CN200780022866.0
2007.06.15
CN101479021A
2009.07.08
撤回
无权
发明专利申请公布后的视为撤回IPC(主分类):B01D 53/22公开日:20090708|||实质审查的生效|||公开
B01D53/22; B01D71/02; B01D69/14; C01B13/02
B01D53/22
中国科学院大连化学物理研究所; 英国石油有限公司
Y·聪; W·杨; X·朱
中国大连市中山路457号
2006.6.21 CN 200610089352.4; 2006.12.18 CN PCT/CN2006/003438
中国专利代理(香港)有限公司
刘 锴;韦欣华
一种包含电子传导成分和氧化物离子传导性成分的组合物,其特征在于所述的电子传导成分也是氧化物离子导体,所述组合物适用于用于从包含氧气的混合气体,如空气中,分离氧气的选择性氧气渗透膜,分离可选择地在包含第一和第二区的反应器中进行,其中含氧气气体进料输送到第一区中,以及反应物进料到第二区中,其中氧气消耗反应发生在反应器的第二区。
1、 一种用于选择性氧气渗透膜的组合物,包括电子传导成分和氧化物离子传导性成分,其特征在于所述电子传导成分也是氧化物离子导体。2、 一种如权利要求1所述的组合物,其中透过所述电子传导成分的氧气通量大于1 x 10-3ml cm-2min-1。3、 一种如权利要求1或2所述的组合物,其中所述氧化物离子传导性成分是具有萤石型结构的氧化物。4、 一种如权利要求1至3中任一所述的组合物,其中电子传导成分是具有钙钛矿型结构的氧化物。5、 一种如权利要求1至4中任一所述的组合物,其中氧化物传导性成分包含铈和第二镧系元素。6、 一种如权利要求1至5中任一所述的组合物,其中电子传导成分包括镧系元素,碱土金属元素和第一排过渡元素。7、 一种如权利要求6所述的组合物,其中氧化物离子传导性成分和电子传导成分包含共同的镧系元素。8、 一种如权利要求5至7中任一所述的组合物,其中氧化物离子传导性成分包含铈和钆。9、 一种如权利要求8所述的组合物,其中Ce:Gd的摩尔比在2∶1至8∶1的范围内。10、 一种如权利要求9所述的组合物,其中Ce:Gd的摩尔比在1∶3至1∶5的范围内。11、 一种如权利要求1至10中任一所述的组合物,其中电子传导成分包含钆、锶、以及铁。12、 一种如权利要求11所述的组合物,其中Gd:Sr的摩尔比在从1∶2至1∶8范围之内,并且Gd:Fe的摩尔比在从1∶1至1∶10范围之内。13、 一种如权利要求12所述的组合物,其中Gd:Sr的摩尔比在从1∶3至1∶5范围之内。14、 一种如权利要求11至13任一所述的组合物,其中Gd:Fe的摩尔比在从1∶3至1∶7范围之内。15、 一种选择性氧气渗透膜,包括如权利要求1至14中任何一项所述的组合物。16、 一种如权利要求15所述的选择性氧气渗透膜,其中存在材料的涂层,用于提高膜表面的氧气交换。17、 一种如权利要求16所述的选择性氧气渗透膜,其中所述的涂层是具有钙钛矿型结构,包括元素La、Sr和Co的氧化物。18、 如权利要求15到17中任何一项所述的选择性氧气渗透膜的用途,用于从包含氧气的混合气体中分离氧气。19、 如权利要求18中所述的选择性氧气渗透膜的用途,其中包含氧气的混合气体另外包含氮气。20、 如权利要求19中所述的选择性氧气渗透膜的用途,其中混合气体是空气。21、 如权利要求18至20中任一所述的选择性氧气渗透膜的用途,其中分离是在高于700℃且低于1400℃的温度下进行。22、 如权利要求21中所述的选择性氧气渗透膜的用途,其中分离在从850到1100℃的温度范围内进行。23、 一种进行氧气消耗反应的方法,包括将反应物输送到反应器的第二区,所述反应器具有由选择性氧气渗透膜分隔开的第一和第二区,并且输送含氧气气体到反应器的第一区,维持这样的反应器第一和第二区的以及膜的状态,以使氧气选择地从第一区渗透到第二区中,氧气消耗反应消耗至少部分的氧气,其特征在于所述的选择性氧气渗透膜是如权利要求15至17中任何一项所述的膜。24、 如权利要求23所述的方法,其中所述反应物是烃类,以及所述氧气消耗反应是烃类的蒸汽重整和/或部分氧化反应。25、 如权利要求24所述的方法,其中工艺是部分氧化所述烃类。26、 如权利要求24或25所述的方法,其中所述烃类是甲烷。27、 如权利要求23至26中任一项所述的方法,其中含氧气体是空气。28、 如权利要求23至27中任一项所述的方法,其中第二反应区含有对于氧气消耗反应活性的催化剂。29、 如权利要求23至28中任一项所述的方法,其中所述膜保持在高于700℃且低于1400℃的温度下。30、 如权利要求29所述的方法,其中所述膜保持在850至1100℃范围的温度下。
氧气分离膜 本发明涉及分离领域,更具体地是涉及一种可选择性渗透氧气的复合材料。 氧气渗透膜可用于从含氧气体,如空气中分离氧气。典型的选择性氧气渗透膜包含陶瓷材料,其在高于一定温度下可引导氧离子穿过晶格结构,并且能够使氧气渗透通过所述的膜从一边到另一边,从氧分压较高的区域到达氧分压较低的区域。适于氧气分离的陶瓷材料例子包括如US5,639,437中所述的化学式为Sra(Fe1-XCoX)a+bOd的化合物,以及类似的替代物,例如Shao等人在Journal ofMembrane Science,2000,vol 172,pp177—188中所提到的Ba0.5Sr0.5Co0.8Fe0.2O3-δ和SrCo0.8Fe0.2O3-δ。 这些膜材料的问题是它们的持久性较差,特别是在还原环境和高压差情况,这些限制了它们的应用。 已知的复合膜,包含两种或两种以上的材料,其中一种能传导氧离子,另一种则是电子传导体,例如Kharton等人在J.Electrochem Soc.,147,pp2814-21(2000)中所描述掺杂Ce0.8Gd0.2O2-δ的La0.7Sr0.3MnO3-δ。然而复合膜存在的一个问题是,不同材料的颗粒之间必须构成连续的电子和氧传导通道的网络,通常要求含有高含量的电子传导材料,这限制了氧的通量(氧气穿过所述膜的输送率)。另外,由于氧渗透性一般在高温下出现,不同材料之间不同的热膨胀系数也会导致膜结构的恶化。 依据本发明,提供一种用于选择性渗透氧气膜的组合物,其包括一种电子传导成分和一种氧离子传导成分,其特征在于其中所述的电子传导成分也是一种氧离子导体。 氧气分离膜一般的运作是在膜的一表面将氧原子或分子转化为氧化物离子(O2-),并在另一表面释放氧原子或分子。为此,所述的膜不仅需要能传导氧化物离子,而且需要能够传导电子,以调整由于所述膜相应侧面上氧化还原反应引起的电荷不平衡。 现有技术已知的复合膜中,如Kharton等人在J.Electrochem.Soc.,147,pp2814-21(2000)中所提到的包含Ce0.8Gd0.2O2-δ和La0.7Sr0.3MnO3-δ的膜,每种未结合的分离材料都具有非常低的氧气通量。例如,在950℃下,La0.7Sr0.3MnO3-δ的氧气通量为6.7×10-5ml cm-2min-1或更低,而Ce0.8Gd0.2O2-δ的氧气通量在940℃下低于1×10-3。然而,当两种材料结合时,可以获得高氧气通量。 本发明中,通过使用一种具有氧化物离子传导性和电子传导性组分的复合材料来改进通过膜的氧气通量,其中所述的电子传导性成分也是氧化物离子导体。优选地,所述也能传导氧化物离子的电子传导性成分在950℃下,能够达到大于1×10-3ml cm-2min-1,以及最优选大于0.01ml cm-2min-1的氧气通量。 由于确保所述电子传导性成分也是氧化物离子导体,通过所述膜的氧气通量得以提高,而且维持必要的电子传导率也保证了所述膜两侧的电荷平衡。 优选地,所述氧化物离子传导性成分的材料是一种萤石型结构的氧化物,其以CaF2结构为底材,且被例如CeO2和ZrO2的物质所掺杂。所述结构包括面心立方晶格排列的阳离子,和占据四面体间隙的阴离子,并且具有通式MX2,其中M为氧离子,X是阴离子。例如,就CeO2的情况来说,可用其它的稀土元素(R)替换以形成通式为Ce1-xRxO2-(x/2)的化合物。X的数值一般在0.05到0.25之间。 优选地,所述氧化物离子传导性成分包括铈。更优选地,所述氧化物离子传导性成分包括与第二镧系元素结合的铈,其优选的在组成物的电子传导成分中含有两种镧系元素。第二镧系元素优选钕(Nd),钐(Sm)和钆(Gd)中的一种或多种,更优选为钐和/或钆。在优选方案中,具有铈和钆,优选铈与钆的摩尔比在2:1到20:1范围内,更优选在2:1到10:1范围内,更进一步优选在3:1到5:1范围内。最优选地,所述比值为约4:1,例如材料Ce0.8Gd0.2O1.9。 电子传导成分也是一种氧化物离子导体,并且最好为具有钙钛矿型结构的氧化物。钙钛矿材料具有ABO3-δ的通式,其中A和B表示钙钛矿型结构内由不同元素占据的晶格位置,其中占据位置A的元素一般大于占据位置B的元素。氧化学计算法的“δ”以及“3-δ”的值取决于钙钛矿型结构中各种阳离子的电荷,要求所述值使整个结构呈电中性。因此,在化学式为ABO3-δ的材料中,如果A和B阳离子均具有+3价的电荷,δ将等于零。然而,如果阳离子A具有+2价的电荷,阳离子B具有+3价的电荷,δ将等于0.5。 在本发明的一个优选实施例中,电子传导性成分是包括镧系、碱土和第一排过渡金属的氧化物。与另一种镧系元素共存于氧化物离子传导性成分中的镧系,优选选自钕、钐和钆,更优选为钐和/或钆,以及最好为钆。所述碱土金属元素优选为锶(Sr)。所述第一排过渡金属优选为铁。本发明的进一步实施例中,所述电子传导成分包括钆、锶和铁,其中钆与锶的摩尔比一般在1:2到1:8的范围内,优选为1:3到1:5,更优选为约1:4。钆与铁的摩尔比一般在1:1到1:10的范围内,优选在1:3到1:7范围内,最好为约1:5。最优选地,所述电子传导性氧化物中含有钆:锶:铁的摩尔比约为2:8:10,例如在Gd0.2Sr0.8FeO3-δ中,其中δ为满足所述化学式电荷平衡要求的数值。 组合物中两不同成分中的相一般避免相同,因为这样会导致不同成分中相应元素由于迁移而混合在一起。这会导致其中一个或两个所述成分的氧化物离子和/或电子传导性能的减少甚至损失。因此,在本发明的优选方案中,两个不同成分的相是彼此不同的。更优选地,所述氧化物离子传导性成分的相是钙钛矿,而所述电子传导性成分是萤石。 电子传导成分和氧化物离子传导性成分均包含一种共同的镧系元素是有利的,因为两成分中镧系元素的迁移发生时,可能会引起相对少的成分晶体结构的改变,这从而使得当膜用于高温使用环境下,如作为用于氧气分离的选择性氧气渗透膜时,产生较少老化并提高膜寿命。 选择所述电子传导成分相对于所述氧化物离子传导性成分的重量比以得到最优的氧化物离子传导率,以及高的氧气选择性。一般来说,电子传导成分与氧化物离子传导性成分的重量比在1:4到4:1范围内,优选在1:3到1:1范围内,最优选为约2:3。 本发明的组合物也可被用来形成用于从包含氧气的混合物中,例如空气中分离氧气的选择性的氧气渗透膜。 在一个实施例中,所述膜还包含一个多孔层的材料,以提高膜表面的氧气交换速率。该材料的一个例子是具有钙钛矿型结构的包含La,Sr和Co的氧化物,优选为La0.6Sr0.4CoO3-δ。 通过将空气输送进入到具有两个区的分离容器的第一区,可以使氧气与空气分离开,其中两个区由选择性的氧气渗透膜分隔开。维持所述容器每个区和所述膜的环境,这样氧气从第一区,穿过所述膜输送进入到第二区中。穿过所述膜的渗透依赖于所述膜两侧的氧气分压。因此,为了从空气进料到的容器第一区传输,在膜的另一侧的第二区一定具有较低的氧气分压。为此,在氧气渗透发生前,第二区可以是不含氧气,或者必须具有较低的氧气分压。由于渗透作用,分离容器第一区中的空气中的氧气分压是降低的。 膜使用时被维持在允许氧气的选择性渗透的条件下。通常,这需要超过700℃的温度,优选为850℃或更高的温度,以保证所述膜表面的氧气具有足够的活化速率。所述膜的温度一般保持在低于1400℃下,优选低于1100℃或更低,以防止膜结构老化,其对氧气通量造成负面影响。所述浸透容器的第二区(膜的透过侧)的氧分压小于所述膜第一区的分压,以达到从第一区到第二区氧气的净转移。 使用选择性的氧气渗透膜来供给纯化氧气,相比于常规的低温技术,耗能更少,并因此在小规模上更具有操作上的可行性。这就为需要纯化氧气的工艺中,提供小规模的、局部设置氧气生成装置的可能性,而不是相反的或者通过设置氧气进口从大规模的远距离的装置中输送来氧气,或者需要在工艺的临近点设置大规模氧气生产装置。 本发明另一个实施例中,所述选择性的氧气渗透膜是包含两个区的反应器的一部分,其中两个区由所述膜分离开来。所述反应器可被用于进行氧气消耗的反应,包括还原气氛下的反应,例如含有合成气的反应,如烃类蒸汽重整和/或部分氧化以生产一种或多种碳的氧化物。在该实施例中,一种或多种反应物输送入反应器的第二区,可另外包含催化剂。含氧气体,如空气,供应给所述反应器的第一区。使用中,反应器第一区的氧气穿过膜进入到第二区中,在该区中发生反应。 本发明的一个优选方案中,分离容器的第二区是用于通过烃类的蒸汽重整和/或部分氧化来生产合成气的反应区。该实施例中,空气中的氧气从分离容器的第一区渗透通过膜并进入到第二区中,作为该处发生的部分氧化和/或蒸汽反应的反应物。该实施例的优点是,由于氧气能遍及合成气生产反应区分布,这样可以降低在反应区的不充分混合区域产生高氧浓度的潜在爆炸性混合物的几率。另外,原位分离空气也可以降低甚至消除对专用且昂贵的的空气分离装置的需要。 合成气(一氧化碳和氢气的混合物)优选由天然气产生,其中天然气主要含有甲烷。反应温度一般与膜的温度相近或相同,优选在850℃到1100℃范围内。所述整个反应区内的压力一般保持在从1到200bara(0.1到20Mpa)。为了氧气可以通过膜渗透到反应区中,反应器第二区的氧分压必须小于反应器第一区的氧分压。 可选择的,反应区也可以包含氢气分离膜,产生的氢气可以从所述反应区分离开并被使用,例如生产动力。 依照本发明的组合物可通过混合两种分离的粉末状组分并压缩在一起来制备。一般地,混合后的粉末随后在高温下煅烧,通常在含氧气氛下温度最高达1400℃中进行,例如从700℃到1400℃。 所述分离的组分可通过各种技术处理,例如用混合的多种组成元素的氧化物高温合成,或者从包括组成元素的可溶性化合物的溶液中沉淀出氧化物。在后一种情况下,产生的沉淀物可能是非晶形的,一般在高温下煅烧形成期望的晶相。 本发明现以以下非限制性实施例,并参照其中的附图来说明; 图1显示由本发明组合物制成的膜的X射线衍射(XRD)图,以及组成成分的XRD图; 图2以图示法举例说明用于氧气渗透实验的装置; 图3是依照本发明的组合物制造的选择性氧气渗透膜在950℃下,氧气通量相对于时间的示意图; 图4是依照本发明的组合物制造的选择性氧气渗透膜在1000℃下,氧气通量相对于时间的示意图; 图5是依照本发明的组合物制造的选择性氧气渗透膜,在不同的氧分压微分下,氧气通量相对于温度倒数的图示; 图6是穿过依照本发明的组合物制造的选择性氧气渗透膜,在不同的膜厚下,氧气通量相对于温度倒数的图示; 图7是依照本发明的组合物制造的选择性氧气渗透膜,氧气通量相对于分压微分的对数的图示; 图8以图示法举例说明使用具有选择性氧气渗透膜的反应器的工艺,其中在反应器的一个区中氧气从空气分离并输送给反应器的第二区,作为甲烷催化部分氧化反应的反应物;以及 图9是在使用具有依照本发明组合物制造的选择性氧气渗透膜的反应器的甲烷部分氧化反应中,催化性能和氧气浸透性能的图示; (GSF)制备。具有相应化学当量的金属的硝酸盐溶于水中。分别添加一定数量的乙二胺四乙酸(EDTA)和柠檬酸以使EDTA和柠檬酸分别相对于整个金属离子量的摩尔比率为1。溶液的pH值然后通过添加氨水溶液调节到6至8之间。使用加热板在约80℃下蒸发除水。凝胶形成,然后火焰燃烧除去残留的有机材料。产生的粉末随后在空气氛围中900℃下煅烧5小时以产生相应的氧化物产物。 使用以下方法制备膜。 实施例1 GDC和GSF组分的各自粉末以GDC为60wt%,GSF为40wt%混合在一起。然后在200MPa压力下压缩成圆盘形式,1400℃下加热3至5小时形成最后的组合物(GDC60/GSF40),其还可以在随后的实验中用作选择性氧气渗透膜。抛光GDC60/GSF40圆盘到0.5mm厚度,并涂敷多孔La0.6Sr0.4CoO3-δ(LSC)涂层以提高膜表面的氧气交换能力。可以通过含有60wt%松香醇饱和的甲基纤维素和40wt%LSC糊剂制备,在膜上涂敷所述浆糊的涂层并在900℃下在空气中煅烧涂敷后的膜一个小时。 对比例2 通过在200MPa下压缩GSF或GDC盘,并在1250℃下加热3小时制备仅含有GSF的膜和仅含有GDC的膜。圆盘然后抛光并以实施例1中膜的相同的方法涂敷LSC。 实验1 如图1所示的X射线衍射(XRD)图,是由通过测量纯GDC 1和GSF 2化合物,以及GDC60/GSF40的膜3得到的。XRD图在LSC涂层涂敷之前收集的。使用Rigaku D/Max-RB衍射计,收集CuKα辐射数据。以0.02°为一级在20-80°的2θ范围采集数据。 数据显示,所述膜组合物,在混合并在1400℃处理后,包含两个组分相;没有新的相出现。数据也表明GSF为钙钛矿型结构,GDC为萤石型结构。 实验2 LSC涂敷的GDC或GSF圆盘设置到竖向的高温气体渗透单元中。在膜一侧(对应于容器的第一区),体积含量为80%的氮气和20%的氧气的干燥混合物流体,以100mL/min(调节到标准温度和压力(STP),即0℃和1atm压力)速率引入。氦(或甲烷)清扫气输送到膜的另一侧(对应于容器的第二区)协助除去透入的氧气。图2图示概述了氧气分离过程。分离容器10包括两个区,通过入口12,空气进入到第一区11中,以及通过进口14氦残气输送到第二区13中。由银环16密封的膜15隔开所述的第一区11和第二区13。通过膜从第一区渗透到第二区中的氧气被氦清扫气从出口17清扫出分离容器。没有渗透膜的贫氧空气通过出口18从第一区中移除。 氧气渗透实验中,通过加热器19使膜保持在940℃的温度。使用设置在温度计套管21内的热电偶20测量膜的温度,其延伸至刚好高于膜15的位置。第一区保持21kPa的氧分压。 对于GDC膜,最初的氧气通量低于检测极限,即小于0.001mL cm-2min-1。 对于GSF膜,调节膜渗透侧上的氦流量以达到5kPa的氧分压。穿过膜的最初的氧气通量是0.26mL cm-2min-1。 这些实验表明GDC膜,欠缺电子传导性,不能有效的作为选择性氧气渗透膜运行。然而GSF膜同时具有电子传导性和氧化物传导性,可以提供氧气的选择性渗透。 实验3 LSC涂敷的GDC60/GSF40使用如实验2中相同的方法进行测试,不同的是膜(气体)的温度为950℃,以及实验持续1100小时。采用mL cm-2min-1为单位的氧气通量(JO2)相对于时间的图示显示在图3中。 结果表明氧气通量经过第一个600小时操作时间逐步增加,从最初的通量0.46mL cm-2min-1增加到0.63mL cm-2min-1。 实验4 如实验3中相同的方法用于GDC60/GSF40膜,不同的是膜(气体)的温度为1000℃,以及实验操作时间是350小时。氧气通量相对于时间的图示显示在图4中。 结果表明此时的氧气通量高于在950℃下的,通量也随时间而增加。膜在第一个300小时内表现出的通量从最初的0.61mL cm-2min-1增加到0.71mLcm-2min-1。 实验5 研究了在800℃至1010℃之间温度下透过GDC60/GSF40膜的氧气通量。膜一侧的氧-氮混合气流量为100mL/min(STP),其中氧分压为21kPa,调节膜的另一(渗透)侧的氦气流量以使氧分压为0.5kPa。 实验6 方法与实验5相同,除了调节膜的另一(渗透)侧的氦气流量使氧分压为1.0KPa。 实验7 方法与实验5和6相同,除了调节膜的另一(渗透)侧的氦气流量使氧分压为2.0KPa。 实验5到7中不同氧分压微分下氧气通量相对于温度的倒数的结果显示在图5中。该结果表明氧通量随温度增加,并且随不同的氧分压微分增加。 实验8 接下来如例6相同的方法,除了在825℃至940℃温度下使用1.0mm的GDC60/GSF40膜。膜的渗透侧的氧分压维持为1.0kPa值。 实验5和8不同厚度膜的氧气通量对应于温度的倒数的结果显示在图6中。该结果显示较薄膜的氧气通量更高。 表1显示实验5到8测算的氧气渗透活化能。 图1:氧气渗透活化能力 实验膜厚(mm)JO2(kPa)I活化能 (kJ/mol)50.50.5105.360.51.0103.470.51.5104.681.01.094.5I膜渗透侧的氧气分压。 0.5mm膜具有测算的更高活化能,表示其相对于1.0mm膜,膜表面的氧气交换对氧气通量的作用更重要,其中大部分膜对氧气通量有更大的影响。这可以由图6中的虚线部分证明,其表示实验8的1.0mm膜预测的氧气通量相对于0.5mm膜的修正或标准化的结果。预测的通量在事实上比观察到的更高(相对于实验5的结果),并且在较低温度下的差别增大,显示对于较薄的膜表面交换对于体积扩散重要性增大。 图7显示0.5mm膜在两个不同温度,850℃和950℃下,氧气通量相对于分压微分的对数的结果。其中,分压微分可以表示为氧气/氮气混合气中的氧分压(PO2′)和膜的渗透侧的氧气/氦气混合气的氧分压(PO2″)的比值。 该结果显示在950℃下的倾斜度是不变的,表示体积扩散是限制了氧气通量的主要因素。反之,在850℃下,倾斜度是非线性的,在较低氧分压微分时较大,表示在较低温度下表面交换变得重要。 实验9 研究了通过利用0.5mm GDC60/GSF40膜来直接从空气纯化氧气,提供给甲烷部分氧化的反应来生成一氧化碳和氢气。膜装置于膜反应器中,膜将反应器分隔为两个区。在其中一个区(第二区)设置有LiLaNiO/γ-氧化铝部分氧化催化剂,该催化剂由浸渍法制备,其中将γ-氧化铝浸渍于包含硝酸锂、硝酸镍(II)和硝酸镧(III),且Ni:Li:La的摩尔比为1:1.6:2.6的溶液中24小时。制备的催化剂中负载的镍按重量计在5至10%之间。所述催化剂在被装入反应器之前未被预还原。工艺过程的示意性概述在图8中说明,其显示了反应器100,具有由选择性氧气渗透膜103分隔开的第一区101和第二区102,使用金环104密封。空气通过进口105提供给第一区101。氧气穿过膜103进入反应器的第二区102。烃类,例如甲烷106,进料到反应器的第二区。第二区也装有部分氧化催化剂107。在催化剂107存在的情况下,甲烷与透过的氧气化合,发生反应。反应器第一区101中的降低氧气含量的氧气/氮混合物通过出口108排出,同时包括未反应的甲烷和氧气,与反应产物以及副产品通过出口109从反应器的第二区移除。 最初,流量为5mL/min纯甲烷(STP)由流量为20mL/min氦气(STP)稀释,引入到反应器的第二区(装有催化剂区)。空气以150mL/min(STP)的流量引入到第一反应器区。利用加热器110使膜保持950℃温度,温度由热电偶111测量,以及膜两侧的总压力保持为1atm。 结果用图表表示在图9中,其显示了甲烷转化、200(■),CO的选择率201(o),H2:CO摩尔比率、202(◆),以及氧气通量、203(Δ)。在反应30分钟后,观察到甲烷转化了30%,CO选择率为100%以及氧气渗透通量为0.85mLcm-2min-1。在连续工作约230小时后,转化率增加到60%,氧气通量为2.4mLcm-1min-1。结果与图9中图表的区域204对应。然后切断流向第二(装有催化剂)反应器区的氦气,导致甲烷转化率增加到99%,并且氧气通量增加到3.3mLcm-2min-1。这些结果与图9中图表的区域205对应。在连续工作约380小时后,CH4流速增加到10mL/min(STP)。导致氧气通量增加到5.2mLcm-2min-1,而转化率维持在99%。这些结果与图9中图表的区域206对应。整个实验的CO选择率一直是100%,并且H2:CO摩尔比一直是2:1,仅仅随反应发生微小的改变。 该结果表明,利用具有依照本发明的组合物制备的膜的氧气膜反应器,在经过几个小时操作后,可以产生高的甲烷转化率和高的一氧化碳选择率,即使膜的一侧在高温高压下接触含氢还原气氛下也是如此。
《氧气分离膜.pdf》由会员分享,可在线阅读,更多相关《氧气分离膜.pdf(20页珍藏版)》请在专利查询网上搜索。
一种包含电子传导成分和氧化物离子传导性成分的组合物,其特征在于所述的电子传导成分也是氧化物离子导体,所述组合物适用于用于从包含氧气的混合气体,如空气中,分离氧气的选择性氧气渗透膜,分离可选择地在包含第一和第二区的反应器中进行,其中含氧气气体进料输送到第一区中,以及反应物进料到第二区中,其中氧气消耗反应发生在反应器的第二区。 。
copyright@ 2017-2020 zhuanlichaxun.net网站版权所有经营许可证编号:粤ICP备2021068784号-1