硬质表面结构、包括该硬质表面结构的本体及其制备方法.pdf

上传人:a1 文档编号:599891 上传时间:2018-02-25 格式:PDF 页数:16 大小:2.66MB
返回 下载 相关 举报
摘要
申请专利号:

CN201180033892.X

申请日:

2011.07.06

公开号:

CN103052738A

公开日:

2013.04.17

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效IPC(主分类):C23C 26/00申请日:20110706|||公开

IPC分类号:

C23C26/00; C23C26/02; C23C30/00; E21C35/183; E21B10/46

主分类号:

C23C26/00

申请人:

第六元素公司

发明人:

伊戈尔·尤里·空亚什; 贝恩德·亨瑞克·里斯; 弗兰克·弗里德里希·拉赫曼; 海因里希·亨瑞克·谢菲尔

地址:

德国伯格豪恩

优先权:

2010.07.09 GB 1011583.0

专利代理机构:

北京路浩知识产权代理有限公司 11002

代理人:

经志强;王莹

PDF下载: PDF下载
内容摘要

本发明涉及一种包括钢基体以及熔融至钢基体的硬质表面结构的本体,其中该硬质表面结构包括至少1%重量比的硅、至少5%重量比的铬和至少40%重量比的钨,该硬质表面结构的剩余部分基本上由铁族金属M和碳C组成,M选自铁,钴和镍或其合金;硬质表面结构包括多个延长的或片状的且平均长度至少1微米的微结构、多个平均尺寸小于约200纳米的纳米颗粒以及粘合剂材料;微结构包括多于1%重量比的铬和分子式为MxWyCz的相,其中x的范围为从1至7,y的范围为从1至10,以及z的范围为从1至4;纳米颗粒包括多于20%重量比的钨、金属M和碳C;粘合剂材料包括多于3%重量比的钨、多于2%重量比的铬,多于0.5%重量比的硅、金属M和碳C。

权利要求书

权利要求书

一种本体,其包括钢质基体和熔融至所述钢质基体的硬质表面结构,其中所述硬质表面结构包括至少1%重量比的硅、至少5%重量比的铬和至少40%重量比的钨,所述硬质表面结构的剩余部分基本上由铁族金属M和碳C组成,M选自Fe,Co和Ni或其合金;所述硬质表面结构包括多个延长的或片状的且平均长度至少1微米的微结构、多个平均尺寸小于约200纳米的纳米颗粒以及粘合剂材料;所述微结构包括多于1%重量比的铬和分子式为MxWyCz的相,其中,x的范围为从1至7,y的范围为从1至10,以及z的范围为从1至4;所述纳米颗粒包括多于20%重量比的钨、金属M和碳C;所述粘合剂材料包括多于3%重量比的钨、多于2%重量比的铬,多于0.5%重量比的硅、金属M和碳C。
如权利要求1所述的本体,其中所述微结构包括区域,所述区域为片状,具有两个主要尺寸和一个次要尺寸,所述次要尺寸限定厚度,所述厚度为至少0.5微米。
如权利要求1或2所述的本体,其中所述微结构包括至少约0.1%重量比的硅。
如前述权利要求中的任何一项所述的本体,其中所述纳米颗粒包括至少0.1%重量比的硅。
如前述权利要求中的任何一项所述的本体,其中所述硬质表面结构包括0.5至100微米的硅化钨晶粒。
如前述权利要求中的任何一项所述的本体,其中所述纳米颗粒包括至少0.5%重量比的铬。
如前述权利要求中的任何一项所述的本体,其中所述纳米颗粒包括一化合物,该化合物包括Si、W及Fe。
如前述权利要求中的任何一项所述的本体,其中所述纳米颗粒包括硅化钨。
如前述权利要求中的任何一项所述的本体,其中所述纳米颗粒包括Si2W。
如前述权利要求中的任何一项所述的本体,其中所述微结构是树枝状形式。
如权利要求10所述的本体,其中在Murakhami试剂中刻蚀从3秒到6秒的时间段后,所述微结构具有黄色或棕色的颜色。
如前述权利要求中的任何一项所述的本体,其中所述硬质表面结构具有至少约800HV10的维氏硬度。
如前述权利要求中的任何一项所述的本体,其中所述硬质表面结构具有至少约20MPa.m1/2的帕尔姆克维斯特(Palmquist)断裂韧性。
如前述权利要求中的任何一项所述的本体,其包括钢质基体和通过一中间层熔融至所述钢质基体的硬质表面结构,所述中间层的厚度为至少1微米且至多100微米;所述中间层通过下面方法形成,所述方法包括熔融邻近硬质表面的钢质基体并与硬质表面结构材料相互混合;所述中间层包括分子式为MxWyCz的树枝状或片状的微结构,其中,x的范围为从1至7,y的范围为从1至10,以及z的范围为从1至4;微结构包括多于1%重量比的铬和多于0.5%重量比的硅。
如前述权利要求中的任何一项所述的本体,其用于路面或岩石分解。
如权利要求15所述的本体,包括一尖端,所述尖端包括多晶金刚石材料。
一种制备如权利要求1至14中的任一项所述的本体的方法,所述方法包括:使前驱体材料与钢质基体接触,所述前驱体材料包括WC晶粒、范围为从0.1%重量比至10%重量比的硅,以及范围为从0.1%重量比至10%重量比的铬,以及金属M;并且(前驱体材料)具有至高为1280摄氏度的液相线温度;加热前驱体材料达到至少1300摄氏度的温度并保持一控制的时间段,从而允许所述前驱体材料与钢质基体反应和熔融。
如权利要求17所述的方法,其中所述前驱体材料被包括在糊剂、粉末或颗粒中。
如权利要求17或18所述的方法,通过结合WC晶粒,以元素或化合物形式的、范围为从0.1%重量比至10%重量比的硅,以及以金属或碳化铬形式的、范围为从0.1%重量比至10%重量比的铬,以及金属M而制备前驱体材料;以及所述前驱体材料具有最高为1280摄氏度的液相线温度;处理所述前驱体材料从而形成包括所述前驱体材料的多个颗粒,所述颗粒的平均晶粒尺寸为最小20微米并且最大约500微米;在至少约700摄氏度的温度下热处理所述颗粒至少约5分钟;使所述颗粒与钢质基体接触并加热所述颗粒达到至少1150摄氏度的温度。
如权利要求17至19中任一项所述的方法,其中所述前驱体材料包括金刚石或CBN颗粒。
如权利要求17至20中任一项所述的方法,所述方法包括形成包括所述前驱体材料的前驱体本体,所述前驱体本体被配置为容纳所述钢质基体的非平面表面的形状;设置所述前驱体本体抵靠所述非平面表面并加热所述前驱体本体从而使其与所述基体熔融。

说明书

硬质表面结构、包括该硬质表面结构的本体及其制备方法
技术领域
本发明一般涉及用于钢质本体的硬质表面结构以及涉及包括硬质表面结构的本体及其制备方法。
背景技术
包括钢的某些组件在使用中可能会经受磨损。公开号WO/2010/029522的国际专利申请公开了一种耐磨部件或工具,其包括:包含铁族金属或合金的本体;通过中间层冶金结合至主体表面的耐磨损层。
德国专利号3618198公开了一种使钢凿工具表面硬化的方法,该方法通过在工具头部和模具之间放置包括碳化物和金属颗粒的粉末,并将颗粒混合物电弧焊接到工具头部。
确有必要提供一种包括钢的耐磨部件及其制造方法,该部件显示出增强的耐磨损性能。
发明内容
从本发明的第一方面来看,本发明提供一种本体,其包括钢质基体和熔融至该钢质基体的硬质表面结构,其中该硬质表面结构包括至少约1%重量比的硅(Si)、至少约5%重量比的铬(Cr)和至少约40%重量比的钨(W),硬质表面结构的剩余部分基本上由铁族金属M和碳C组成,M选自Fe,Co和Ni或其合金;硬质表面结构包括多个微结构、多个平均尺寸小于约200纳米的纳米颗粒,以及粘合剂材料;微结构包括多于约1%重量比的铬和分子式为MxWyCz的相,其中,x的范围为从约1至约7,y的范围为从约1至约10,以及z的范围为从约1至约4;纳米颗粒包括多于约20%重量比的钨、金属M和碳C;以及粘合剂材料包括多于约3%重量比的钨、多于约2%重量比的铬,多于约0.5%重量比的硅、金属M和碳C。
从本发明的第二方面来看,本发明提供一种本体,其包括钢质基体和通过中间层熔融至该钢质基体的硬质表面结构,所述中间层的厚度为最小约1微米且最大为约100微米;中间层已经通过下述工艺形成,该工艺包括熔融邻近硬质表面的钢质基体并与硬质表面结构材料相互混合;中间层包括分子式为MxWyCz的树枝状或片状的微结构,其中,x的范围为从约1至约7,y的范围为从约1至约10,以及z的范围为从约1至约4;微结构包括多于约1%重量比的铬和多于约0.5%重量比的硅。中间层可通过下述方法形成,该方法包括在来自基体的钢和硬质表面结构材料之间进行扩散和反应。
可以设想所公开本体和硬质表面结构的特征的各种设置和组合。例如,微结构可以包括至少约0.1%重量比的硅。例如,微结构可以是延长的、板状的、网状的或树枝状的形式。在某些设置中,例如,微结构可以包括是板状形式的区域,该区域具有两个主要尺寸和一个次要尺寸,并且次要尺寸限定厚度,该厚度可为至少约0.5微米或至少约1微米。在Murakhami试剂中刻蚀从3秒到6秒的时间段后,微结构可以具有黄色或棕色的颜色。例如,纳米颗粒可以包括化合物,该化合物包括Si,W及Fe,以及可以包括至少约0.1%重量比的硅。在特定例子中,所述纳米颗粒包括硅化钨和/或Si2W,和/或多于约0.5%重量比的铬。硬质表面结构的例子可具有至少约800HV10的维氏硬度或至少约900HV10的维氏硬度,和/或至少约20MPa.m1/2的帕尔姆克维斯特(Palmquist)断裂韧性。
从本发明的第三方面来看,本发明提供包括所公开本体的工具,该工具在铺路和岩石分解中使用。工具示例可以包括尖端,该尖端包括多晶金刚石材料。该工具可包括钢质固定器本体,设置在靠近钢质固定器本体的末端的尖端,以及熔融至靠近末端的固定器本体的硬质表面结构。在一个实施例设置中,硬质表面结构可被设置为与通过尖端的纵向轴线大致同心配置,并完全或部分地围绕靠近尖端的固定器本体的一部分。
从本发明的第四方面来看,本发明提供一种制备所公开本体的方法,该方法包括使前驱体材料与钢质基体接触,前驱体材料包括至少约13%体积比的WC晶粒,范围为从约0.1%重量比至约10%重量比的硅,以及范围为从约0.1%重量比至约10%重量比的铬,以及金属M;并且(前驱体材料)具有最高约为1280摄氏度的液相线温度;加热前驱体材料达到至少约1300摄氏度的温度并保持一控制的时间段,从而允许所有的或者至少一足够量的前驱体材料与钢质基体熔融。前驱体材料与钢质基体的熔融可以包括钢和前驱体材料的扩散或相互间混合,以及可以涉及在钢和前驱体材料之间的反应。在一些实例中,前驱体材料可以被包括在前驱体本体,前驱体糊剂或前驱体颗粒中,该前驱体材料可能包含金刚石或CBN颗粒。
示例性方法可包括:形成包括前驱体材料的前驱体本体,前驱体本体被配置为容纳钢质基体的非平面表面;设置前驱体本体抵靠所述表面并加热前驱体本体从而使其熔融至基体。
制备所公开本体的示例方法可以包括下面中的至少一些:
·制备前驱体粉末,例如通过混合或研磨的方法,该粉末包括至少13%体积比的WC晶粒,以元素或化合物形式的Si(例如,以碳化硅形式或含碳的前驱体材料),Si的范围为从0.1%重量比至10%重量比,以及以金属或碳化铬形式的Cr,Cr的范围为从0.1%重量比至10%重量比,以及金属M;(前驱体材料)具有最高约为1280摄氏度的液相线温度;
·处理前驱体粉末从而形成包括前驱体粉末的多个颗粒,颗粒的平均晶粒尺寸为最小约20微米并且最大约500微米;
·在至少约700摄氏度的温度下热处理颗粒达到至少范围为从5至15分钟的时间段(在一实施例中,颗粒可以在最高约1100摄氏度的温度下退火至多5小时的时间段);
·在实施例的一特定变形中,方法可以进一步包括在热处理后研磨颗粒;
·使粉末、糊剂或颗粒形式的前驱体粉末接触钢质基体,并加热(同时在一个变体中)前驱体粉末达到最低约1150摄氏度的温度(例如,在保护气体流中,通过集中热源的方式,例如等离子体喷枪,激光束喷枪或火焰喷枪)
·在一特定变形中,所述方法可以进一步包括加热具有硬质表面结构的钢质本体达到最低约1300摄氏度的温度并保持一控制的时间段从而允许所有的前驱体材料与钢反应和熔融。
·在一特定变形中,该方法可包括热处理涂敷的钢质本体从而得到钢质基体所需要的硬度。
本发明公开的示例性方法可以具有产生紧密地焊接到本体上的非常有效的硬质表面结构的方面,和所公开的本体在使用中具有改进的延迟磨损行为。
附图说明
现在参考附图来描述非限制性的示例设置,其中:
图1示出了用于路面分解的示例挖取工具的示意性透视图,并且图2示出了图1中所示的示例挖取工具的扩展部分的示意性局部横截面图;
图3示出了具有熔融至钢质本体的硬质表面结构的示例挖取工具的示意性局部剖开的侧视图;
图4和图5示出了示例硬质表面结构的微结构的示意图;
图6示出了具有一对前驱体环的示例挖取工具的示意性透视图,所述一对前驱体环用于产生熔融至挖取工具上的硬质表面结构;以及
图7和图8示出了示例挖取工具的侧视照片。
具体实施方式
参照图1,用于挖取工具的示例挖取工具10包括钢质基体12和熔融至该钢质基体12的硬质表面结构20。该挖取工具10可进一步包括尖端14,该尖端14接合至一烧结硬质合金基底16,该烧结硬质合金基底16连接至钢质基体12。硬质表面结构20围绕硬质合金基底16设置从而保护钢质基体12在使用中免于磨损,其可能涉及使用工具10的尖端14击打路面,例如,击碎路面。在这种使用中,路面材料可以磨损钢质基体12并导致挖取工具10的过早失效。尖端14可包括硬质合金和/或金刚石材料,例如多晶金刚石(PCD)材料或结合碳化硅的金刚石材料。图2示出了图1中的区域20E的放大截面图,所述区域20E通过硬质表面结构20以及硬质表面结构20熔融至其上的钢质基体12。
参照图3,用于路面分解装置的示例挖取工具10包括设置有钻孔的钢质固定器本体12(钢质基体12)以及接合至硬质合金基底16的尖端14,该硬质合金基底16与钻孔收缩配合或压入配合。尖端14靠近钢质固定器本体12前端暴露并且硬质表面结构20在一端部熔融至钢质固定器本体12,该硬质表面结构20围绕孔钻设置从而保护钢质固定器本体12在使用中免于磨损。尖端14可包括接合至烧结硬质合金基底16的PCD结构。
参考图4和图5,示例硬质表面结构可包括多个树枝状的微结构34,多个纳米颗粒36和粘合剂材料32。
参考图6,示例硬质表面结构通过一方法制备,该方法包括熔融两个前驱体环40a和40b至用于路面分解的挖取工具的大致呈圆锥形的钢质部分12。在一特定示例中,前驱体环可包括用于如WO/2010/029518和WO/2010/029522中所描述的硬质金属的前驱体材料。挖取工具进一步包括接合至硬质合金基底16的多晶金刚石的尖端14。前驱体环40a和40b具有不同的直径,用于在相邻的纵向位置处环绕钢质固定器12(基体)的锥形部分安装。前驱体环是未烧结的坯体,其包括至少约13%体积比的WC晶粒、范围为从约0.1%重量比至约10%重量比的硅,以及范围为从约0.1%重量比至约10%重量比的铬。前驱体环的液相线温度至多约1280摄氏度。两个前驱体环42a和42b围绕圆锥形钢质部分12紧密地放置并彼此抵靠,以及然后加热到至少约1300摄氏度,使它们熔化并与钢质工具本体的相邻部分12中的钢反应和熔融。进行足够长时间的加热从而允许前驱体环的外围区域与钢反应并熔融从而避免前驱体主体的核心区域与钢的完全反应。
图7示出了用于煤炭切割的挖取工具的示例,其包括设置在钢质固定器本体12的一端的硬质合金挖取尖端14。该钢质固定器本体12涂覆有如下面的示例3中更详细地描述的表面硬化材料层20。图8示出了被用于分解包括煤和沙岩的岩层之后的煤炭切割挖取工具10L和10R的两个示例。挖取工具10L包括如示例3中所描述的硬质表面层20,并且参考挖取工具10R不包括硬质表面层。在测试过程中,从参考挖取工具10R中磨损了大量钢质材料。
下面将更加详细地描述非限制性的示例设置。
实施例1
1千克批次的粉末,包括62.7%重量比的平均直径约2.5微米的WC粉、25%重量比的Fe粉末、10%重量比的Cr3C2粉末以及2.3%重量比的硅粉末,该1千克批次的粉末在磨碎机中在己烷媒介中使用6千克的硬质金属球研磨约1个小时。研磨后,干燥所得的浆料并筛选粉末从而消除团块。将所得的粉末与12%重量比的有机粘合剂混合,并且所得的糊剂进而被应用到钢至基体(碳钢,ST50)的表面。在真空炉的真空中在1350摄氏度的温度下热处理具有糊剂层的基体约1小时从而在钢质基体上形成大约2毫米厚的连续涂层。通过使用用于热处理钢的传统工艺热处理被涂覆的钢基体。涂层的HV10硬度为1050并且其帕尔姆克维斯特(Palmquist)断裂韧性是21.4MPa.m1/2
硬质表面结构的微结构表现出eta‑相(Fe3W3C)的树枝状晶体、纳米片状、纳米棒状或纳米球形式的纳米颗粒以及基于铁的粘合剂。通过EDX测定的树状晶体的组分如下:58%重量比的钨、0.2%重量比的硅、1.4%重量比的铬,余量基本上由Fe和C组成。通过EDX测定的粘合剂的组分如下:4.8%重量比的钨、2.5%重量比的铬、1.0%重量比的硅、余量基本上由Fe和C组成。在Murakhami溶液中刻蚀冶金截面4秒后,树突状晶体为黄色。
通过使用ASTM G65‑04试验测试被涂敷的钢质基体从而测量耐磨性。未被涂敷的钢质基体被用作参照物。由于参照物磨损导致的质量损失为约820毫克并且被涂敷的钢质基体的质量损失为约80毫克。未被涂敷的钢的体积损失是105.2立方毫米,并且被涂敷的钢的体积损失是11.1立方毫米,这表明被涂敷的钢的试样耐磨性高于钢质基体的耐磨性能近10倍。
实施例2
制造硬质表面层的粉末如实施例1所描述的那样制备,与14%重量比的有机粘合剂KD2837/6(Szchimmer&ScharzTM)混合并应用至包括碳钢ST50的钢质基体。在100摄氏度下干燥被涂敷的钢质基体2小时并且胚体(即未烧结的)状态的涂层在Ar气流中以等离子喷枪熔融。由此得到的涂层具有接近2毫米的厚度,类似于示例1的硬质表面涂层的微结构,以及接近1020的HV10维氏硬度。通过使用ASTMG65‑04试验测试被涂敷的钢质基体。涂层的质量损失是10.1立方毫米,这表明了涂层的耐磨性高于钢质基体的耐磨性大于10倍。
实施例3
如实施例1中所描述的制备硬质表面层的粉末,不同的是用Ni粉末替代Fe粉末并加入2%重量比的石蜡。通过在75摄氏度的温度下在滚筒中滚压的方式,所得的粉末被颗粒化从而得到约100微米至200微米的颗粒,并且在真空中在1100摄氏度下热处理2小时。将由此得到的多个颗粒,通过大气激光喷涂的方式使用以4千瓦的功率操作的激光喷枪在Ar气流下,应用至钢质挖取固定器。所得的涂层具有约100%的理论密度,该涂层完全熔化,该涂层具有类似于根据示例1的涂层的微结构,并具有约850的HV10维氏硬度。通过使它们分解包括煤和沙岩的岩石层而测试在图7中示出示例挖取工具以及未被涂覆的参考挖取工具。图8清楚地表明参考挖取工具的钢质主体在测试后严重磨损,然而示例被涂敷的挖取本体的磨损却十分微不足道。
下面简要说明本文所用的某些术语和概念。
一种硬质表面结构包括但并不限于接合到基体上以保护基体不受磨损的层。与基体相比,硬质表面结构表现出明显地更大的耐磨性。
如本文所用,词语“工具”被理解为是指“工具或用于工具的组件”。挖取工具可用于破坏主体,分解主体或在主体中钻孔,如岩石,沥青,煤或混凝土,例如,可用于如采矿,建筑和道路修复的应用中。在某些应用中,例如道路修复,多个挖取工具可以被安装在可转动的滚筒并且当滚筒抵靠主体旋转时,挖取工具被驱动抵靠待被分解的主体。挖取工具可以包括超硬材料的工作尖端,例如,多晶金刚石(PCD),它包括大量的基本上相互生长的金刚石晶粒,从而形成限定金刚石晶粒之间的间隙的骨架质量。
耐磨部件是在使用中经受或预期要经受磨损应力的部件或组件。耐磨部件典型地将经受各种磨损应力,例如,磨蚀、侵蚀、腐蚀和其他形式的化学磨损。耐磨部件包括各种各样的材料中的任一种,这取决于耐磨部件预期承受的磨损的性质和强度以及成本、尺寸和质量的限制。例如,硬质合金具有很高的耐磨损性,但由于它的高密度和成本,其通常用作相对小的部件的主要组分,例如钻头插入件,凿子,刀片等。较大的耐磨部件用于挖掘,钻头主体、储料器以及磨蚀材料的载体并且典型地由硬质钢制备,所述硬钢在某些应用中比硬质合金更为经济。
硬质金属为包括金属碳化物晶粒的材料,所述金属碳化物为例如在金属粘合剂中分散的WC,所述粘合剂特别是包括钴的粘合剂。金属碳化物晶粒的含量是材料的至少约50%重量比。
PCD材料典型地包括至少约80%体积比的金刚石,并且可通过使金刚石晶粒的聚合体经受例如大于约5GPa的超高压力,例如最低约1200摄氏度的温度而制备。

硬质表面结构、包括该硬质表面结构的本体及其制备方法.pdf_第1页
第1页 / 共16页
硬质表面结构、包括该硬质表面结构的本体及其制备方法.pdf_第2页
第2页 / 共16页
硬质表面结构、包括该硬质表面结构的本体及其制备方法.pdf_第3页
第3页 / 共16页
点击查看更多>>
资源描述

《硬质表面结构、包括该硬质表面结构的本体及其制备方法.pdf》由会员分享,可在线阅读,更多相关《硬质表面结构、包括该硬质表面结构的本体及其制备方法.pdf(16页珍藏版)》请在专利查询网上搜索。

1、10申请公布号CN103052738A43申请公布日20130417CN103052738ACN103052738A21申请号201180033892X22申请日201107061011583020100709GBC23C26/00200601C23C26/02200601C23C30/00200601E21C35/183200601E21B10/4620060171申请人第六元素公司地址德国伯格豪恩72发明人伊戈尔尤里空亚什贝恩德亨瑞克里斯弗兰克弗里德里希拉赫曼海因里希亨瑞克谢菲尔74专利代理机构北京路浩知识产权代理有限公司11002代理人经志强王莹54发明名称硬质表面结构、包括该硬质表面结。

2、构的本体及其制备方法57摘要本发明涉及一种包括钢基体以及熔融至钢基体的硬质表面结构的本体,其中该硬质表面结构包括至少1重量比的硅、至少5重量比的铬和至少40重量比的钨,该硬质表面结构的剩余部分基本上由铁族金属M和碳C组成,M选自铁,钴和镍或其合金;硬质表面结构包括多个延长的或片状的且平均长度至少1微米的微结构、多个平均尺寸小于约200纳米的纳米颗粒以及粘合剂材料;微结构包括多于1重量比的铬和分子式为MXWYCZ的相,其中X的范围为从1至7,Y的范围为从1至10,以及Z的范围为从1至4;纳米颗粒包括多于20重量比的钨、金属M和碳C;粘合剂材料包括多于3重量比的钨、多于2重量比的铬,多于05重量比。

3、的硅、金属M和碳C。30优先权数据85PCT申请进入国家阶段日2013010886PCT申请的申请数据PCT/EP2011/0613792011070687PCT申请的公布数据WO2012/004292EN2012011251INTCL权利要求书2页说明书5页附图8页19中华人民共和国国家知识产权局12发明专利申请权利要求书2页说明书5页附图8页1/2页21一种本体,其包括钢质基体和熔融至所述钢质基体的硬质表面结构,其中所述硬质表面结构包括至少1重量比的硅、至少5重量比的铬和至少40重量比的钨,所述硬质表面结构的剩余部分基本上由铁族金属M和碳C组成,M选自FE,CO和NI或其合金;所述硬质表面。

4、结构包括多个延长的或片状的且平均长度至少1微米的微结构、多个平均尺寸小于约200纳米的纳米颗粒以及粘合剂材料;所述微结构包括多于1重量比的铬和分子式为MXWYCZ的相,其中,X的范围为从1至7,Y的范围为从1至10,以及Z的范围为从1至4;所述纳米颗粒包括多于20重量比的钨、金属M和碳C;所述粘合剂材料包括多于3重量比的钨、多于2重量比的铬,多于05重量比的硅、金属M和碳C。2如权利要求1所述的本体,其中所述微结构包括区域,所述区域为片状,具有两个主要尺寸和一个次要尺寸,所述次要尺寸限定厚度,所述厚度为至少05微米。3如权利要求1或2所述的本体,其中所述微结构包括至少约01重量比的硅。4如前述。

5、权利要求中的任何一项所述的本体,其中所述纳米颗粒包括至少01重量比的硅。5如前述权利要求中的任何一项所述的本体,其中所述硬质表面结构包括05至100微米的硅化钨晶粒。6如前述权利要求中的任何一项所述的本体,其中所述纳米颗粒包括至少05重量比的铬。7如前述权利要求中的任何一项所述的本体,其中所述纳米颗粒包括一化合物,该化合物包括SI、W及FE。8如前述权利要求中的任何一项所述的本体,其中所述纳米颗粒包括硅化钨。9如前述权利要求中的任何一项所述的本体,其中所述纳米颗粒包括SI2W。10如前述权利要求中的任何一项所述的本体,其中所述微结构是树枝状形式。11如权利要求10所述的本体,其中在MURAKH。

6、AMI试剂中刻蚀从3秒到6秒的时间段后,所述微结构具有黄色或棕色的颜色。12如前述权利要求中的任何一项所述的本体,其中所述硬质表面结构具有至少约800HV10的维氏硬度。13如前述权利要求中的任何一项所述的本体,其中所述硬质表面结构具有至少约20MPAM1/2的帕尔姆克维斯特PALMQUIST断裂韧性。14如前述权利要求中的任何一项所述的本体,其包括钢质基体和通过一中间层熔融至所述钢质基体的硬质表面结构,所述中间层的厚度为至少1微米且至多100微米;所述中间层通过下面方法形成,所述方法包括熔融邻近硬质表面的钢质基体并与硬质表面结构材料相互混合;所述中间层包括分子式为MXWYCZ的树枝状或片状的。

7、微结构,其中,X的范围为从1至7,Y的范围为从1至10,以及Z的范围为从1至4;微结构包括多于1重量比的铬和多于05重量比的硅。15如前述权利要求中的任何一项所述的本体,其用于路面或岩石分解。16如权利要求15所述的本体,包括一尖端,所述尖端包括多晶金刚石材料。17一种制备如权利要求1至14中的任一项所述的本体的方法,所述方法包括使前驱体材料与钢质基体接触,所述前驱体材料包括WC晶粒、范围为从01重量比至10重量比的硅,以及范围为从01重量比至10重量比的铬,以及金属M;并且(前驱体材料)具有权利要求书CN103052738A2/2页3至高为1280摄氏度的液相线温度;加热前驱体材料达到至少1。

8、300摄氏度的温度并保持一控制的时间段,从而允许所述前驱体材料与钢质基体反应和熔融。18如权利要求17所述的方法,其中所述前驱体材料被包括在糊剂、粉末或颗粒中。19如权利要求17或18所述的方法,通过结合WC晶粒,以元素或化合物形式的、范围为从01重量比至10重量比的硅,以及以金属或碳化铬形式的、范围为从01重量比至10重量比的铬,以及金属M而制备前驱体材料;以及所述前驱体材料具有最高为1280摄氏度的液相线温度;处理所述前驱体材料从而形成包括所述前驱体材料的多个颗粒,所述颗粒的平均晶粒尺寸为最小20微米并且最大约500微米;在至少约700摄氏度的温度下热处理所述颗粒至少约5分钟;使所述颗粒与。

9、钢质基体接触并加热所述颗粒达到至少1150摄氏度的温度。20如权利要求17至19中任一项所述的方法,其中所述前驱体材料包括金刚石或CBN颗粒。21如权利要求17至20中任一项所述的方法,所述方法包括形成包括所述前驱体材料的前驱体本体,所述前驱体本体被配置为容纳所述钢质基体的非平面表面的形状;设置所述前驱体本体抵靠所述非平面表面并加热所述前驱体本体从而使其与所述基体熔融。权利要求书CN103052738A1/5页4硬质表面结构、包括该硬质表面结构的本体及其制备方法技术领域0001本发明一般涉及用于钢质本体的硬质表面结构以及涉及包括硬质表面结构的本体及其制备方法。背景技术0002包括钢的某些组件在。

10、使用中可能会经受磨损。公开号WO/2010/029522的国际专利申请公开了一种耐磨部件或工具,其包括包含铁族金属或合金的本体;通过中间层冶金结合至主体表面的耐磨损层。0003德国专利号3618198公开了一种使钢凿工具表面硬化的方法,该方法通过在工具头部和模具之间放置包括碳化物和金属颗粒的粉末,并将颗粒混合物电弧焊接到工具头部。0004确有必要提供一种包括钢的耐磨部件及其制造方法,该部件显示出增强的耐磨损性能。发明内容0005从本发明的第一方面来看,本发明提供一种本体,其包括钢质基体和熔融至该钢质基体的硬质表面结构,其中该硬质表面结构包括至少约1重量比的硅SI、至少约5重量比的铬CR和至少约。

11、40重量比的钨W,硬质表面结构的剩余部分基本上由铁族金属M和碳C组成,M选自FE,CO和NI或其合金;硬质表面结构包括多个微结构、多个平均尺寸小于约200纳米的纳米颗粒,以及粘合剂材料;微结构包括多于约1重量比的铬和分子式为MXWYCZ的相,其中,X的范围为从约1至约7,Y的范围为从约1至约10,以及Z的范围为从约1至约4;纳米颗粒包括多于约20重量比的钨、金属M和碳C;以及粘合剂材料包括多于约3重量比的钨、多于约2重量比的铬,多于约05重量比的硅、金属M和碳C。0006从本发明的第二方面来看,本发明提供一种本体,其包括钢质基体和通过中间层熔融至该钢质基体的硬质表面结构,所述中间层的厚度为最小。

12、约1微米且最大为约100微米;中间层已经通过下述工艺形成,该工艺包括熔融邻近硬质表面的钢质基体并与硬质表面结构材料相互混合;中间层包括分子式为MXWYCZ的树枝状或片状的微结构,其中,X的范围为从约1至约7,Y的范围为从约1至约10,以及Z的范围为从约1至约4;微结构包括多于约1重量比的铬和多于约05重量比的硅。中间层可通过下述方法形成,该方法包括在来自基体的钢和硬质表面结构材料之间进行扩散和反应。0007可以设想所公开本体和硬质表面结构的特征的各种设置和组合。例如,微结构可以包括至少约01重量比的硅。例如,微结构可以是延长的、板状的、网状的或树枝状的形式。在某些设置中,例如,微结构可以包括是。

13、板状形式的区域,该区域具有两个主要尺寸和一个次要尺寸,并且次要尺寸限定厚度,该厚度可为至少约05微米或至少约1微米。在MURAKHAMI试剂中刻蚀从3秒到6秒的时间段后,微结构可以具有黄色或棕色的颜色。例如,纳米颗粒可以包括化合物,该化合物包括SI,W及FE,以及可以包括至少约01重量说明书CN103052738A2/5页5比的硅。在特定例子中,所述纳米颗粒包括硅化钨和/或SI2W,和/或多于约05重量比的铬。硬质表面结构的例子可具有至少约800HV10的维氏硬度或至少约900HV10的维氏硬度,和/或至少约20MPAM1/2的帕尔姆克维斯特PALMQUIST断裂韧性。0008从本发明的第三方。

14、面来看,本发明提供包括所公开本体的工具,该工具在铺路和岩石分解中使用。工具示例可以包括尖端,该尖端包括多晶金刚石材料。该工具可包括钢质固定器本体,设置在靠近钢质固定器本体的末端的尖端,以及熔融至靠近末端的固定器本体的硬质表面结构。在一个实施例设置中,硬质表面结构可被设置为与通过尖端的纵向轴线大致同心配置,并完全或部分地围绕靠近尖端的固定器本体的一部分。0009从本发明的第四方面来看,本发明提供一种制备所公开本体的方法,该方法包括使前驱体材料与钢质基体接触,前驱体材料包括至少约13体积比的WC晶粒,范围为从约01重量比至约10重量比的硅,以及范围为从约01重量比至约10重量比的铬,以及金属M;并。

15、且(前驱体材料)具有最高约为1280摄氏度的液相线温度;加热前驱体材料达到至少约1300摄氏度的温度并保持一控制的时间段,从而允许所有的或者至少一足够量的前驱体材料与钢质基体熔融。前驱体材料与钢质基体的熔融可以包括钢和前驱体材料的扩散或相互间混合,以及可以涉及在钢和前驱体材料之间的反应。在一些实例中,前驱体材料可以被包括在前驱体本体,前驱体糊剂或前驱体颗粒中,该前驱体材料可能包含金刚石或CBN颗粒。0010示例性方法可包括形成包括前驱体材料的前驱体本体,前驱体本体被配置为容纳钢质基体的非平面表面;设置前驱体本体抵靠所述表面并加热前驱体本体从而使其熔融至基体。0011制备所公开本体的示例方法可以。

16、包括下面中的至少一些0012制备前驱体粉末,例如通过混合或研磨的方法,该粉末包括至少13体积比的WC晶粒,以元素或化合物形式的SI(例如,以碳化硅形式或含碳的前驱体材料),SI的范围为从01重量比至10重量比,以及以金属或碳化铬形式的CR,CR的范围为从01重量比至10重量比,以及金属M;(前驱体材料)具有最高约为1280摄氏度的液相线温度;0013处理前驱体粉末从而形成包括前驱体粉末的多个颗粒,颗粒的平均晶粒尺寸为最小约20微米并且最大约500微米;0014在至少约700摄氏度的温度下热处理颗粒达到至少范围为从5至15分钟的时间段(在一实施例中,颗粒可以在最高约1100摄氏度的温度下退火至多。

17、5小时的时间段);0015在实施例的一特定变形中,方法可以进一步包括在热处理后研磨颗粒;0016使粉末、糊剂或颗粒形式的前驱体粉末接触钢质基体,并加热(同时在一个变体中)前驱体粉末达到最低约1150摄氏度的温度(例如,在保护气体流中,通过集中热源的方式,例如等离子体喷枪,激光束喷枪或火焰喷枪)0017在一特定变形中,所述方法可以进一步包括加热具有硬质表面结构的钢质本体达到最低约1300摄氏度的温度并保持一控制的时间段从而允许所有的前驱体材料与钢反应和熔融。0018在一特定变形中,该方法可包括热处理涂敷的钢质本体从而得到钢质基体所需要的硬度。0019本发明公开的示例性方法可以具有产生紧密地焊接到。

18、本体上的非常有效的硬质说明书CN103052738A3/5页6表面结构的方面,和所公开的本体在使用中具有改进的延迟磨损行为。附图说明0020现在参考附图来描述非限制性的示例设置,其中0021图1示出了用于路面分解的示例挖取工具的示意性透视图,并且图2示出了图1中所示的示例挖取工具的扩展部分的示意性局部横截面图;0022图3示出了具有熔融至钢质本体的硬质表面结构的示例挖取工具的示意性局部剖开的侧视图;0023图4和图5示出了示例硬质表面结构的微结构的示意图;0024图6示出了具有一对前驱体环的示例挖取工具的示意性透视图,所述一对前驱体环用于产生熔融至挖取工具上的硬质表面结构;以及0025图7和图。

19、8示出了示例挖取工具的侧视照片。具体实施方式0026参照图1,用于挖取工具的示例挖取工具10包括钢质基体12和熔融至该钢质基体12的硬质表面结构20。该挖取工具10可进一步包括尖端14,该尖端14接合至一烧结硬质合金基底16,该烧结硬质合金基底16连接至钢质基体12。硬质表面结构20围绕硬质合金基底16设置从而保护钢质基体12在使用中免于磨损,其可能涉及使用工具10的尖端14击打路面,例如,击碎路面。在这种使用中,路面材料可以磨损钢质基体12并导致挖取工具10的过早失效。尖端14可包括硬质合金和/或金刚石材料,例如多晶金刚石PCD材料或结合碳化硅的金刚石材料。图2示出了图1中的区域20E的放大。

20、截面图,所述区域20E通过硬质表面结构20以及硬质表面结构20熔融至其上的钢质基体12。0027参照图3,用于路面分解装置的示例挖取工具10包括设置有钻孔的钢质固定器本体12(钢质基体12)以及接合至硬质合金基底16的尖端14,该硬质合金基底16与钻孔收缩配合或压入配合。尖端14靠近钢质固定器本体12前端暴露并且硬质表面结构20在一端部熔融至钢质固定器本体12,该硬质表面结构20围绕孔钻设置从而保护钢质固定器本体12在使用中免于磨损。尖端14可包括接合至烧结硬质合金基底16的PCD结构。0028参考图4和图5,示例硬质表面结构可包括多个树枝状的微结构34,多个纳米颗粒36和粘合剂材料32。00。

21、29参考图6,示例硬质表面结构通过一方法制备,该方法包括熔融两个前驱体环40A和40B至用于路面分解的挖取工具的大致呈圆锥形的钢质部分12。在一特定示例中,前驱体环可包括用于如WO/2010/029518和WO/2010/029522中所描述的硬质金属的前驱体材料。挖取工具进一步包括接合至硬质合金基底16的多晶金刚石的尖端14。前驱体环40A和40B具有不同的直径,用于在相邻的纵向位置处环绕钢质固定器12(基体)的锥形部分安装。前驱体环是未烧结的坯体,其包括至少约13体积比的WC晶粒、范围为从约01重量比至约10重量比的硅,以及范围为从约01重量比至约10重量比的铬。前驱体环的液相线温度至多约。

22、1280摄氏度。两个前驱体环42A和42B围绕圆锥形钢质部分12紧密地放置并彼此抵靠,以及然后加热到至少约1300摄氏度,使它们熔化并与钢质工具本体的相邻部分12中的钢反应和熔融。进行足够长时间的加热从而允许前驱体环的外围区域与钢说明书CN103052738A4/5页7反应并熔融从而避免前驱体主体的核心区域与钢的完全反应。0030图7示出了用于煤炭切割的挖取工具的示例,其包括设置在钢质固定器本体12的一端的硬质合金挖取尖端14。该钢质固定器本体12涂覆有如下面的示例3中更详细地描述的表面硬化材料层20。图8示出了被用于分解包括煤和沙岩的岩层之后的煤炭切割挖取工具10L和10R的两个示例。挖取工。

23、具10L包括如示例3中所描述的硬质表面层20,并且参考挖取工具10R不包括硬质表面层。在测试过程中,从参考挖取工具10R中磨损了大量钢质材料。0031下面将更加详细地描述非限制性的示例设置。0032实施例100331千克批次的粉末,包括627重量比的平均直径约25微米的WC粉、25重量比的FE粉末、10重量比的CR3C2粉末以及23重量比的硅粉末,该1千克批次的粉末在磨碎机中在己烷媒介中使用6千克的硬质金属球研磨约1个小时。研磨后,干燥所得的浆料并筛选粉末从而消除团块。将所得的粉末与12重量比的有机粘合剂混合,并且所得的糊剂进而被应用到钢至基体(碳钢,ST50)的表面。在真空炉的真空中在135。

24、0摄氏度的温度下热处理具有糊剂层的基体约1小时从而在钢质基体上形成大约2毫米厚的连续涂层。通过使用用于热处理钢的传统工艺热处理被涂覆的钢基体。涂层的HV10硬度为1050并且其帕尔姆克维斯特PALMQUIST断裂韧性是214MPAM1/2。0034硬质表面结构的微结构表现出ETA相FE3W3C的树枝状晶体、纳米片状、纳米棒状或纳米球形式的纳米颗粒以及基于铁的粘合剂。通过EDX测定的树状晶体的组分如下58重量比的钨、02重量比的硅、14重量比的铬,余量基本上由FE和C组成。通过EDX测定的粘合剂的组分如下48重量比的钨、25重量比的铬、10重量比的硅、余量基本上由FE和C组成。在MURAKHAM。

25、I溶液中刻蚀冶金截面4秒后,树突状晶体为黄色。0035通过使用ASTMG6504试验测试被涂敷的钢质基体从而测量耐磨性。未被涂敷的钢质基体被用作参照物。由于参照物磨损导致的质量损失为约820毫克并且被涂敷的钢质基体的质量损失为约80毫克。未被涂敷的钢的体积损失是1052立方毫米,并且被涂敷的钢的体积损失是111立方毫米,这表明被涂敷的钢的试样耐磨性高于钢质基体的耐磨性能近10倍。0036实施例20037制造硬质表面层的粉末如实施例1所描述的那样制备,与14重量比的有机粘合剂KD2837/6(SZCHIMMERSCHARZTM)混合并应用至包括碳钢ST50的钢质基体。在100摄氏度下干燥被涂敷的。

26、钢质基体2小时并且胚体(即未烧结的)状态的涂层在AR气流中以等离子喷枪熔融。由此得到的涂层具有接近2毫米的厚度,类似于示例1的硬质表面涂层的微结构,以及接近1020的HV10维氏硬度。通过使用ASTMG6504试验测试被涂敷的钢质基体。涂层的质量损失是101立方毫米,这表明了涂层的耐磨性高于钢质基体的耐磨性大于10倍。0038实施例30039如实施例1中所描述的制备硬质表面层的粉末,不同的是用NI粉末替代FE粉末并加入2重量比的石蜡。通过在75摄氏度的温度下在滚筒中滚压的方式,所得的粉末被颗粒化从而得到约100微米至200微米的颗粒,并且在真空中在1100摄氏度下热处理2小说明书CN10305。

27、2738A5/5页8时。将由此得到的多个颗粒,通过大气激光喷涂的方式使用以4千瓦的功率操作的激光喷枪在AR气流下,应用至钢质挖取固定器。所得的涂层具有约100的理论密度,该涂层完全熔化,该涂层具有类似于根据示例1的涂层的微结构,并具有约850的HV10维氏硬度。通过使它们分解包括煤和沙岩的岩石层而测试在图7中示出示例挖取工具以及未被涂覆的参考挖取工具。图8清楚地表明参考挖取工具的钢质主体在测试后严重磨损,然而示例被涂敷的挖取本体的磨损却十分微不足道。0040下面简要说明本文所用的某些术语和概念。0041一种硬质表面结构包括但并不限于接合到基体上以保护基体不受磨损的层。与基体相比,硬质表面结构表。

28、现出明显地更大的耐磨性。0042如本文所用,词语“工具”被理解为是指“工具或用于工具的组件”。挖取工具可用于破坏主体,分解主体或在主体中钻孔,如岩石,沥青,煤或混凝土,例如,可用于如采矿,建筑和道路修复的应用中。在某些应用中,例如道路修复,多个挖取工具可以被安装在可转动的滚筒并且当滚筒抵靠主体旋转时,挖取工具被驱动抵靠待被分解的主体。挖取工具可以包括超硬材料的工作尖端,例如,多晶金刚石(PCD),它包括大量的基本上相互生长的金刚石晶粒,从而形成限定金刚石晶粒之间的间隙的骨架质量。0043耐磨部件是在使用中经受或预期要经受磨损应力的部件或组件。耐磨部件典型地将经受各种磨损应力,例如,磨蚀、侵蚀、。

29、腐蚀和其他形式的化学磨损。耐磨部件包括各种各样的材料中的任一种,这取决于耐磨部件预期承受的磨损的性质和强度以及成本、尺寸和质量的限制。例如,硬质合金具有很高的耐磨损性,但由于它的高密度和成本,其通常用作相对小的部件的主要组分,例如钻头插入件,凿子,刀片等。较大的耐磨部件用于挖掘,钻头主体、储料器以及磨蚀材料的载体并且典型地由硬质钢制备,所述硬钢在某些应用中比硬质合金更为经济。0044硬质金属为包括金属碳化物晶粒的材料,所述金属碳化物为例如在金属粘合剂中分散的WC,所述粘合剂特别是包括钴的粘合剂。金属碳化物晶粒的含量是材料的至少约50重量比。0045PCD材料典型地包括至少约80体积比的金刚石,并且可通过使金刚石晶粒的聚合体经受例如大于约5GPA的超高压力,例如最低约1200摄氏度的温度而制备。说明书CN103052738A1/8页9图1说明书附图CN103052738A2/8页10图2说明书附图CN103052738A103/8页11图3说明书附图CN103052738A114/8页12图4说明书附图CN103052738A125/8页13图5说明书附图CN103052738A136/8页14图6说明书附图CN103052738A147/8页15图7说明书附图CN103052738A158/8页16图8说明书附图CN103052738A16。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 化学;冶金 > 对金属材料的镀覆;用金属材料对材料的镀覆;表面化学处理;金属材料的扩散处理;真空蒸发法、溅射法、离子注入法或化学气相沉积法的一般镀覆;金属材料腐蚀或积垢的一般抑制〔2〕


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1