用于监视电解工艺的装置和方法 本发明涉及一种用于监视电解工艺、并且特别用于向衬底上电解沉积金属的装置和方法。
晶圆上的集成电路,更具体地说由硅制成的晶圆上的集成电路一般是使用刻蚀和沉积工艺并结合光刻工艺来制造的。迄今为止,已经习惯性地使用用于在晶圆上建立电导体连接的溅射工艺来制造金属导电图形。这些年来已经越来越多地使用电化学(galvanic)工艺来制造晶圆上的集成电路。除了在被称为“后端”部分中的铜的电解沉积之外,即用于对在晶圆上制造的半导体结构进行布线,在被称为“封装”工艺,即在金属沉积到芯片载体上时和在重新布线中的铜、镍、金和锡的金属沉积也变得逐渐重要起来。所有这些需求都具有相同之处,即,电解金属沉积工艺从薄起始金属层上开始,即所谓的种晶层,也被称为电镀基底。为此,使用合适的机械接触件使所述起始层电接触,并且将所述起始层放在含有溶液形式的要沉积的金属的电镀槽中。使用外部电流源例如由电网激励的整流器和对置电极,使电流流过所述开始层和所述对置电极。从而将金属沉积在所述晶圆的所述开始层上。作为其结果,通过法拉第定律控制沉积的金属的量以及涂层厚度。
使用合适的屏蔽件或分段阳极(对置电极)可以正面地影响所述晶圆上的涂层厚度分布。由此使用可溶解的阳极来保持电解液中的金属离子浓度恒定,或者,可以采用不可溶解(惰性)的阳极,在这种情况下,金属离子含量必须预先采取额外地措施来保持恒定。
美国专利No.5,234,572A介绍了一种用于向电镀液补充金属离子的方法。为了在施加电流时控制阴极和阳极之间传输的电量,美国专利No.5,234,572A提出了一种测量装置,使用附加地放置在电镀液中并用与所述阳极相同的金属制成的一个参考电极来测量所述阴极(对置电极)的电位。控制导电量,使得测得的所述对置电极的电位相对于所述参考电极不可能是负的。这防止了金属离子沉积在所述对置电极上。在一个优选的典型实施例中,所述对置电极和一个可溶解电极(阳极)连接到一个DC电源。使用一个伏特计来测量所述对置电极相对于所述参考电极的电位。在一幅图中示出了随着所述电流变化的所述对置电极和所述可溶解电极上的电位。
在电解铜沉积的情况下,DE 19915146C1提到所述铜沉积电解液除了通常的电解液组分之外还含有例如Fe(III)化合物,并且这些化合物使铜块溶解而形成铜离子,在该工艺中产生Fe(II)化合物。所形成的Fe(II)化合物在所述不可溶解阳极上重新氧化成Fe(III)化合物。
所有已知的电镀液除了要沉积的金属离子之外都含有用于影响所述金属沉积的辅助剂。通常,这些辅助剂是用于影响沉积层一侧的结构的有机化合物以及为了使所述电解液平衡并且为了增加所述沉积层另一侧上的导电性的目的而添加的盐、酸或碱。作为其结果,减小了沉积所需的电压,由此产生最小焦耳热。这提高了该工艺的安全性。有些工艺只能通过添加这些辅助剂来进行。
一般情况下,目前根据镶嵌(damascene)工艺来制造导电图形。如在DE 19915146C1中所述的,为此,首先在所述半导体衬底上施加一个介质层。通常使用干法刻蚀工艺在所述介质层中刻蚀通孔和沟槽,需要所述通孔和沟槽来接收所希望的导电图形。在施加一个扩散阻挡层(大多数情况下是氮化钽、钽)和一个导电层(大多数情况下是溅射的铜)之后,使用“沟槽填充工艺”电解地填充凹陷部分,即所述通孔和沟槽。由于铜是沉积在整个表面上,因此随后必须从不希望的部位,指的是从所述通孔和沟槽外部的区域除去多余的铜。这是使用所谓的CMP工艺(化学机械抛光)来实现的。多层电路可以通过重复该工艺,即通过重复施加由例如二氧化硅制成的介质层,通过刻蚀和沉积铜形成所述凹陷来制造。
形成所述导电图形、更具体地是由铜制成的导电图形之后,可以发现,在打算用来控制的抛光部分中,在所述沉积的结构中容易形成金属缺陷(空隙),所述缺陷可能导致整个电路的功能故障。
因此,本发明所面对的问题是要避免已知装置和方法的缺点,并且更具体地是要找到可以可靠地防止形成这种缺陷的措施。
为了克服这个问题,本发明提供了根据权利要求1所述的装置以及根据权利要求7所述的方法。本发明的优选实施例在从属权利要求中表示。
根据本发明的装置用于在制造半导体衬底(晶圆)的集成电路以及芯片载体上的电路结构期间监视电解工艺,特别是监视电解金属沉积工艺。
为了更详细地解释本发明,下文中将使用术语“晶圆”来表示任何工件。同样地,将使用术语“沉积电解液”或“沉积电解流体”来表示用于执行电解工艺的电解液。或者,如果所述电解工艺是电解刻蚀工艺,则所述液体还可以是一种刻蚀液。可能的电解工艺是电解沉积法和电解金属刻蚀法。原则上,除了这里所述的电解工艺以外,本发明还可以用于其它电解工艺。在下面的说明中,使用术语“电解沉积工艺”来表示所有其它电解工艺。
为了克服该问题,本发明提供了一种装置和方法。该装置包括与电解液接触的至少一个阳极和至少一个阴极,在它们之间产生电流。至少一个参考电极布置在所述至少一个阳极的表面上(或其附近)或者所述至少一个阴极的表面上(或其附近)。根据本发明,进一步提供一个用于确定所述至少一个阳极和所述至少一个参考电极之间以及所述至少一个参考电极和所述至少一个阴极之间的各个电压的伏特计。这种设置允许同时记录在各个电极上的电解局部过程,这种特别的装置也使得可以测量随时间变化的过程。由此不管在测量期间电极是否只浸在电解液中或是否只在所述两个电极接触所述电解液时将电压施加于阴极和阳极之间,都没有关系。
在根据本发明的装置的一个优选应用中,所述阴极是一块晶圆或一个芯片载体衬底,而所述阳极是一块金属板。在这种情况下,优选在所述电解工艺期间将金属沉积到所述晶圆或所述芯片载体衬底上。
更具体地,根据本发明的装置包括布置在所述至少一个阳极表面上(或其附近)的至少一个第一参考电极和布置在所述至少一个阴极表面上(或其附近)的至少一个第二参考电极。进一步提供伏特计,用于测量所述至少一个阳极和所述至少一个第一参考电极之间、所述至少一个第一参考电极和所述至少一个第二参考电极之间、以及所述至少一个第二参考电极和所述至少一个阴极之间的电压。该监视装置用于测量所述阳极和所述第一参考电极之间、所述第一参考电极和所述第二参考电极之间以及所述第二参考电极和所述阴极之间的电压。
全面的测试表明,沉积的金属层中的缺陷(例如,空隙)是由于所使用的金属沉积液能在一定条件下从所述起始层除去金属这一事实而产生的。
当具有一个起始金属层的晶圆浸在所述金属沉积液中时,首先不向所述起始层施加外部电压。因而,一旦所述起始层和所述电解液接触,就在所述起始层和所述电解液之间的相边界上达到一个平衡电位。在为了向所述起始层上沉积金属、特别是铜而施加的通常条件下,所述起始层相对于所述金属溶液的电位是正的,从而所述起始层缓慢地溶解在所述沉积液中。
由于与成本和工艺相关的原因,在晶圆上使用的金属起始层通常是非常薄的。例如,在为所述镶嵌工艺而制造的典型结构(例如,0.1-0.2μm宽和大约1μm深的沟槽、通孔)中,所述起始层的厚度大约为5-25nm。相反,所述晶圆表面上的所述起始层的厚度大约为100nm。在浸在所述电解液期间,这种类型的层至少在这些结构内可以快速地被除去,这是因为在所使用的电解液中的刻蚀速度非常高。在含有大约180g/l硫酸和硫酸铜形式的40g/l铜的典型铜电解液中,在通常电解条件下的刻蚀速度大约为10nm/分钟。在这些条件下,在金属沉积之前保留的涂层厚度在一定环境下不能确保可靠的金属涂覆。刻蚀速度尤其取决于所使用的电解液的类型、用于所述沉积工艺所选择的条件以及起始层的类型。
通过缩短浸渍和所述沉积工艺开始之间的时间不能克服这个问题,这是因为例如为了在开始金属沉积之前使要被涂覆的晶圆用液体来完全湿润而浸渍之后,一定能观察到某个最小处理时间。因而,在所述起始层上电解地沉积金属的工艺所能得到的时间窗口仅仅是较窄的一个。一个特定的问题是:由于多种可能的影响变量,所述工艺的时间窗口的尺寸不能确定,因而金属化的结果只能靠运气。
所述薄起始金属层对所述沉积工艺的波动和腐蚀特别敏感。该层厚度的最轻微的减小都可能足以危害例如纳米结构中的工艺的安全开始。
因此,精确地控制所述浸渍和湿润程序是非常重要的。在技术上,这种控制是不容易实现的,这是因为在浸渍之前所述电解液和所述晶圆之间缺乏电接触,以及因为在浸渍之后获得的依赖于电解液的平衡电位。根据所述电解液成分,所述起始层以不可预料的程度被腐蚀得较少或较多。
已经发现更具体地影响金属除去的参数是分电压,其总和生成了施加于阳极和阴极之间的总电压(箝位电压)。
在电解金属沉积期间,电流在阳极和阴极之间流动。需要由上述分电压的总和构成的一个电压来产生所述电流。更具体地说,所述总电压是阳极和阴极电荷转移过电压、极化过电压和结晶过电压的总和的结果,并且也是浓度过电压和由于电解液电阻产生的电压降及输电线中的电压降的结果。
通常,不知道可测量的箝位电压在所述独立的电压之间是如何分布的。更具体地说,由于只知道例如整流器的电流源的箝位电压,因此不能记录所述分布中的变化。在沉积期间,如果所述的电阻之一或所列举的过电压之一改变,或者如果它们在要被处理的各个晶圆之间有波动,则在最好的情况下,也不能解释所述箝位电压的最终可测量的变化。在最坏的情况下,这种变化甚至不会被注意到,从而可能在发现不到的情况下除去金属。
如在半导体技术中那样,这些方法的工艺安全性和再现性都是最重要的,必须找到措施来记录所述分电压。必须解释和识别所述工艺期间的变化,以便允许控制和校正该工艺。
为了至少检测由于所述电解液的电阻而产生的所述电压降的变化,采用了参考电极,所述参考电极是直接布置在所述阳极或阴极的表面上。为此,所述参考电极将如此靠近这些表面,以至于可以在这些表面中的相应一个表面上直接测量电位。例如,所述参考电极可以如此靠近相应的一个表面,以至于离所述表面的间隔小于1mm,例如为0.2mm。更具体地说,所述参考电极还可以例如布置在所述阳极或阴极的表面的平面中,在该表面的旁边但是紧密靠近该表面,尽管不直接位于所述表面的前面。因此所述参考电极就不必接触这些表面。另一种可能性存在于将含有一种导电电解液的一个小容器放在所述相应表面上或靠近它,所述容器中的参考电极允许检测该表面上的电位。
在本发明的一个优选实施例中,提供了两个参考电极:这两个参考电极中的第一个布置在所述阳极的表面上,而第二个参考电极布置在所述阴极的表面上。由于这两个参考电极布置成紧密靠近所述电极中的相应一个,因此可以以所述两个参考电极之间的电压的形式分别检测由于所述电解液的电阻而产生的电压降的影响。在布置了所述电极的表面处,所述参考电极的相应一个和所述阳极或阴极之间测得的其余电压降包括靠近所述阳极或阴极表面产生的电压降,更具体地说是电荷转移、结晶和浓度过电压。
因此可以检测所述电解单元的不同区域中的各个电压降,并作为其结果,可以分别检测上述因素(例如所述电解液的类型、所述起始层的特性以及其它因素)的影响并相应地进行分析。由此可以识别由于上述的影响变量产生的变化,因此如果发生这种改变,也可以做适当的准备。
本发明的一个优点在于:由于不需要实质上的结构扩展,因此借助本发明的方法可以很容易地将现有的电镀设备翻新。
可以采用任意的参考电极来测量上述变化。更具体地说,稳定的参考电极含有一种金属,这种金属与所述金属的一种难溶盐和一种电解质相平衡。这种类型的参考电极例如是第二或第三级的电极,因为这些电极提供一个恒定的参考电位。所述第二级的参考电极是如下的参考电极:其中决定电位的离子的浓度由一种难溶化合物的存在来确定,而所述难溶化合物的离子与所述决定电位的离子相同。相反,所述第三级的参考电极是如下参考电极:其中决定电位的离子的活动性由两个固相的存在来决定。所述第二级的参考电极更具体地说是氯化亚汞电极、银/氯化银电极、硫酸汞电极和氧化汞电极。所述第三级的参考电极例如是锌棒,在存在由锌和草酸钙制成的沉淀物时它与钙离子的溶液相平衡。
一个参考电极靠近所述阳极安装,另一个参考电极靠近所述晶圆安装。在所述电解工艺期间,通过测量所述阳极和所述第一参考电极之间、所述第一参考电极和所述第二参考电极之间以及所述第二参考电极和所述阴极之间的电压来控制该工艺。
在所述第一参考电极和所述第二参考电极之间测量的电压是所述电解液电阻的变化结果,它表示所述电解液的不稳定成分或所述处理槽中的不规则流体流动。
在所述第一参考电极和所述阳极之间测量的电压的变化另外还表示一个不稳定的阳极工艺。由于使用了一个可溶解的阳极,这种不稳定的阳极工艺可能是由于所述阳极的消耗、阳极膜的变化或者是改变了阳极几何形状等原因而引起的。利用一个惰性(不可溶的)阳极,测得的电压中的这种变化也可以表示该阳极(活性阳极层例如可能剥离)的失效或表示供给该阳极的不良氧化还原物质例如Fe(II)和Fe(III)化合物,例如在执行如DE 10015146C1中所述的方法的情况下。
在所述第二参考电极和所述阴极之间测量的电压的变化表示一个不稳定的阴极工艺,如所述起始层的变化的厚度,例如这是因为该层受到金属沉积液的侵蚀或者是因为该层不具有足够的厚度。
为了控制该工艺,更具体地说为了防止所述起始层被腐蚀,可以在浸渍之前通过一个功率整流器施加所述起始层和最近的参考电极例如所述第二参考电极之间的电压差。适当选择所述起始层的电位允许它在浸渍期间以及同样在在湿润阶段免于被腐蚀。为了获得一个有用的测量结果,所述参考电极中的相应一个电极必须尽可能地靠近相关电极。然而,由此必须防止工件(例如所述阴极)和所述对置电极(例如所述阳极)未被屏蔽,以便使沉积金属分布地尽可能的均匀。
由于稳定的参考电极更具体地说含有一种金属,所述金属与它的一种难溶盐和一种电解质是相平衡的,因此存在所述电解工艺的电解质被所述参考电极的电解质污染的风险。这种污染无论如何必须要防止。为了克服这个问题,所述参考电极通过至少一条毛细管接触所述阳极或所述阴极的表面。其中,分别在所述参考电极之间以及所述参考电极的相应一个与所述阳极和所述阴极之间的电压的测量是一种高电阻测量,只有非常小的电流流过所述测量装置。结果是,所述毛细管可以是非常细的,从而使所述参考电极的电解质对所述电解工艺的电解质的污染最小化。
关于这个问题的另一改进之处是以如下方式实现的:经所述毛细管将所述电解工艺的电解液输送给相应一个参考电极。因此防止了所述参考电极的电解质通过扩散进入到所述沉积电解质中。
为了将金属、更具体地说是铜电解地沉积到一块半导体衬底上,可以采用由例如铂制成的常规的电镀装置,在该电镀装置中所述阳极和所述半导体衬底平行放置并水平取向,或者相对于水平面倾斜。所述阳极和所述半导体衬底还可以垂直取向。这两个电极位于一个构成为适于该目的的槽中,例如一个圆柱形槽,它容纳所述电解液和所述电极。通常情况下,所述阳极布置在所述圆柱形槽的底部,而所述半导体衬底布置在其上部。为了产生一个受限的流体流,所述电解液可以以一定的方式流过所述槽。所述参考电极可以安装在分开的容器中,这些容器经上述毛细管与所述圆柱形槽连通。所述毛细管按照如下方式布置在所述槽的壁中,即它们位于紧邻所述电极的相应一个电极的位置上。
本发明的另一个优点在于:根据本发明的装置和方法允许控制在各个电极上发生的上述的各个分工艺,并且能够同时测量某些电压(电位)。这种装置允许把问题定位在电流传输上面。
下面将参照附图更详细地介绍本发明,其中:
图1是在一块半导体衬底上的介质中的结构(沟槽、通孔)的示意剖面图;
图2是表示在一个阳极和阴极装置中的电位差的示意图,其中各自的参考电极布置得靠近所述阳极和靠近所述阴极;
图3是一个沉积单元的示意剖面图;
图4是在沉积期间用于电流波动的问题分析的沉积单元的示意图。
图1示出了在靠近一块半导体衬底上的介质层3中的结构4和在其内的起始层2的涂覆厚度分布。在这种情况下,所述结构4是0.2μm宽且大约1μm深。在所述衬底的表面,所述起始层2大约为100nm厚。但是,所述起始层2在所述结构4的底部要薄得多。在那里,只有5-25nm厚。在这个较低区域中,在用一种金属沉积电解液对所述起始层2进行浸渍和随后的湿润期间,存在着所述层2被除去到下面这种程度的风险,即没有金属或着只有其非常薄的一层保留在所述结构4的底部。结果是,在随后的电解金属电镀工艺期间没有金属能够被沉积到这个部位上。
图2是表示在含有所述电解质的空间中所述阳极5和所述阴极1之间的电位差的示意图。由一个电流源6供给的电流在阳极5和阴极1之间流动。所述电流源6例如可以是一个功率整流器。使用一个伏特计7来测量由所述电流源6输送的电压U。所述电压U还被称为箝位电压。
在靠近所述阳极5的地方,布置一个第一参考电极8。同样,一个第二参考电极9布置在靠近所述阴极1的位置上。
在所述阳极5和所述阴极1之间的含有所述电解质的空间中的电位差用编号10表示。为了简化说明,所述电位差10仅仅划分为三个部分11、12和13,所述部分11和13是由扩散和结晶过电压产生的,而部分12是由所述电解质的电阻产生的电压降产生的。
通过使用第一伏特计14测量所述阳极5和所述第一参考电极8之间的电压,使用第二伏特计15测量所述第一参考电极8和所述第二参考电极9之间的电压、通过使用第三伏特计16测量所述第二参考电极9和所述阴极1之间的电压,由此可以以一种简单的方式来确定上述电压降。由所述伏特计14、15和16测量的所述局部电压11、12和13的总和生成所述箝位电压U。
所述电压降11是通过伏特计14测量的,所述电压降12是通过伏特计15测量的,而所述电压降13是通过伏特计16测量的。
图3是表示用于在一块半导体衬底1上电解地沉积金属的装置的示意图。该装置具有一个槽20和位于所述槽20底部的一个阳极5以及在所述槽20的上部中用作阴极的一块半导体衬底1。所述槽20用电解液22填充到水平面21。电解液22可以例如从底部进入所述槽20并流过所述阳极5。为此,优选所述阳极5被打孔。
在槽20的壁中,一条第一毛细管23靠近所述阳极5埋置,而一条第二毛细管24靠近所述半导体衬底1埋置。电解液可以以小体积流量流过所述毛细管23、24并进入安装在其侧壁上的参考电极容器25和26。这防止了可能被包含在所述容器25、26中并具有不同于所述沉积液22的另一种组成的电解液进入所述槽20。所述容器25、26容纳了通过电线连接到伏特计(未示出)的一个第一参考电极8和一个第二参考电极9。
图4是表示一个沉积单元的示意图。所述阳极5由一个惰性阳极筐形成,它被一个隔板(这里未示出)包围并以例如弹丸(shot)或小球的形式保持要被沉积的金属。所述阳极5位于槽20的外部。它们通过借助屏蔽件28耦合到槽20中的导管29来耦合在一起。所述屏蔽件28用作虚拟阳极。一个第一参考电极8布置成靠近所述阳极5。一个第二参考电极9同样地布置成靠近所述阴极1。分别使用所述伏特计16、15和14测量所述阴极1和所述第二参考电极9之间、所述第二参考电极9和所述第一参考电极8之间以及所述第一参考电极8和所述阳极5之间的电压。所述槽20完全用电解液22填充。
在实际操作中进行的测试表明沉积到所述阴极1上的金属量不够。同时,尽管所施加的电压为20V,与通常的沉积单元(只在2-3V就测量到10A)相比,在所述阴极1和所述阳极5之间只测量到大约100mA的非常低的电流。因此原因例如可能如下:
1、所述阴极1和所述电解液22之间的电接触不充分,
2、所述导管29断裂,
3、所述阳极5和所述电解液22之间的电接触不充分,或者
4、流过所述导管29的电解液不足。
在设计根据本发明的测量装置时,在这里该装置包括两个参考电极8、9和所述伏特计14、15、16,根据本发明可以同时获得下面的结果,从而能够进行故障探测:
在所述阴极1和所述第二参考电极9之间,使用所述伏特计16来测量一个随时间稳定的大约为0.5V的电压。利用伏特计15测量的所述两个参考电极8、9之间的电压为1V并且随着时间稳定。相反,所述第一参考电极8和所述阳极5之间的电压大约为18.5V并且随着时间在整个电压中变化。
这些结果使得上述原因1、2和4不再成为问题。该问题可以通过改善建立在所述阳极5和所述电解液22之间的过渡(transition)处的电接触来消除。发现,布置在所述阳极筐附近的所述隔板不再在所述电解液中湿润。
在另一个例子中,使用一种铜电解液22来在一块半导体晶圆1上沉积铜层。所述晶圆1具有一个大约100nm厚的铜种晶层。所述铜种晶层用具有通孔和沟槽的光刻胶层涂覆,所述通孔和沟槽露出所述铜种晶层。所述铜电解液22含有硫酸铜、硫酸和少量的氯化钠以及通常用于优化物理-机械性能的一般添加成分。所述电解液22在具有图4中所示的槽的设计的沉积槽20中操作。所述阳极5是不可溶的,由用贵金属(例如铂)激活的钛的一块延展金属板制成。为了保持所述电解液22中的标称铜离子浓度,将铜块溶解在与所述槽20流体连通的一个分离的容器(这里未示出)中。为了促进铜溶解,所述电解液22还含有Fe(II)和Fe(III)化合物。适合于这个目的的电解液例如在DE 19915146Cl中有介绍。
已经使所述晶圆1与所述铜电解液22接触并且其后经过一定的空闲时间之后,接通电流以使所述晶圆1被金属化。在接通电流之前,所述铜种晶层存在着被所述铜电镀液22、更具体地说是被该电解液22中的所述Fe(III)离子化合物刻蚀的危险。为此,如果在第一次铜沉积之前所述铜种晶层至少部分地溶解,则电镀是个问题。
电镀是通过电解电流在所述晶圆1和所述阳极5之间流动来实现的。通过随着时间变化来测量所述晶圆1和所述参考电极9之间的电压,以便确定是否进行了晶圆1的安全湿润以及在所述晶圆1的表面上是否仍然存在一个足够厚的铜种晶层,由此很容易确定铜沉积的安全开始。如果所述电压被确定为不在所希望的值范围中,则认为是不充分的电镀。
此外,测量所述晶圆1和所述参考电极9之间的电压。在整个电镀工艺期间进行这种测量,实现了所述晶圆1的限定电位控制。这还保证了包括所述晶圆1的浸渍和湿润的方法步骤的整个铜镀工艺期间的工艺安全晶圆。结果是,如果将一个合适的电压施加到所述晶圆1,则可以防止种晶层刻蚀。在这些条件下,所述晶圆1的湿润周期可以得到优化,即被延长。
同时,发现处理还受到所述阳极5上的无法估计的条件的影响。结果是,太高的电镀速度将导致所述电镀液22中的物质传输是决定速度的因素(Fe(II)到Fe(III)的反应)。这将导致水电解并由此在所述阳极5上产生氧气泡。同时,所述阳极电位被测量为偏移了。在不利条件下,通过测量所述阳极5和所述参考电极8之间的电压来检测这个偏移。因此,通过确定一个在正常范围以外的电压,可以适当地调整处理参数,以便防止不完善的处理。
因此结果是,如果上述电压和所述箝位电压偏离正常范围,则可以检测由不完善的阳极和/或阴极工艺产生的处理的不完善。只有通过同时测量这些电压以及所述晶圆1和所述阳极5之间的箝位电压,才可以找出不足的原因。
应该理解这里所述的例子和实施例都仅仅是为了示意性的目的,根据它们的各种修改和改变以及本申请中所述的特征的组合对于本领域技术人员来说是很容易想到的,并且应该被包含在本发明的精神和范围内以及所附权利要求的范围内。这里引证的所有公报、专利和专利申请作为参考引入。