利用人工神经网络技术预测转炉终点的方法.pdf

上传人:e1 文档编号:546445 上传时间:2018-02-21 格式:PDF 页数:10 大小:367.30KB
返回 下载 相关 举报
摘要
申请专利号:

CN200410056892.3

申请日:

2004.08.30

公开号:

CN1588346A

公开日:

2005.03.02

当前法律状态:

撤回

有效性:

无权

法律详情:

发明专利申请公布后的视为撤回|||实质审查的生效|||公开

IPC分类号:

G06F17/00; C21C5/28

主分类号:

G06F17/00; C21C5/28

申请人:

邢台钢铁有限责任公司;

发明人:

张玉军; 冯聚和; 赵艳军; 朱新华; 贾育华; 钟保军; 薛正学

地址:

054027河北省邢台市钢铁路262号邢台钢铁有限责任公司

优先权:

专利代理机构:

代理人:

PDF下载: PDF下载
内容摘要

本发明公开了一种利用人工神经网络技术预测中小型转炉终点的方法,对于转炉炼钢系统来说,影响终点碳含量和温度的因素很多,且各因素之间存在着非线性关系,如炉龄、枪位、喷溅情况等对终点碳、温的影响很难用准确的数学方程进行描述,本发明将神经网络技术应用于本控制系统,可对系统的非线性、不确定性和复杂性进行有效的监测和预报,能准确预测转炉的终点温度和终点碳含量。

权利要求书

1、  一种利用人工神经网络技术预测转炉终点的方法,其特征在于:选用三层BP网络为原形,建立两个三层BP网络分别对终点温度和终点碳含量进行预报,两个网络的原理和算法相同;1)首先进行神经网络的学习和记忆:选出近期已生产的若干炉次生产数据为样本,将每炉次的若干个具体生产参数包括终点温度和终点碳含量输入三层BP网络,三层BP网络根据数学模式进行计算,计算出终点温度和终点碳含量,同时,将计算出的终点温度和终点碳含量与实际的终点温度和终点碳含量进行对比,直至计算值与实际值相差足够小或为零,确定出三层网络中间层权值(wij)和阈值(θj);2)在生产中预测时,输入本炉次的生产参数,再结合确定的中间层权值(wij)和阈值(θj),三层BP网络就会计算预测出本炉次的终点温度和终点碳含量。

说明书

利用人工神经网络技术预测转炉终点的方法
技术领域
本发明涉及一种预测中小型转炉终点的方法。
背景技术
从上世纪60年代人们就开始研究试图用计算机控制转炉终点,开发成功了转炉冶炼的静态模型和动态模型。因为静态模型只考虑了冶炼的始末态条件,按照事先计算好的轨道吹炼,对于复杂的吹炼过程因素不能考虑,中间不做修正,因此,终点命中率较低。而动态模型需要一套较复杂的炉内信息检测系统,多数是使用测温定碳副枪,不断把炉内的信息反馈给计算机,修正吹炼轨道直至吹炼终点,因此命中率较高。但是为了获得准确的熔池信息,副枪与氧枪保持一定间隔距离,若炉口直径太小,则副枪插不进炉内,因此动态控制一般适用于大型转炉,中小型转炉难以采用,并且副枪系统较复杂,成本较高,实际使用效果不甚理想。鉴于以上原因,国内中小型转炉终点的自动控制一直难以实现,基本依靠传统看火焰凭经验判断冶炼终点的方法。这种凭经验判断终点的方法,受人的因素影响较多,不能准确、客观地反映转炉冶炼终点的实际状况。
人工神经网络(Artificial Neural Networks)是指在信息和计算机科学等领域内向生物学习过程而构造的神经网络,目前,已被利用到多个领域。它是模拟人脑的功能,由大量简单的神经元广泛互联而成为一种复杂网络系统,是对人脑复杂功能的简化、抽象和模拟,其基本特征如下:
1)表现出像大脑皮层那样有一个广泛连接的巨型复杂系统;
2)计算过程建立在大规模并行结构和并行处理的基础之上;
3)具有较强的容错性和联想能力,善于类比、推理、概括和综合;
4)对信息处理与储存的合二为一性;
5)具有较强的自组织性和自适应性。
发明内容
本发明的目的在于提供一种利用人工神经网络预测中小型转炉终点的方法。
为达到上述目的,本发明所采用的技术方案为:选用三层BP网络为原形,建立两个三层BP网络分别对终点温度和终点碳含量进行预报,两个网络的原理和算法相同。首先进行神经网络的学习和记忆:选出近期已生产的若干炉次生产数据为样本,将每炉次的多个具体生产参数包括终点温度和终点碳含量输入三层BP网络,三层BP网络根据数学模式进行计算,计算出终点温度和终点碳含量,同时,将计算出的终点温度和终点碳含量与实际的终点温度和终点碳含量进行对比,直至计算值与实际值相差足够小或为零,确定三层网络中间层权值(wij)和阈值(θj);在生产中预测时,输入本炉次的生产参数,再结合确定的中间层权值(wij)和阈值(θj),三层BP网络就会计算出本炉次的终点温度和终点碳含量,也就预测出本炉次的终点。
BP网络是对非线性可微函数进行权值训练的多层前向网络,是人工神经网络中前向网络的核心内容,体现了人工神经网络的最精华部分。对于转炉炼钢系统来说,影响终点碳含量和温度的因素很多,且各因素之间存在着非线性关系,如炉龄、枪位、喷溅情况等对终点碳、温的影响很难用准确的数学方程进行描述,因此将神经网络较适宜应用于本控制系统,可对系统的非线性、不确定性和复杂性进行有效的监测和预报。因开始时须对神经网络进行学习、记忆训练,使神经网络具备准确的预测能力,所以应选用足够多炉次的生产数据为样本,一般选用最近的100-150炉次,每炉次的生产参数也应足够多,一般选用29个生产参数,这些生产参数基本上是目前转炉生产中的所有参数如:空炉时间、各种炉料的加入量、入炉铁水、铁块及上炉钢水成分、温度、本炉次终点温度和终点碳含量等。神经网络具备了准确的预测能力后就可以指导转炉生产:生产中,每炉次都有设计的终点温度和终点碳含量,也就是需达到的终点温度和终点碳含量,如果神经网络对该炉次生产参数进行计算预测出的终点温度和终点碳含量,与该炉次的设计值不符,就会发出提示,如终点温度会高于设计值,就应在转炉中增加冷却极数量,反之就减少;如终点碳含量会高于设计值,就应增加吹氧时间,反之就减少。另外,计算机采用的算法自动将预测结果与真实结果进行比较,如果符合精度要求则计算机自动记录这组样本值,这样,计算机会自动保存那些精度高的炉次的数据,存入网络学习样本库,自动生成学习样本,保证学习样本的实时性。当冶炼进行到一定程度(如冶炼了几百炉后)或预测精度不够高时可再对网络进行训练。神经网络模型不断学习,不断适应新环境,保证了模型的预报精度。
附图说明
图1为三层BP网络示意图
图2为网络学习过程流程图
图3为网络预测过程流程图
具体实施方式
图1为程序设计的三层BP网络示意图,以它为例结合图2先来描述其学习过程:
令LA层节点ai到LB层节点bj间的连接权为Wij,LB层节点bj到LC层节点ct间的连接权为Vjt,θj为LB层节点的阈值,γt为LC层节点的阈值
(1)给Wij,θj,Vjt,γt随机赋一个较小的值。
(2)对每一模式对(A(K),C(K))(k=1,…,u),进行下列操作。
①将A(K)的值ai(K))输入LA层节点,据LA层节点激活值ai,一次正向计算:
b j = f ( Σ i = 1 m W ij · a i + θ j ) , ( j = 1 , . . . , p ) ]]>
c t = f ( Σ j = 1 p V jt · b j + γ t ) , ( t = 1 , . . . , q ) ]]>
②计算LC层节点输出ct与期望输出值yt(K)的误差,令
d t = c t · ( 1 - c t ) · ( y t ( k ) - c t ) ]]>
③向LB层节点反向分配误差,令
e j = b j · ( 1 - b j ) · ( Σ t = 1 q V jt · d t ) ]]>
④调整LB层与LC层节点间连接权Vjt及LC层节点阈值γt:Vjt=Vjt+η·bj·dt
        γt=γt+η·dt    (0<η<1)
⑤调整LA层与LB层节点间连接权Wir及LB层节点阈值θj
        Wij=Wij+η·ai·ej
        θj=θj+η·ej
(3)重复步骤(2),直至对于j=1,…,n,k=1,…,u,误差dt变得足够小或变为零。
再结合图1、图3说明网络的预报过程:
首先确定输入层地参数,根据生产的实际情况,每个网络的输入层设置29个参数作为输入变量,如空炉时间、各种炉料的加入量、入炉铁水、铁块及上炉钢水成分、温度、本炉终点成分、温度等。
在程序开始的输入端口,操作者输入所设置的这29个参数后,网络的中间层神经元开始根据输入值对中间层的输入、输出值进行计算,其运算过程描述如下:
以ai(i=1,2,…29)表示输入层的参数值,以sj(j=1,2,…30)表示中间层的输入值,以bk(k=1,2,…30)表示中间层各个神经元的输出值,根据神经网络的算法公式,用训练好的中间层权值(wij)和阈值(θj)带入已知的输入层参数值即可算出sj和bk,算法如下:
s j = Σ i = 1 n w ij · a i - θ j , j = 1,2 , . . . , 30 ]]>
bk=f(sj)    k=1,2,…p
网络中间层的输出值变为网络输出层的输入值,网络输出层的输出值,即为预测的终点温度和终点碳含量。网络输出层的神经元根据中间层传递来的数据对输出层的输入、输出值进行计算,其运算过程与中间层相同,即
以cp(p=1,2,…30)表示输出层的输入值,以yw和yc分别表示预报终点温度值和预报终点碳含量值,对于温度预报网络,则
yw=f(cp)    p=1,2,…30
对于碳含量预报网络,则
yc=f(cp)    p=1,2,…30
另外,在程序中可加入神经网络预报模型与散状料加料系统软件连接的代码,来实现由预报模型控制散状料自动加料过程。将神经网络预报模型与铁水及废钢称量系统软件、散状料加料系统软件相连接,按照神经网络预报模型所确定的各种原材料的加入量,并将加入量数据以excel表格形式存储起来,由加料系统软件自动从预报模型中读取数据,由计算机自动控制加料过程。

利用人工神经网络技术预测转炉终点的方法.pdf_第1页
第1页 / 共10页
利用人工神经网络技术预测转炉终点的方法.pdf_第2页
第2页 / 共10页
利用人工神经网络技术预测转炉终点的方法.pdf_第3页
第3页 / 共10页
点击查看更多>>
资源描述

《利用人工神经网络技术预测转炉终点的方法.pdf》由会员分享,可在线阅读,更多相关《利用人工神经网络技术预测转炉终点的方法.pdf(10页珍藏版)》请在专利查询网上搜索。

本发明公开了一种利用人工神经网络技术预测中小型转炉终点的方法,对于转炉炼钢系统来说,影响终点碳含量和温度的因素很多,且各因素之间存在着非线性关系,如炉龄、枪位、喷溅情况等对终点碳、温的影响很难用准确的数学方程进行描述,本发明将神经网络技术应用于本控制系统,可对系统的非线性、不确定性和复杂性进行有效的监测和预报,能准确预测转炉的终点温度和终点碳含量。 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 物理 > 计算;推算;计数


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1