本发明涉及改进的气体和蒸汽渗透膜,尤其是改进的复合膜及其制备方法。 本技术领域已知可选择性地将气体或蒸汽混合物中的一种组分与另一组分分开的非对称膜和复合膜。就实际的工业操作而言,这些膜必须是耐久的并且基本上是没有缺陷的,而且必须能够对所要求组分达到可接受的选择性水平,还需使被处理气体或蒸汽混合物中渗透得更快的组分达到高渗透率。
目前已用表面完整的非对称膜进行许多气体分离过程。尽管本技术领域已知基本上无缺陷的超高流通量非对称膜制造方法,如已见于US 4902422(Pinnau et al.)和US 4772392(Sanders et al.),但同时已知这些膜太难于制造。因此,本技术领域里的常见作法是将非对称气体分离膜进行处理以有效地消除可能存在于超薄膜分离层中的缺陷。US 4230463(Henis et al.)谈到了在非对称气体分离膜中存在缺陷的问题并且提出制造多组分膜,其中在玻璃态聚合物制成的非对称膜表面上涂层,一般为硅氧烷橡胶涂层。其它弥补缺陷的方法已见于US 4877528(Frisen et al.),US 4746333(Peinemann et al.)和US 4776436(Smith et al.)。
另一类气体或蒸汽分离膜是在多孔载体上沉积气体分离薄层而得到的复合膜。与上述Henis et al.专利的涂层不一样的是,沉积层的材料决定了整个膜结构的气体分离性质。这类复合膜有时比非对称膜优越,因为这些膜可使分离要求和多孔基体地工程设计要求分开考虑。本专业已知制造这类复合膜的各种分离层材料,载体结构和膜制造方法。气体分离复合膜的典型例子已见于US4243701(Riley et al.),US 3980456(Browall)和US 4881954(Bikson et al.)。在这类复合膜中,分离层可包括单一膜材料或几种材料的混合物。
为了使其应用于实际工业操作,复合膜必须具有上述特性,即耐久性,无缺陷以及选择性和渗透性综合平衡。但是,沉积在多孔载体,即基体表面上的气体分离层常常并不能完全满足这些要求。例如,对气体分离过程中可能在膜表面上冷凝的气体/蒸汽混合物的溶剂作用的抗性不够。而且,分离层中还可能存在残留微孔,针眼或其它缺陷,即不利于获得复合膜的要求分离特性的缺陷。这些缺陷可能因为各种原因而存在如在膜材料中存在微粒杂质或因加工和处理过程中对薄分离层的损伤。因此,在用于气体分离的无缺陷复合膜制造过程中,尤其是在用具有极高内聚能密度的气体分离材料如含离子基团的聚合材料进行制造时常常遇到各种困难。实际情况是,一直都在努力改进复合膜的结构和操作性能。
上列Browall专利公开了弥补复合膜中的缺陷的方法,其中在复合膜表面上放一层聚合物材料覆盖层以覆盖分离层中埋入的微粒并封闭针眼。US 4767422(Bikson et al.)公开了复合膜中的缺陷修补方法,其中用挥发性溶剂加或不加少量添加剂进行后处理,之后再将该溶剂蒸发。
本专业还已知多层复合气体分离膜,该膜由多孔基体结构和设在该结构上的高渗透性材料中间薄层以及叠在该中间层上的高选择性,即高分离系数材料薄层。所说中间层作为所谓的引导层,用以促进膜的渗透性。该层还可进一步覆盖外部气体分离层中存在的某些缺陷。现有的这种多层复合膜结构复杂并且在其制造过程中要求许多加工步骤,其中每一膜层在单独的浇注或涂层步骤中顺序形成。
US4603922(Cabasso et al.)公开了引导层类型的改进复合膜制造方法。该专利提出将带氨基有机官能团的聚硅氧烷沉积在大孔隙率聚合物基体上如沉积在聚砜基体上,并且氨基硅氧烷单元用二异氰酸酯交联,形成的交联聚硅氧烷用作引导层。气体分离层涂在引导层上而得到双层复合膜,其分离系数高于交联聚硅氧烷。尽管这种方法可提高膜的渗透性并可能克服该双层复合膜的外部薄分离层中存在缺陷而引起的问题,但该方法复杂并且生产费用高。
已提出将表面活性剂掺入涂料组合物中以提高涂层在基体材料上的粘结性并通过涂料溶液提高基体的可润湿性。为此已提出有时用极为大量的该表面活性剂。欧洲专利No.92/04987(Hoechst Celanese)公开了用于此目的的硅氧烷表面活性剂的应用。
因此,本技术领域急需进一步改进复合膜的制造方法。具体地讲,迫切需要开发经改进后可克服其薄分离层中存在缺陷的问题,而同时又没有应用上述双层复合膜时的加工复杂性和高额投资的复合膜。
因此,本发明的目的是提出用于气体和蒸汽渗透的改进复合膜。
本发明另一目的是提出可克服其分离层中存在缺陷的问题的复合膜改进制造方法。
本发明另一目的是提出多层气体分离复合膜,其中外层更为充分地保护气体分离内层,使其不致于在加工和处理过程中遭受严重损坏。
明白了上述及其它目的之后,以下详细说明本发明,其新的技术特征则在权利要求书中作了定义。
本发明涉及多层复合膜,其中包括按单一的一步制造方法沉积在多孔基体上的至少两层,这两层化学性质不同。气体分离内层提供膜的主要气体分离特性,而隔离的外层则达到覆盖缺陷的保护性作用,这样就可在工业操作上实现复合膜的选择性和渗透性。
本发明目的是在以下惊人的发现基础上确立的,即本发明发现可通过单一涂层步骤制造多层复合膜。所得到的多层复合膜包括化学性质不同的至少两层,其中内层为邻接多孔载体层或其它基体的分离层,而外层构成覆盖缺陷的单独保护层。本发明代表本技术领域中极显著的进步,因为其中可极为简便地经单一的加工操作沉积极薄分离层和覆盖缺陷的保护层。
在实施本发明时,经单一涂层步骤对基体进行涂层,其中采用可形成上述性质不同的两层复合膜层的特殊组成涂料溶液。该涂料溶液中包括至少一种成膜聚合物材料和至少一种另外的材料,其中聚合物材料形成与基体邻接的气体分离第一内膜层,而另外的材料则形成覆盖缺陷的第二外层。采用常规办法如用涂层机,浸涂,喷涂等将该涂料溶液沉积在基体上。用于沉积复合层的涂料溶液一般为不多于约5%固体,通常少于2%固体(重量/体积或w/v)的涂料稀溶液,其中所用溶剂体系不会对基体带来不利影响。
本发明一步涂层方法可在基体上沉积基本上无缺陷的极薄气体分离复合膜。该极薄涂层厚度小于约1μm,该涂层由上述性质不同的两层构成,其中内层占薄涂层总厚度的80%或以上,而外层占其总厚度的20%或以下。该内层基本上决定了本发明多层膜的气体分离性质并且可用具有高气体分离特性的材料或其混合物形成。覆盖缺陷的外层用高渗透性材料形成,其渗透性高于内分离层的材料,例如就气体混合物中的快速渗透性组分而言,其渗透性一般要比内分离层材料高至少10倍,优选高至少50倍。
用于实施本发明的涂料溶液含不多于约5%(w/v)形成多层复合膜中内层的聚合物材料或聚合物材料混合物,用量一般更少。在某些实施方案中,这种聚合物材料占涂料溶液的2%(w/v)以下,甚至1%(w/v)以下。
用于形成本发明覆盖缺陷的外层的材料不多于成膜聚合物气体分离材料总量的约20Wt%(重量百分比)。一般来说,该外层材料占上述总量的5Wt%左右,在某些实施方案中低于约2Wt%,甚至低达约1Wt%。
用于形成内部第一气体分离层的材料可为单一的聚合物材料或聚合物混合物,该混合物可为相容或不相容混合物。用于形成外层的添加剂补充层形成材料一般与第一层形成材料不相容。
本发明范围内可应用本技术领域已知的聚合物材料,该聚合物材料具有适宜于形成内部分离膜层的气体分离特性。因此,内层材料可包括聚酯,聚碳酸酯,聚酰亚胺,聚苯醚,纤维素衍生物聚合物,聚丙烯酸酯,聚砜等或其混合物。可方便地用于实施本发明的聚合物具体例子包括聚甲基丙烯酸甲酯,聚丙烯酸乙酯,乙酸纤维素,磺化聚合物如磺化聚砜,磺化聚苯醚,包括其盐及其混合物。
用于涂料溶液而形成本发明多层复合膜的添加剂材料特性如下:(a)可溶于或可分散于涂料溶液的溶剂体系及(b)表面能性质低于第一气体分离层形成材料。形成这种多层结构的机理并未完全知晓,但据认为主要是由于将添加剂材料排斥到外表面层所致。根据热力学原理,这种排斥很有利,因为这会降低总体系的表面能。除了形成外保护层而外,低表面能添加剂材料还可在基体和内部气体分离层之间形成中间层。在特定实施方案中,从热力学上考虑,形成这一层也是有利的。由高渗透性材料形成的这种中间层则类似于本技术领域已知的引导层,因此会获得已知的优点。但是这种中间引导层的形成难于经分析办法得到证实,其形成只能根据理论依据进行假设。可采用常规的表面张力,接触角和表面能测定技术确定第一气体分离层形成材料和用于形成覆盖缺陷的外层的补充低表面添加剂材料的表面特性。确定第一层和添加剂层材料表面特性的有效方法是本技术领域已知的接触角测定法。添加剂材料的表面能特性总是大大低于第一气体分离层形成材料以促进要求的多层形态的形成。添加剂材料对气体混合物中快速渗透组分有高渗透性,这样就不致于降低复合膜的总体气体分离特性/渗透性。
在利用现有的已知材料实施本发明的工业实施方案时,形成覆盖缺陷的保护性外层的低表面能添加剂为分子量为200以上,通常是1000以上的硅氧烷,其中二甲基硅氧烷单元含量至少50mol%,优选80mol%以上。该硅氧烷添加剂还可含有1-10mol%可交联或可与交联剂反应而形成交随着部位的活性官有团如双键。该硅氧烷添加剂通常为官能性硅氧烷,优选为多官能硅氧烷,其中含有可经烃基与硅氧烷分子连接的活性基团如氨基和亚氨基,羰基卤基团,异氰酸酯基团,环氧基团,磺酰卤基团,硫醇等。这类多官能硅氧烷例子已列在US 4602922和4781733。在形成本发明多层膜之后,含活性官能团的硅氧烷外层可任选与多官能的反应物反应,优选与多官能硅氧烷反应而通过界面缩聚反应使覆盖缺陷的/保护性外层交联。该方法一般通过对本发明多层膜进行涂层而实现,其中涂层用可与外部覆盖层中硅氧烷的官能团反应的多官能反应物稀溶液进行。
本技术领域的技术人员熟知,在权利要求书所述本发明范围内,仍可对如本文所述的本发明作出各种变化和改进。因此本发明范围内的某些实施方案是可使外层交联,其中让多层复合膜接受电子束或紫外线照射或通过适当的热处理促进交联。
在本发明的某些实施方案中,要求用高分离系数材料的混合物形成多层复合膜的内层,其中用这种混合物形成合金。在任何情况下,在本发明的特殊应用中要对用于形成内部分离层的一或多种材料进行选择以便根据指定用途的总体性能要求达到选择性和渗透性的优化组合。如果材料的不相容混合物用于形成内部气体分离层,在某些条件下结果是形成许多内层。这些多层在本文中也称为内部分离层。高分离指数材料混合物的代表性例子是聚甲基丙烯酸甲酯和乙酸纤维素的混合物。
高分离系数内层材料的代表性例子为磺化聚苯醚,尤其是其锂盐形式。高分离系数内层材料的另一代表性例子为磺化六氟Bis A聚砜,尤其是其锂盐形式。与此一起应用的要求低表面能添加剂为带氨基官能团的硅氧烷如Genesee Polymer's GP-4 Silicone流体,下式结构的带氨基官能团的硅氧烷聚合物:
其复合膜很容易用涂料溶液得到,涂料溶液中磺化聚苯醚的浓度低于1%(w/v),该涂料中带氨基官能团的硅氧烷的浓度低于0.05%(w/v)。
本发明多层复合膜的基体应理解为能够支持其上面的沉积层,但又不会对用该膜进行的气体/蒸汽分离性能带来限制作用的基体。
可用无机或有机材料制成的任何基体得到复合膜。但是,也可应用天然和合成聚合物,其中包括聚合物混合物和合金,热塑性和热固性聚合物作为多孔基体,但不仅限于这些聚合物。典型的聚合物为被取代或未被取代的聚合物,选自聚砜;聚苯乙烯,包括含苯乙烯共聚物如丙烯腈-苯乙烯共聚物,苯乙烯-丁二烯共聚物和苯乙烯-乙烯苯甲基卤共聚物;聚碳酸酯;纤维素聚合物,如乙酸纤维素,乙酸丁酸纤维素,丙酸纤维素,甲基纤维素等;聚酰胺和聚酰亚胺;聚醚;聚芳醚如聚苯醚;聚氨酯;聚酯(包括聚芳族化合物)如聚对苯二甲酸乙二醇酯,聚甲基丙烯酸烷基酯,聚丙烯酸烷基酯等;聚硫醚;除上述聚合物之外的含α-烯不饱和键的单体聚合物如聚乙烯,聚丙烯,聚丁烯-1,聚4-甲基戊烯-1,聚乙烯基类化合物如聚氯乙烯,聚氟乙烯,聚1,1-二氯乙烯,聚1,1-二氟乙烯,聚乙烯基酯如聚乙酸乙烯酯和聚丙酸乙烯酯;聚膦嗪等,但优选基体材料为聚砜。该基体可为平板状,管状,空心纤维状或任何其它构型。本技术领域的技术人员熟知许多将基体制成各种不同构型的方法。例如,空心纤维可用众所周知的技术得到,这方面可参见Journal of Applied Polymer Sicence, vol.23,1509-1523,1979,"Composite Hollow Fiber Membranes, I.Cabasso,et al.和"Research and Development of NS-1 and Related Polysulfone Hollow Fibers for Reverse Osmosis Desalination of Seawater", PB 248666 prepared for the Office of Water Research and Technology,Contract No.14-30-3165,U.S.Department of the Interior, July 1975,这两篇文献引用于此供本文参考。如这些文献所述,聚砜空心纤维可按干/湿喷丝法用市售聚砜在溶剂/非溶剂混合物中的三元溶液制成。众所周知的管套管喷射技术可用来进行喷丝,其中用大约室温下的水作为纤维的外部急冷介质。在纤维中心孔中的急冷介质优选为空气。急冷后充分洗涤以去除成孔材料。洗涤后空心纤维在高温下干燥并且将空心纤维通过热空气干燥炉去除水。
尽管可采用各种构型,但本发明复合膜可方便地做成空心纤维状。基体优选具有高表面孔隙率和窄孔径分布。基体上的表面孔优选小于500A。优选的多孔基体为聚砜空心纤维,当然也可应用任何其它适宜的基体材料。多孔聚砜空心纤维外径一般为0.5-0.35mm,内径为0.33-0.15mm。聚砜或其它空心纤维可按常规溶液沉积技术用本文所述涂料溶液涂层而形成本发明的极有效多层复合膜。
本发明复合空心纤维膜可制成气体和蒸汽分离应用的构件。可采用本技术领域中已知的任何构件构型,其中包括壳侧进料和孔侧进料渗透器。带有壳侧进料引入口的有效构件构造方法已见于US4865736。带孔侧进料设施的另一特别有利的构件构造方法已见于US 4881955。本发明膜可有效地用于孔侧进料渗透器,其中经过膜的压差高于现有的复合膜。
在另一实施方案中,本发明包括多层复合膜,其中上述内外层在薄层上形成,其透气性高,薄层如上所述在基体上形成。这种特别高透气性的薄层优选用透氧系数高于1×10-8cm3×cm/cm2·cmHg·sec的聚合物制成。这种多层膜的制造方法已见于US 4602922;欧洲专利公告No.181850及K.A.Lundy和I. Cabasso,"Analysis and Construction of Multilayer Composite Membranes for Seperation of Gas Mixtures, I & EC Research,28,742(1989)。
在本发明范围内还可对按本文所述用高特性透气性如就氧而言透气性为50 Barrer的材料形成的特别易脆的多层复合膜进行外涂层,从而形成另一外层以在处理过程中进一步保护多层复合膜并进一步覆盖有可能存在的剩余缺陷。在这些实施方案中,可按要求应用高渗透性材料如聚硅氧烷,其中含有能够与低表面能形成所说多层复合膜的添加剂材料反应的官能团。
实施本发明时用于制备涂料溶液的溶剂为分离层材料可溶于其中和添加剂材料可溶于或可分散于其中并且对基体结构没有不利影响的溶剂。可用于对聚砜基体进行涂层的这些溶剂的代表性例子包括醇如乙醇,甲醇,甲氧基乙醇等,挥发性有机酸如乙酸,甲酸,尤其是其与醇和水的混合物,以及烃如己烷,环己烷等。
以下实施例详述本发明,这些实施例仅为示意性举例,不应当理解为是对权利要求书所述的保护范围的限制。
实施例1
400g特性粘度为0.49 dl/g的细粉状工业级聚苯醚聚合物(来自General Electric Company)用约21甲·乙酮一起在机械搅拌条件下回流而形成浆料。然后用粗烧结玻璃过滤器将该浆料热过滤,从而得到部分提纯的聚合物。得到的聚合物可进一步用约11新的甲·乙酮洗涤。该聚合物还可如上述回流,过滤和洗涤而得到进一步提纯的聚合物。这样提纯的聚合物可再进行洗涤直到所得滤液成为纯净和无色为止。该聚合物可在真空炉中约80℃下干燥到恒定重量为止。该聚合物收率为约78%。已发现得到的聚合物的特性粘度为0.59dl/g,而且同时发现组合的滤液(被萃取部分)的特性粘度为约0.34dl/g。应用凝胶渗透色谱法测定所得聚合物的数均分子量(Mn),重均分子量(Mw)和分子量分布。结果列于下表Ⅰ。
表Ⅰ
样品 特性粘度(dl/g) Mn Mw Mw/Mn
工业级聚苯醚聚合物 0.49 15000 58000 3.9
提纯后的例1聚苯醚聚合物 0.59 40000 71000 1.8
实施例2
400g提纯后的聚苯醚聚合物在氮气下溶于2.251装有高速搅拌器的树脂锅内的氯仿中(该氯仿已用计算量的氯磺酸预处理以去除氯仿中存在的剩余水)。将该溶液冷至约-20℃。然后5分钟内向该冷却液中加入77.8ml溶于317ml氯仿中的氯磺酸。在整个加料过程中,溶液温度保持为约-20℃。在加料结束后,使混合物温度再回到25℃。迅速磺化时形成光滑的稀薄糊料。该反应混合物再于25℃搅拌1小时后加入21甲醇而形成纯净的黄色溶液。然后将该溶液与溶于约800ml甲醇/水混合物(甲醇/水体积比为60/40)的约101g LiOH·H2O和102g LiCl混合。所得混合物在真空下旋转蒸发而浓缩至基本干燥。将剩余物溶于约600ml甲醇中并用约1.81水稀释。混合的经过渗析(10000MWCO分子量截止)。真空下经旋转蒸发而从渗析的溶液中回收聚合物并于约70℃下进一步干燥至恒重。以Li+形式均匀磺化的聚合物在0.05M LiClO4的二甲基甲酰胺溶液中测定的特性粘度为约0.59dl/g,而其H+形式的离子交换容量为约2.14meq/g干聚合物。
实施例3
制造复合空心纤维膜,其中用基本上按例2得到的磺化聚苯醚聚合物的锂盐形式(SPP-Li+聚合物)的涂料溶液对多孔聚砜空心纤维进行涂层。将约0.70g SPPO-Li+聚合物和约0.007g带氨基官能团的硅氧烷流体(Genesee Polymer Corp.,GP-4)溶于100cc Reagent Alcohol(Fischer Scientific,HPLC级)中,得到磺化聚苯醚聚合物的涂料溶液。该涂料溶液再经1.5μm的玻璃过滤器过滤后放入涂层容器之中。让在干燥炉中干燥过的聚砜空心纤维以约3.3m/min的速度经过涂层容器中的涂料溶液后再经过干燥炉并随后用卷轴卷起来即可实现对聚砜空心纤维涂层。再用该涂层的聚砜空心纤维构造空心纤维分离机的渗透器,然后用1035kPa和22℃的压缩空气进行空气分离试验。氧和氮之间的分离因子为5.7,而透氧速度为2.2×10-5cm3/cm2·cmHg·sec。
比较例3A
用基本上如例3所述的锂化和磺化的聚苯醚聚合物涂料溶液对多孔聚砜空心纤维进行涂层而得到复合空心纤维膜,只是该涂层溶液中不加GP-4带氨基官能团的硅氧烷流体。
这样得到的复合膜如例3所述进行空气分离试验。氧和氮之间的分离因子为4.0,而透氧速度为1.3×10-5cm3/cm2·cmHg·sec.。所得到的分离因子大大低于例3所述的膜分离因子。
比较例3B
用基本上如例3所述的锂化和磺化的聚苯醚聚合物涂料溶液对多孔聚砜空心纤维进行涂层而得到复合空心纤维膜,只是应用Perenol S-4(Henkel Corp.)代替GP-4带氨基官能团的硅氧烷流体。该涂料溶液中Perenol S-4的活性表面活性剂成分的浓度基本上同于例3的GP-4添加剂浓度如为磺化聚苯醚聚合物含量的约1Wt%。
这样得到的复合膜如例3所述进行空气分离试验。氧和氮之间的分离因子为3.9,而透氧速度为1.6×10-5cm3/cm2·cmHg·sec.。所测得的分离因子大大低于例3中的膜分离因子。该实施例表明了具有硅氧烷含量(显微分析表明有4.2% Si)的Perenol S-4表面活性剂添加剂不适宜作为改进本发明膜的低表面张力添加剂。
实施例4
用如例2所述得到的磺化聚苯醚聚合物制成平板膜。用磺化聚苯醚在Reagent Alcohol(Fischer Reagent Grade)中的8%(w/v)溶液浇铸成膜,所用溶液中还含磺化聚合物的1%带氨基官能团的硅氧烷(GP-4)(重量)(膜2)。
用不含带氨基官能团的硅氧烷添加剂的Reagent Alcohol溶液浇铸成对比膜(膜1)。
这两种膜放在玻璃板上并在空气中干燥过夜,然后在80℃干燥48小时。这样得到的膜的表面组成用ESCA进行研究。ESCA分析数据是在45深度处的45°情况下得到的,这些结果列在表Ⅱ中。
表Ⅱ
组成(原子%)
C O S Li Si N
SPPO Li+预期组成 75.5 18.9 2.8 2.8 - -
实测的膜1表面组成 71.1 21.6 4.8 2.3 0.2 -
带官能团的硅氧烷GP-4预期组成 51.3 23.4 - - 23.8 1.5
实测的膜2表面组成 54.9 23.9 1.5 0.3 19.4 -
表Ⅱ中的数据表明,用含有带官能团的硅氧烷添加剂的溶液浇铸形成的膜表面组成与硅氧烷添加剂的化学组成接近。用不含硅氧烷添加剂的溶液浇铸形成的膜表面组成与磺化聚苯醚的预期组成接近。这些数据清楚地表明,可用含本发明带官能团的硅氧烷添加剂的浇铸液按单一膜浇注步骤形成多层膜。
实施例4A
如例3所述得到的复合空心纤维膜的表面组成经ESCA进行研究。采用溅射浸蚀技术获得表面化学组成深度曲线。在45深度处的硅氧烷浓度为7.4原子%,在125深度处的硅氧烷浓度降到0.6原子%,而在225深度处没有可测的硅氧烷。这些结果表明,按单一涂层步骤已形成由内分离层和外部覆盖缺陷/保护性层构成的多层复合膜。
实施例5
用磺化六氟Bis-A聚砜(F6-SPS)得到锂化和磺化的六氟Bis A聚砜(F6 SPS-Li)。磺化F6-SPS聚砜基本上如US 4971695所述得到,该文献引用于此供本文参考。
将约150g H+形式的F6-SPS聚合物(取代度0.87,离子交换容量1.42meq/g干聚合物)溶于31试剂醇中。向该溶液中加入含氢氧化锂和氯化锂的水溶液,其中将约9.2g(0.22mol)LiOH·H2O和约18.7g(0.44mol)LiCl溶于750ml水中可得到该溶液。在充分搅拌混合物后,将5ml 0.2M LiOH加入F6-SPS溶液中以使pH达到约9。溶液在室温下搅拌3天后按要求加0.2M LiOH溶液将该溶液的pH调为约9。该溶液过滤,渗析而去除过量碱和盐(膜分子量范围为10000),先旋转蒸发干燥后在真空炉中于约70℃下干燥2天。
将约1.75g F6-SPS Li和约0.05g带氨基官能团的硅氧烷(GP-4,Genesee Polymer Corp.)溶于约100cc试剂醇(Fischer Scientific,HPLC grade)而形成涂料溶液。该涂料溶液然后经1.0μm聚丙烯过滤器过滤后放入涂料溶液涂层机中。让干燥的聚砜空心纤维以约7m/min的速度经过该涂层溶液后在干燥炉中于约80-约135℃的温度下干燥约24秒钟而得到复合膜。
用上述复合膜构造成渗透器,该渗透器的制造及其后续使水饱和的压缩空气进料脱水的操作已见于US 4981498,该文献引用于此供本文参考。
用该渗透器使水饱和的压缩空气流干燥,空气压力1035kPa,温度23℃,其中用干燥产品清扫,清扫比例为20%,进料流速为904scc-sec/cm2。水蒸汽渗透率为3.2×10-3cm3/cm2·cmHg·sec。在单独进行的气体分离试验中,已发现该渗透器的透氧率为0.31×10-6cm3/cm2·cmHg·sec.,氧/氮分离因子为约7.1。因此,渗透器的表观H2O/N2分离因子为约73000。
本发明在膜技术上达到了极为显著的进步。分离层适宜于给定气体或蒸汽的特殊分离要求的复合膜尤其可满足各种工业操作中不断增长的膜需求。随着膜的方便和优点受到更为广泛的欢迎,对膜的性能要求越来越严格,对更薄分离层的需求也变得更为紧迫。尽管这类极薄分离层可提高膜的渗透特性,但这种需要的结果的实现一定不能给膜的选择性带来不利影响。这对于已有的薄分离层而言就变得更为困难,因此就使对外部覆盖缺陷的层的需求变得更为关键。本发明可使这种外层作为单一涂层步骤的一部分形成,从而降低了多层复合膜制造工艺的复杂性和投资。本发明简化了涂层操作,尤其是在制造工艺过程中不让膜经过辊的情况下可使覆盖缺陷的保护性外层形成和固化。这有利于保护极薄分离层,而且可保证不出现缺陷并使复合膜的制造更为有效,其中考虑到了满足全世界范围内不断增长的工业应用要求所需的选择性和渗透性的优化组合。