基于静力触探和BP神经网络的路基沉降快速预测方法.pdf

上传人:00****42 文档编号:607520 上传时间:2018-02-26 格式:PDF 页数:6 大小:577.05KB
返回 下载 相关 举报
摘要
申请专利号:

CN201110257149.4

申请日:

2011.09.02

公开号:

CN102425148A

公开日:

2012.04.25

当前法律状态:

授权

有效性:

有权

法律详情:

专利权人的姓名或者名称、地址的变更IPC(主分类):E02D 1/00变更事项:专利权人变更前:铁道第三勘察设计院集团有限公司变更后:中国铁路设计集团有限公司变更事项:地址变更前:300142 天津市河北区中山路10号变更后:300142 天津市河北区中山路10号|||授权|||实质审查的生效IPC(主分类):E02D 1/00申请日:20110902|||公开

IPC分类号:

E02D1/00; E02D1/08

主分类号:

E02D1/00

申请人:

铁道第三勘察设计院集团有限公司

发明人:

李鹏; 李国和; 许再良; 陈新军; 叶启民

地址:

300142 天津市河北区中山路10号

优先权:

专利代理机构:

天津市宗欣专利商标代理有限公司 12103

代理人:

崔立增

PDF下载: PDF下载
内容摘要

本发明公开了一种基于静力触探和BP神经网络的路基沉降快速预测方法,包括获取预测场地数据样本、收集类似场地数据样本、建立BP神经网络模型、对BP神经网络进行训练和测试、预测路基沉降量。获取类似场地静力触探测试结果、场地附加应力大小及路基沉降量观测数据作为BP神经网络训练与测试数据样本,对BP神经网络进行反复训练,当预测值与实测数据间误差低于规定水平时停止训练,将预测场地数据样本输入到训练所得BP神经网络模型,得到路基沉降预测值。本发明通过现场静力触探测试及BP神经网络仿真试验,能科学快速地预测路基沉降变形,可广泛应用于土木工程领域各类地基基础沉降变形预测。

权利要求书

1: 一种基于静力触探和 BP 神经网络的路基沉降快速预测方法, 其特征在于, 包括如 下步骤 : 获取预测场地数据样本 (S1)、 收集类似场地数据样本 (S2)、 建立 BP 神经网络模型 (S3)、 对 BP 神经网络进行训练和测试 (S4)、 预测路基沉降量 (S5) ; 获取预测场地数据样本 (S1), 获取预测场地静力触探测试结果及场地附加应力大小, 并按规定的数据格式对数据 进行整理 ; 收集类似场地数据样本 (S2) , 收集整理类似场地静力触探测试结果、 场地附加 应力大小及路基沉降量观测数据作为 BP 神经网络训练与测试数据样本, 并按规定的数据 格式对数据进行整理 ; 建立 BP 神经网络模型 (S3) , 建立的 BP 神经网络模型包括输入层神 经元、 中间层神经元和网络输出层神经元 ; 对 BP 神经网络进行训练和测试 (S4) , 将获取的 类似场地数据样本作为 BP 神经网络训练与测试数据样本, 并将获取的数据样本分为两部 分, 前 75% 作为训练样本用于训练网络, 后 25% 作为测试样本用于测试网络, 对 BP 神经网 络进行反复训练, 当预测值与实测数据间误差低于规定水平时停止训练 ; 预测路基沉降量 (S5) , 将获取的预测场地数据样本输入到通过测试的 BP 神经网络进行路基沉降预测, 得到 路基沉降量预测值。
2: 根据权利要求 1 所述的基于静力触探和 BP 神经网络的路基沉降快速预测方法, 其特 征在于, 所述获取预测场地数据样本 (S1) 包括对需预测场地开展双桥静力触探测试, 测试 结果按每隔 0.1m 取值, 数据格式按每隔 0.1m 取随深度连续变化的锥尖阻力、 每隔 0.1m 取 随深度连续变化的摩阻比、 场地附加应力顺序依次排列。
3: 根据权利要求 1 所述的基于静力触探和 BP 神经网络的路基沉降快速预测方法, 其 特征在于, 所述收集类似场地数据样本 (S2) 包括收集类似场地双桥静力触探测试结果、 场 地附加应力、 场地实测沉降量, 输入样本数据格式按每隔 0.1m 取随深度连续变化的锥尖阻 力、 每隔 0.1m 取随深度连续变化的摩阻比、 场地附加应力顺序依次排列, 输出样本数据为 场地实测沉降量。
4: 根据权利要求 1 所述的基于静力触探和 BP 神经网络的路基沉降快速预测方法, 其特 征在于, 所述 BP 神经网络模型包括一个输入层、 一个中间层和一个输出层, 中间层神经元 的传递函数采用双曲正切 Sigmoid 函数, 输出层神经元的传递函数采用线性函数。

说明书


基于静力触探和 BP 神经网络的路基沉降快速预测方法

    技术领域 本发明涉及土木工程中地基沉降变形研究 , 特别是涉及基于静力触探和 BP 神经 网络技术的预测路基沉降变形的方法。
     背景技术 路基沉降变形预测是岩土工程设计中的一项重要内容。 现有路基沉降预测主要是 利用以分层总和法为代表的工程实用计算方法和考虑土体复杂本构模型的有限元数值计 算方法进行路基沉降量预测计算。实用计算方法具有简便实用的特点, 是目前工程设计中 的主流方法, 该方法的不足是计算参数主要是根据压缩试验等室内试验确定的, 室内试验 确定参数的主要缺点是不能很好地考虑地层应力状态的影响, 同时钻探取样扰动对其影响 也很大, 尤其对于结构性较强的土体。数值计算方法理论上较为完善, 可以考虑土体非线 性、 弹塑性、 非均质和应力状态等, 但其最大的困难在于土体本构模型的合理建立, 其计算 参数同样来源于室内试验, 难以克服取样扰动等的影响, 同时由于本构模型和参数误差较 大, 最终预测结果也难以准确。
     发明内容
     针对现有路基沉降预测计算技术所存在的问题, 本发明推出一种基于静力触探和 BP 神经网络的路基沉降快速预测方法, 其目的在于, 以现场静力触探测试所得土体物理力 学性质随深度连续变化结果为依据, 结合地基土体上部附加荷载, 采用 BP 神经网络技术预 测路基沉降变形。
     静力触探是岩土工程勘测中广泛采用的一种原位测试方法, 具有高效、 连续、 重现 性好的特点, 并且不会产生漏层。静力触探结果能综合反应地层土体物理力学性质随土层 深度连续变化情况, 可作为预测路基沉降变形的重要参数。
     BP 神经网络 (Back Propagation Neural Network) 是由许多神经元相互连接组成 的复杂网络, 主要用于体现学习和信息处理的一种计算模型。BP 神经网络是目前应用最广 泛也是发展最成熟的一种神经网络模型。BP 神经网络通过学习样本的相互作用等信息, 进 行网络结构和连接权值的训练修正, 从而从大量数据中学习到复杂的非线性关系, 以达到 预测输出结果的能力。通过调整网络中的连接权值、 网络规模, BP 神经网络可以实现任意 精度逼近任何非线性函数。
     本发明所涉及的基于静力触探和 BP 神经网络的路基沉降快速预测方法, 技术步 骤包括 : S1- 获取预测场地数据样本、 S2- 收集类似场地数据样本、 S3- 建立 BP 神经网络模 型、 S4- 对 BP 神经网络进行训练和测试、 S5- 预测路基沉降量。
     S1- 获取预测场地数据样本 : 获取预测场地静力触探测试结果及场地附加应力数 据。
     S2- 收集类似场地数据样本 : 收集整理类似场地静力触探测试结果、 场地附加应 力大小及路基沉降量观测数据。S3- 建立 BP 神经网络模型 : 建立基于误差反向传播的 BP 神经网络模型。所述的 BP 神经网络模型包括输入层神经元、 中间层神经元和网络输出层神经元。中间层神经元的 传递函数采用双曲正切 Sigmoid 函数, 输出层神经元的传递函数采用线性函数。
     S4- 对 BP 神经网络进行训练和测试 : 将获取的类似场地数据样本作为 BP 神经网 络训练与测试数据样本 ; 将获取的数据样本分为两部分, 前 75% 作为训练样本用于训练网 络, 后 25% 作为测试样本用于测试网络。对 BP 神经网络进行反复训练, 当预测值与实测数 据间误差低于规定水平时停止训练。所述的对 BP 神经网络训练采用贝叶斯正则化方法。
     S5- 预测路基沉降量 : 利用通过训练和测试的 BP 神经网络预测路基沉降量。将获 取的预测场地数据样本输入到通过测试的 BP 神经网络进行路基沉降预测, 得到路基沉降 量预测值。
     本发明以现场静力触探测试所得土体物理力学性质随深度连续变化结果为依据, 结合地基土体上部附加荷载, 采用 BP 神经网络技术预测路基沉降变形。通过现场静力触探 测试及 BP 神经网络良好的自学习能力, 能科学快速地预测路基沉降变形。该预测方法简 单易行、 省时高效, 预测效果良好, 可以避免传统钻探取样对地基土体的扰动及测试结果不 准的影响。 而且, 该方法不需对地基土体进行分层, 可以避免传统分层总和法分层过粗的影 响, 可广泛应用于土木工程领域各类地基基础沉降变形预测。采用本发明方法进行路基沉 降预测, 预测参数仅需来自现场静力触探试验, 无需钻探取样进行室内各种土工试验, 大大 简化了勘察手段, 并能大量节省勘察时间和勘察费用, 具有广阔的应用前景。 附图说明 图 1 是基于静力触探和 BP 神经网络的路基沉降快速预测方法技术流程图 ; 图 2 是 BP 神经网络模型结构示意图。
     图中标记说明 : S1、 获取预测场地数据样本 S2、 收集类似场地数据样本 S3、 建立 BP 神经网络模型 S4、 对 BP 神经网络进行训练和测试 S5、 预测路基沉降量 a、 输入层 b、 中间层 c、 输出层。
     具体实施方式
     结合附图对本发明的技术方案作进一步说明。
     图 1 显示基于静力触探和 BP 神经网络的路基沉降快速预测方法的基本流程, 图2 显示 BP 神经网络模型的基本结构。如图所示, 本发明所涉及的基于静力触探和 BP 神经网 络的路基沉降快速预测方法包括如下步骤 : 获取预测场地数据样本 S1、 收集类似场地数据 样本 S2、 建立 BP 神经网络模型 S3、 对 BP 神经网络进行训练和测试 S4、 预测路基沉降量 S5。
     S1- 获取预测场地数据样本 : 获取预测场地静力触探测试结果及场地附加应力大 小, 并按规定的数据格式对数据样本进行整理。 对需预测场地开展双桥静力触探测试, 测试 结果按每隔 0.1m 取值, 数据格式按每隔 0.1m 取随深度连续变化的锥尖阻力、 每隔 0.1m 取 随深度连续变化的摩阻比、 场地附加应力顺序依次排列。
     S2- 收集类似场地数据样本 : 收集整理与需预测场地具有相同路基处理方式的类似场地双桥静力触探测试结果、 场地附加应力大小及路基沉降量观测数据作为 BP 神经网 络训练与测试数据样本, 并按规定的数据格式对数据进行整理。输入样本数据格式按每隔 0.1m 取随深度连续变化的锥尖阻力、 每隔 0.1m 取随深度连续变化的摩阻比、 场地附加应力 顺序依次排列 ; 输出样本数据为场地实测沉降量。
     S3- 建立 BP 神经网络模型 : 建立基于误差反向传播的 BP 神经网络模型。所述的 BP 神经网络模型包括输入层神经元、 中间层神经元和网络输出层神经元。其中, 输入层有 20L+1(L 为场地静力触探测试深度, 单位为米) 个神经元, 分别对应每隔 0.1m 随深度连续 变化的锥尖阻力值、 每隔 0.1m 随深度连续变化的摩阻比、 场地附加应力 ; 中间层神经元数 为 10 ; 网络输出层有一个神经元, 为场地沉降量。所述的中间层神经元的传递函数采用双 曲正切 Sigmoid 函数, 输出层神经元的传递函数采用线性函数。
     S4- 对 BP 神经网络进行训练和测试 : 将获取的类似场地数据样本作为 BP 神经网 络训练与测试数据样本 ; 将获取的数据样本分为两部分, 前 75% 作为训练样本用于训练网 络, 后 25% 作为测试样本用于测试网络。对 BP 神经网络进行反复训练, 当预测值与实测数 据间误差低于规定水平时停止训练。
     建立学习机制, 将获取的类似场地数据前 75% 作为训练样本用于训练网络。当输 入一组某场地静力触探测试结果及附加应力数据时, 即给出一组随深度连续变化的锥尖阻 力值、 随深度连续变化的摩阻比、 场地附加应力数据时, 经过网络自动运算会有一个输出值 (预测的路基沉降量) , 比较输出值与期望值 (实测路基沉降量) 之间的误差, 若误差小于指定 精度, 则学习结束。否则, 将误差信号沿原来路径反向传播, 并逐步调整各层神经元的网络 连接权值, 直到误差小于指定精度为止, 此时第一组学习完成, 进入下一组学习, 直到连接 权值对所有训练组的预测误差均在指定范围内, 输出此时的最佳权值。 训练样本越多, 网络 的学习越充分, 网络经验值越大, 预测精度越高。对网络反复训练, 当误差小于 15% 时, 停止 训练, 开始预测。此时预测模型目标值与输出值相关系数为 0.93。
     当网络训练结束后, 利用另外 25% 的数据样本测试网络, 检验模型是否符合要求。 利用训练所得 BP 神经网络预测另外 25% 组数据样本所对应的路基沉降量, 对照模型预测值 与实际观测值间的误差, 当 BP 神经网络模型对各组测试数据的预测误差均低于规定水平 时即通过测试, 可以用于预测路基沉降量。 此时模型预测值与实测值间相关系数为 0.90, 模 型预测最大误差为 24%, 通过测试。
     S5- 预测路基沉降量 : 利用通过训练和测试的 BP 神经网络预测路基沉降量。将获 取的预测场地数据样本输入到通过测试的 BP 神经网络进行路基沉降量预测, 得到路基沉 降量预测值。

基于静力触探和BP神经网络的路基沉降快速预测方法.pdf_第1页
第1页 / 共6页
基于静力触探和BP神经网络的路基沉降快速预测方法.pdf_第2页
第2页 / 共6页
基于静力触探和BP神经网络的路基沉降快速预测方法.pdf_第3页
第3页 / 共6页
点击查看更多>>
资源描述

《基于静力触探和BP神经网络的路基沉降快速预测方法.pdf》由会员分享,可在线阅读,更多相关《基于静力触探和BP神经网络的路基沉降快速预测方法.pdf(6页珍藏版)》请在专利查询网上搜索。

1、10申请公布号CN102425148A43申请公布日20120425CN102425148ACN102425148A21申请号201110257149422申请日20110902E02D1/00200601E02D1/0820060171申请人铁道第三勘察设计院集团有限公司地址300142天津市河北区中山路10号72发明人李鹏李国和许再良陈新军叶启民74专利代理机构天津市宗欣专利商标代理有限公司12103代理人崔立增54发明名称基于静力触探和BP神经网络的路基沉降快速预测方法57摘要本发明公开了一种基于静力触探和BP神经网络的路基沉降快速预测方法,包括获取预测场地数据样本、收集类似场地数据样本。

2、、建立BP神经网络模型、对BP神经网络进行训练和测试、预测路基沉降量。获取类似场地静力触探测试结果、场地附加应力大小及路基沉降量观测数据作为BP神经网络训练与测试数据样本,对BP神经网络进行反复训练,当预测值与实测数据间误差低于规定水平时停止训练,将预测场地数据样本输入到训练所得BP神经网络模型,得到路基沉降预测值。本发明通过现场静力触探测试及BP神经网络仿真试验,能科学快速地预测路基沉降变形,可广泛应用于土木工程领域各类地基基础沉降变形预测。51INTCL19中华人民共和国国家知识产权局12发明专利申请权利要求书1页说明书3页附图1页CN102425155A1/1页21一种基于静力触探和BP。

3、神经网络的路基沉降快速预测方法,其特征在于,包括如下步骤获取预测场地数据样本S1、收集类似场地数据样本S2、建立BP神经网络模型S3、对BP神经网络进行训练和测试S4、预测路基沉降量S5;获取预测场地数据样本S1,获取预测场地静力触探测试结果及场地附加应力大小,并按规定的数据格式对数据进行整理;收集类似场地数据样本(S2),收集整理类似场地静力触探测试结果、场地附加应力大小及路基沉降量观测数据作为BP神经网络训练与测试数据样本,并按规定的数据格式对数据进行整理;建立BP神经网络模型(S3),建立的BP神经网络模型包括输入层神经元、中间层神经元和网络输出层神经元;对BP神经网络进行训练和测试(S。

4、4),将获取的类似场地数据样本作为BP神经网络训练与测试数据样本,并将获取的数据样本分为两部分,前75作为训练样本用于训练网络,后25作为测试样本用于测试网络,对BP神经网络进行反复训练,当预测值与实测数据间误差低于规定水平时停止训练;预测路基沉降量(S5),将获取的预测场地数据样本输入到通过测试的BP神经网络进行路基沉降预测,得到路基沉降量预测值。2根据权利要求1所述的基于静力触探和BP神经网络的路基沉降快速预测方法,其特征在于,所述获取预测场地数据样本S1包括对需预测场地开展双桥静力触探测试,测试结果按每隔01M取值,数据格式按每隔01M取随深度连续变化的锥尖阻力、每隔01M取随深度连续变。

5、化的摩阻比、场地附加应力顺序依次排列。3根据权利要求1所述的基于静力触探和BP神经网络的路基沉降快速预测方法,其特征在于,所述收集类似场地数据样本S2包括收集类似场地双桥静力触探测试结果、场地附加应力、场地实测沉降量,输入样本数据格式按每隔01M取随深度连续变化的锥尖阻力、每隔01M取随深度连续变化的摩阻比、场地附加应力顺序依次排列,输出样本数据为场地实测沉降量。4根据权利要求1所述的基于静力触探和BP神经网络的路基沉降快速预测方法,其特征在于,所述BP神经网络模型包括一个输入层、一个中间层和一个输出层,中间层神经元的传递函数采用双曲正切SIGMOID函数,输出层神经元的传递函数采用线性函数。。

6、权利要求书CN102425148ACN102425155A1/3页3基于静力触探和BP神经网络的路基沉降快速预测方法技术领域0001本发明涉及土木工程中地基沉降变形研究,特别是涉及基于静力触探和BP神经网络技术的预测路基沉降变形的方法。背景技术0002路基沉降变形预测是岩土工程设计中的一项重要内容。现有路基沉降预测主要是利用以分层总和法为代表的工程实用计算方法和考虑土体复杂本构模型的有限元数值计算方法进行路基沉降量预测计算。实用计算方法具有简便实用的特点,是目前工程设计中的主流方法,该方法的不足是计算参数主要是根据压缩试验等室内试验确定的,室内试验确定参数的主要缺点是不能很好地考虑地层应力状态。

7、的影响,同时钻探取样扰动对其影响也很大,尤其对于结构性较强的土体。数值计算方法理论上较为完善,可以考虑土体非线性、弹塑性、非均质和应力状态等,但其最大的困难在于土体本构模型的合理建立,其计算参数同样来源于室内试验,难以克服取样扰动等的影响,同时由于本构模型和参数误差较大,最终预测结果也难以准确。发明内容0003针对现有路基沉降预测计算技术所存在的问题,本发明推出一种基于静力触探和BP神经网络的路基沉降快速预测方法,其目的在于,以现场静力触探测试所得土体物理力学性质随深度连续变化结果为依据,结合地基土体上部附加荷载,采用BP神经网络技术预测路基沉降变形。0004静力触探是岩土工程勘测中广泛采用的。

8、一种原位测试方法,具有高效、连续、重现性好的特点,并且不会产生漏层。静力触探结果能综合反应地层土体物理力学性质随土层深度连续变化情况,可作为预测路基沉降变形的重要参数。0005BP神经网络(BACKPROPAGATIONNEURALNETWORK)是由许多神经元相互连接组成的复杂网络,主要用于体现学习和信息处理的一种计算模型。BP神经网络是目前应用最广泛也是发展最成熟的一种神经网络模型。BP神经网络通过学习样本的相互作用等信息,进行网络结构和连接权值的训练修正,从而从大量数据中学习到复杂的非线性关系,以达到预测输出结果的能力。通过调整网络中的连接权值、网络规模,BP神经网络可以实现任意精度逼近。

9、任何非线性函数。0006本发明所涉及的基于静力触探和BP神经网络的路基沉降快速预测方法,技术步骤包括S1获取预测场地数据样本、S2收集类似场地数据样本、S3建立BP神经网络模型、S4对BP神经网络进行训练和测试、S5预测路基沉降量。0007S1获取预测场地数据样本获取预测场地静力触探测试结果及场地附加应力数据。0008S2收集类似场地数据样本收集整理类似场地静力触探测试结果、场地附加应力大小及路基沉降量观测数据。说明书CN102425148ACN102425155A2/3页40009S3建立BP神经网络模型建立基于误差反向传播的BP神经网络模型。所述的BP神经网络模型包括输入层神经元、中间层神。

10、经元和网络输出层神经元。中间层神经元的传递函数采用双曲正切SIGMOID函数,输出层神经元的传递函数采用线性函数。0010S4对BP神经网络进行训练和测试将获取的类似场地数据样本作为BP神经网络训练与测试数据样本;将获取的数据样本分为两部分,前75作为训练样本用于训练网络,后25作为测试样本用于测试网络。对BP神经网络进行反复训练,当预测值与实测数据间误差低于规定水平时停止训练。所述的对BP神经网络训练采用贝叶斯正则化方法。0011S5预测路基沉降量利用通过训练和测试的BP神经网络预测路基沉降量。将获取的预测场地数据样本输入到通过测试的BP神经网络进行路基沉降预测,得到路基沉降量预测值。001。

11、2本发明以现场静力触探测试所得土体物理力学性质随深度连续变化结果为依据,结合地基土体上部附加荷载,采用BP神经网络技术预测路基沉降变形。通过现场静力触探测试及BP神经网络良好的自学习能力,能科学快速地预测路基沉降变形。该预测方法简单易行、省时高效,预测效果良好,可以避免传统钻探取样对地基土体的扰动及测试结果不准的影响。而且,该方法不需对地基土体进行分层,可以避免传统分层总和法分层过粗的影响,可广泛应用于土木工程领域各类地基基础沉降变形预测。采用本发明方法进行路基沉降预测,预测参数仅需来自现场静力触探试验,无需钻探取样进行室内各种土工试验,大大简化了勘察手段,并能大量节省勘察时间和勘察费用,具有。

12、广阔的应用前景。附图说明0013图1是基于静力触探和BP神经网络的路基沉降快速预测方法技术流程图;图2是BP神经网络模型结构示意图。0014图中标记说明S1、获取预测场地数据样本S2、收集类似场地数据样本S3、建立BP神经网络模型S4、对BP神经网络进行训练和测试S5、预测路基沉降量A、输入层B、中间层C、输出层。具体实施方式0015结合附图对本发明的技术方案作进一步说明。0016图1显示基于静力触探和BP神经网络的路基沉降快速预测方法的基本流程,图2显示BP神经网络模型的基本结构。如图所示,本发明所涉及的基于静力触探和BP神经网络的路基沉降快速预测方法包括如下步骤获取预测场地数据样本S1、收。

13、集类似场地数据样本S2、建立BP神经网络模型S3、对BP神经网络进行训练和测试S4、预测路基沉降量S5。0017S1获取预测场地数据样本获取预测场地静力触探测试结果及场地附加应力大小,并按规定的数据格式对数据样本进行整理。对需预测场地开展双桥静力触探测试,测试结果按每隔01M取值,数据格式按每隔01M取随深度连续变化的锥尖阻力、每隔01M取随深度连续变化的摩阻比、场地附加应力顺序依次排列。0018S2收集类似场地数据样本收集整理与需预测场地具有相同路基处理方式的类说明书CN102425148ACN102425155A3/3页5似场地双桥静力触探测试结果、场地附加应力大小及路基沉降量观测数据作为。

14、BP神经网络训练与测试数据样本,并按规定的数据格式对数据进行整理。输入样本数据格式按每隔01M取随深度连续变化的锥尖阻力、每隔01M取随深度连续变化的摩阻比、场地附加应力顺序依次排列;输出样本数据为场地实测沉降量。0019S3建立BP神经网络模型建立基于误差反向传播的BP神经网络模型。所述的BP神经网络模型包括输入层神经元、中间层神经元和网络输出层神经元。其中,输入层有20L1(L为场地静力触探测试深度,单位为米)个神经元,分别对应每隔01M随深度连续变化的锥尖阻力值、每隔01M随深度连续变化的摩阻比、场地附加应力;中间层神经元数为10;网络输出层有一个神经元,为场地沉降量。所述的中间层神经元。

15、的传递函数采用双曲正切SIGMOID函数,输出层神经元的传递函数采用线性函数。0020S4对BP神经网络进行训练和测试将获取的类似场地数据样本作为BP神经网络训练与测试数据样本;将获取的数据样本分为两部分,前75作为训练样本用于训练网络,后25作为测试样本用于测试网络。对BP神经网络进行反复训练,当预测值与实测数据间误差低于规定水平时停止训练。0021建立学习机制,将获取的类似场地数据前75作为训练样本用于训练网络。当输入一组某场地静力触探测试结果及附加应力数据时,即给出一组随深度连续变化的锥尖阻力值、随深度连续变化的摩阻比、场地附加应力数据时,经过网络自动运算会有一个输出值(预测的路基沉降量。

16、),比较输出值与期望值(实测路基沉降量)之间的误差,若误差小于指定精度,则学习结束。否则,将误差信号沿原来路径反向传播,并逐步调整各层神经元的网络连接权值,直到误差小于指定精度为止,此时第一组学习完成,进入下一组学习,直到连接权值对所有训练组的预测误差均在指定范围内,输出此时的最佳权值。训练样本越多,网络的学习越充分,网络经验值越大,预测精度越高。对网络反复训练,当误差小于15时,停止训练,开始预测。此时预测模型目标值与输出值相关系数为093。0022当网络训练结束后,利用另外25的数据样本测试网络,检验模型是否符合要求。利用训练所得BP神经网络预测另外25组数据样本所对应的路基沉降量,对照模型预测值与实际观测值间的误差,当BP神经网络模型对各组测试数据的预测误差均低于规定水平时即通过测试,可以用于预测路基沉降量。此时模型预测值与实测值间相关系数为090,模型预测最大误差为24,通过测试。0023S5预测路基沉降量利用通过训练和测试的BP神经网络预测路基沉降量。将获取的预测场地数据样本输入到通过测试的BP神经网络进行路基沉降量预测,得到路基沉降量预测值。说明书CN102425148ACN102425155A1/1页6图1图2说明书附图CN102425148A。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 固定建筑物 > 水利工程;基础;疏浚


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1