。
如图2所示的栅驱动器16包括信号输入终端部分38,其中扫描信号是从外部输入的。
象素电极30通过连接孔50与漏极26连接。
图3为本发明的一个例子中的液晶显示器沿图2中的线A-A的剖面图。
如图3中所示的传统液晶显示器70包括有源矩阵基片10、对基片54、和液晶58。液晶58插在有源矩阵基片10和对基片54之间。
图3示出象素电极30的剖面结构。在有源矩阵基片10的显示区34中,象素电极30与薄膜晶体管20和薄膜晶体管20的漏极26相连。
有源矩阵结构包括透明绝缘基片39。栅电极22是在透明绝缘基片39上形成的。栅电极22包括TaN、Ta和TaN的层迭结构(TaN/Ta/TaN)。
栅绝缘薄膜40是在透明绝缘基片39上形成的,以覆盖栅电极22。
半导体层46是通过栅绝缘薄膜40在栅电极22上形成的。n+硅(Si)层48是在半导体层46上形成的,以与半导体层46对齐。
从源信号线14分支出来的源电极24在部分栅绝缘薄膜40上形成,以覆盖n+Si层48的部分表面,及n+Si层48和半导体层46的侧面。
漏极26在栅绝缘薄膜40的其它部分形成,以覆盖n+Si层48的表面的其它部分,及n+Si层48和半导体层46的其它侧面。
源电极24和漏极26相隔预定距离排列在n+Si层48的表面。
漏极26包括金属薄膜42和保护薄膜44的层迭结构。
薄膜晶体管20包括栅电极22、半导体层46、n+Si层48、源电极24和漏极26。
在有源矩阵基片10中,源电极24和源信号线14还包括和漏极26一样的金属薄膜42和保护薄膜44的层迭结构。
在栅绝缘薄膜40上形成用于保护薄膜晶体管20的绝缘薄膜52,以覆盖源电极24、漏极26和n+Si层48的其它部分的表面。绝缘薄膜52的材料为,例如:SiNx。
在绝缘薄膜52中形成接触孔50。接触孔50穿过绝缘薄膜52到达漏极26。形成接触孔以连接保护薄膜44。即,相对于金属薄膜42在接触孔的一侧形成保护薄膜44。
在绝缘薄膜52上形成象素电极30以通过接触孔50与漏极26相连。象素电极30的材料是透明的ITO。
在薄膜晶体管20中,通过蚀刻(第一蚀刻)形成漏极26的金属薄膜42和保护薄膜44。就用于形成金属薄膜42和保护薄膜44的蚀刻而言,金属薄膜42的蚀刻速率几乎与保护薄膜44的相等。藉此,通过同时蚀刻金属薄膜42和保护薄膜44,形成具有几乎相同图案的金属薄膜42和保护薄膜44。在此情况下,金属薄膜42的蚀刻速率几乎与保护薄膜44的相等的意义在于同时蚀刻的金属薄膜42和保护薄膜44之间的设计误差变成在理想的范围之内。
相对用于在绝缘薄膜52中形成接触孔50的蚀刻(第二蚀刻),保护薄膜44的蚀刻速率几乎为零。
满足这些属性的金属薄膜42的材料是,例如,Mo。保护薄膜44的是,例如,非晶传导性氧化物。非晶传导性氧化物是,例如,IZO。IZO是包含氧化铟和氧化锌的氧化物,和主要由氧化铟和氧化锌组成的In-Zn-O。在此情况下,由IdemitsuKosan股份有限公司制造的,主要由InO2O3和ZnO组成的IZO被用作非晶传导性氧化物。
对基片54包括透明绝缘基片56和设置在透明绝缘基片56上的电容器极板32。
图4为在本发明的一个例子中的液晶显示器沿图2中的线B-B的剖面图。
图4示出在有源矩阵基片10的终端区136中,栅驱动器16中信号输入终端部分38的剖面结构。
在透明绝缘基片39上形成栅信号线12。栅信号线12包括TaN、Ta和TaN的层迭结构(TaN/Ta/TaN)。此时,栅信号线12是用与栅电极22相同的材料形成的。
在透明绝缘基片39上形成栅绝缘薄膜40以覆盖栅信号线12的两端。在栅绝缘薄膜40上形成绝缘薄膜52。
形成抗氧化薄膜60以覆盖栅绝缘薄膜40和绝缘薄膜52的侧面及绝缘薄膜52的部分表面。抗氧化薄膜60用于防止栅信号线12氧化,氧化会增加阻抗。此时,抗氧化薄膜60的材料是透明的ITO,并且此ITO是与象素电极30相同的材料。
图5-10是用于说明本发明的一个例子中有源矩阵基片的制造方法的剖面图。
图5(a)、图6(a)、图7(a)、图8(a)、图9(a)、图10(a)与沿图2中的线A-A的剖面图相对应,并示出形成象素电极30的过程。在显示区34中象素电极30与薄膜晶体管20以及薄膜晶体管20的漏极26相连(见图1)。
图5(b)、图6(b)、图7(b)、图8(b)、图9(b)、图10(b)与沿图2中的线B-B的剖面图相对应,并示出在终端区36形成栅驱动器16的信号输入终端部分38的过程。(见图1)。
首先,参见图5(a)和(b)。通过溅射法之类的方法将用于形成栅信号线12和栅电极22的材料(例如:TaN/Ta/TaN)沉积在厚度为4000埃的透明绝缘基片39上。然后,将沉积的材料掩模曝光、显影和干蚀刻以形成具有规定图案的栅信号线12和栅电极22。
然后参见图6(a)和(b)。连续地沉积用于形成栅绝缘薄膜40的材料(例如:SiXNY)、用于形成半导体层46的材料和用于形成n+Si层48的材料,以覆盖栅信号线12和栅电极6。这些材料是通过CVD法沉积的,以具有约5000埃的总厚度。
然后,将沉积的材料曝光、显影、干蚀刻并剥离以形成具有预定图形的半导体层46和n+Si层48。
如图图6(a)和(b)所示,在显示区34中(见图1),用于形成半导体层46和N+Si层48的材料仅保留在沿线A-A的剖面中的区域中,用于形成薄膜晶体管20(见图2)。在另一区域去除用于形成半导体层46和N+Si层48的材料。
在终端区36中(见图1),通过蚀刻去除用于形成半导体层46和N+Si层48的材料。
然后参见图7(a)和(b)。在栅绝缘薄膜40上,沉积了厚度为1500埃的金属薄膜42材料(例如:Mo),并连续地通过溅射法沉积了厚度为100埃的保护薄膜44材料(例如:IZO)。
然后,通过掩模曝光和显影使光刻胶形成图案。然后,用混合的弱酸溶液(例如:3%硝酸、73%磷酸和3%醋酸的混合溶液)通过湿蚀刻去除部分沉积的金属薄膜42和保护薄膜44的材料。
可以用硝酸、磷酸和醋酸等弱酸的混合溶液蚀刻金属薄膜42的材料(例如:Mo)和保护薄膜44材料(例如:IZO),因为对于用于形成金属薄膜42和保护薄膜44的蚀刻(在此处为湿蚀刻),金属薄膜42的蚀刻速率几乎与保护薄膜44的相等。因此,可以通过与一个漏极26相同的蚀刻使金属薄膜42和保护薄膜44形成图案。
在终端区36的信号输入终端区38中(见图1),金属薄膜42的材料(例如:Mo)和保护薄膜44材料(例如:IZO)都是通过蚀刻去除的。
接着,通过干蚀刻在源电极24和漏极26之间形成沟道,并形成源信号线14、源电极24和漏极26。在此情况下,各源信号线14、源电极24和漏极26都包括金属薄膜42和保护薄膜44的层迭结构。
然后参见图8(a)和(b)。在栅绝缘薄膜40上沉积绝缘薄膜52的材料(例如:SiXNY)以覆盖源电极24、漏极26和n+Si层48的部分表面。通过CVD法沉积厚度约为3500埃的此种材料。然后对绝缘薄膜52的材料进行掩模曝光和显影以使光刻胶形成图案。
然后,参见图9(a)和(b)。在显示区34中(见图1),去除在漏极26的保护薄膜44上的绝缘薄膜52以形成接触孔50。在终端区36中(见图1),去除了在栅信号线12的上部形成的绝缘薄膜52的一部分,并连续地去除在同一栅信号线12上形成的栅绝缘薄膜40的一部分。这些过程是用CF4和O2的混合气体通过干蚀刻完成的。
此时,因为相对于在绝缘薄膜52中形成接触孔50的蚀刻(这里为干蚀刻),保护薄膜44的蚀刻速率几乎为零,包括保护薄膜44的部分漏极不会通过此蚀刻去除。
然后,参见图10(a)和(b)。通过溅射法在绝缘薄膜52上沉积ITO以覆盖接触孔50、曝光的栅信号线12、和栅绝缘薄膜40和绝缘薄膜52的侧面。
然后,沉积的ITO是通过掩模曝光和显影而图形化光刻胶,并且由氯化铁蚀刻形成象素电极30和抗氧化薄膜60。
如上所述制造成本发明的一个例子中的有源矩阵基片10。
再参见图9(a)和(b)。在显示区34中仅需要蚀刻绝缘薄膜52。然而,在终端区36的信号输入终端区38不仅要蚀刻绝缘薄膜52还要蚀刻栅绝缘薄膜40。因此,在显示区34中,蚀刻显示区34的时间比仅蚀刻显示区34的绝缘薄膜52所需的时间长。
然而,根据本发明,除了绝缘薄膜52之外,保护薄膜44不与金属薄膜42接触。因此,当蚀刻显示区34的时间超过蚀刻一般所需的时间,漏极26不受干蚀刻的伤害而且保护金属薄膜42不被蚀刻。
当将RIE(反应离子蚀刻)用作干蚀刻时,蚀刻过程执行如下:使固体材料和气体起反应,使固体材料起化学反应后变成挥发性气体而蚀刻。当将RIE(反应离子蚀刻)用于制造有源矩阵基片10时,不能用基于氟的气体蚀刻包含铟的保护薄膜44,因为铟和氟的化合物具有低挥发性。因此,因为象素电极30通过接触孔50与漏极26的表面相连,象素电极30和漏极26稳定地电连接。
如上所述,根据本发明的一个例子,象素电极30通过在绝缘薄膜52中形成的接触孔50与漏极26相连,且漏极26包括金属薄膜42和保护薄膜44的层迭结构。此时,因为保护薄膜44是接触孔50相对金属薄膜42的一侧形成的,漏极26不被干蚀刻损伤,且不形成接触孔50以扩展到漏极26的内部。因此,象素电极30与漏极26的表面相连,且象素电极30和漏极26稳定地电连接。
结果,根据本发明,可以不必增加掩模曝光、蚀刻和成本地电连接象素电极30和漏极26。
图11为在本发明的另一例子中液晶显示器剖面图。
如图11所示的液晶显示器70A的有源矩阵基片10A与沿图2中线A-A的剖面图相对应。相同组件使用与有源矩阵基片10中相同的参考号。省略对这些组件的具体说明。
有源矩阵基片10A与有源矩阵基片10不同,因为它包括漏极26A和源极24A,其中金属薄膜42是在接触孔50A相对于保护薄膜44的一侧形成的。
在制造有源矩阵基片10A时,不仅要蚀刻绝缘层52还要蚀刻终端区36中的栅绝缘薄膜40(见图1)。因此,在显示区34(见图1),蚀刻显示区34的时间比仅蚀刻显示区的绝缘薄膜52所需的时间长,从而还蚀刻了为了与绝缘薄膜52相连而形成的金属薄膜42。
然而,在此例中,因为保护薄膜44是在金属薄膜42下形成的,金属薄膜42不被干蚀刻所损伤,且接触孔50A不延伸到保护薄膜44的内部。藉此,象素电极30与薄膜晶体管20A的漏极26A的保护薄膜44相连,从而象素电极30和漏极26A稳定地电连接。
在以上说明中,虽然将主要由非晶氧化铟和氧化锌组成的IZO薄膜作为保护薄膜44的非晶传导性氧化物的例子进行说明,非晶传导性氧化物并不限于IZO薄膜。如果将主要由非晶氧化铟和氧化锡组成的ITO薄膜用作非晶传导性氧化物,可以得到与由IZO薄膜得到的相同的效果。
可以用H2O和H2通过沉积ITO或在低于ITO的结晶温度的温度下形成非晶ITO(参见J,Vac.Sci.Technol.,A8(3),1403(1990))。
工业实用性
根据本发明,在不增加成本和加工的情况下,第一电极和第二电极通过在第一电极上的绝缘薄膜稳定地电连接。