焊接结构、功率模块、带散热器的功率模块用基板及其制造方法以及焊料基底层形成用膏.pdf

上传人:b*** 文档编号:51703 上传时间:2018-01-20 格式:PDF 页数:26 大小:5.36MB
返回 下载 相关 举报
摘要
申请专利号:

CN201380008901.9

申请日:

2013.02.14

公开号:

CN104126226A

公开日:

2014.10.29

当前法律状态:

实审

有效性:

审中

法律详情:

实质审查的生效IPC(主分类):H01L 23/40申请日:20130214|||公开

IPC分类号:

H01L23/40; B23K1/00; B23K1/19

主分类号:

H01L23/40

申请人:

三菱综合材料株式会社

发明人:

西元修司; 西川仁人; 长友义幸

地址:

日本东京

优先权:

2012.02.14 JP 2012-029646; 2012.02.14 JP 2012-029683

专利代理机构:

北京德琦知识产权代理有限公司 11018

代理人:

齐葵;周艳玲

PDF下载: PDF下载
内容摘要

本发明提供一种焊接结构、利用所述接合结构的功率模块、带散热器的功率模块用基板及其制造方法以及焊料基底层形成用膏,本发明的焊料基底层形成用膏配设于金属部件上,并通过烧成而与产生于金属部件表面的氧化皮膜进行反应,从而,在金属部件上形成焊料基底层,即使在被负载功率循环及热循环时,也能够抑制在铝部件的表面上产生弯曲或折皱,并能够提高与被接合部件的接合可靠性。

权利要求书

1.  一种焊接结构,利用焊锡材接合由铝或铝合金构成的铝部件和被接合部件,其特征在于,具备:
形成于所述铝部件表面的玻璃层;层压于该玻璃层的Ag层;及层压于所述Ag层的焊料层,
所述Ag层中分散有结晶性氧化物颗粒。

2.
  根据权利要求1所述的焊接结构,其特征在于,
所述结晶性氧化物颗粒由氧化钛、氧化硅和氧化锌中的任1种或2种以上构成。

3.
  一种功率模块,其具备由所述铝部件构成的电路层配设于绝缘层的一面的功率模块用基板和接合于所述电路层的一面的半导体元件,所述功率模块的特征在于,
所述电路层和所述半导体元件的接合部为权利要求1或权利要求2所述的焊接结构。

4.
  一种带散热器的功率模块用基板,具备:功率模块用基板,电路层配设于绝缘层的一面;及散热器,接合于该功率模块用基板的另一面侧,所述带散热器的功率模块用基板的特征在于,
所述散热器的接合面及所述功率模块用基板的接合面中的至少一个接合面由所述铝部件构成,
所述散热器和所述功率模块用基板的接合部为权利要求1或权利要求2所述的焊接结构。

5.
  一种焊接结构的制造方法,利用焊锡材接合由铝或铝合金构成的铝部件和被接合部件,所述焊接结构的制造方法的特征在于,具备:
涂布工序,将含有玻璃及结晶性氧化物颗粒的焊料基底层形成用膏涂布于所述铝部件的表面;烧成工序,在涂布有所述焊料基底层形成用膏的状态下,进行加热处理而烧成所述焊料基底层形成用膏;及焊接工序,经由焊锡材将所述被接合部件焊接于由所述焊料基底层形成用膏的烧成体构成的Ag烧成层的表面,
所述Ag烧成层中分散有结晶性氧化物颗粒。

6.
  根据权利要求5所述的焊接结构的制造方法,其特征在于,
所述结晶性氧化物颗粒由氧化钛、氧化硅和氧化锌中的任1种或2种以上构成。

7.
  一种功率模块的制造方法,所述功率模块具备由所述铝部件构成的电路层配设于绝缘层的一面的功率模块用基板和接合于所述电路层的一面的半导体元件,并且所述电路层和所述半导体元件为焊接部,所述功率模块的制造方法的特征在于,
所述焊接部通过权利要求5或权利要求6所述的焊接结构的制造方法而形成。

8.
  一种带散热器的功率模块用基板的制造方法,所述带散热器的功率模块用基板具备电路层配设于绝缘层的一面的功率模块用基板和接合于该功率模块用基板的另一面侧的散热器,所述散热器的接合面及所述功率模块用基板的接合面中的至少一个接合面由所述铝部件构成,所述散热器和所述功率模块用基板为焊接部,所述带散热器的功率模块用基板的制造方法的特征在于,
所述焊接部通过权利要求5或权利要求6所述的焊接结构的制造方法而形成。

9.
  一种焊料基底层形成用膏,其配设于金属部件上,并通过烧成在所述金属部件上形成焊料基底层,所述焊料基底层形成用膏的特征在于,
含有银粉末、玻璃粉末、结晶性氧化物粉末、树脂及溶剂。

10.
  根据权利要求9所述的焊料基底层形成用膏,其特征在于,
所述银粉末的含量为60质量%以上且90质量%以下,
就所述玻璃粉末而言,所述银粉末的重量A和所述玻璃粉末的重量G之比A/G被设定在80/20至99/1的范围内,
就所述结晶性氧化物粉末而言,所述银粉末的重量A和所述结晶性氧化物粉末的重量O之比A/O被设定在90/10至99/1的范围内。

11.
  根据权利要求9或权利要求10所述的焊料基底层形成用膏,其特征在于,
所述结晶性氧化物粉末由氧化钛、氧化硅和氧化锌中的任1种或2种以上构成。

12.
  根据权利要求9至权利要求11中任一项所述的焊料基底层形成用膏,其特征在于,
所述玻璃粉末的软化温度为600℃以下。

13.
  根据权利要求9至权利要求12中任一项所述的焊料基底层形成用膏,其特征在于,
所述玻璃粉末含有氧化铅、氧化锌、氧化硅、氧化棚、氧化磷及氧化铋中的任1种或2种以上。

14.
  根据权利要求9至权利要求13中任一项所述的焊料基底层形成用膏,其特征在于,
所述银粉末的粒径为0.05μm以上且1.0μm以下。

说明书

焊接结构、功率模块、带散热器的功率模块用基板及其制造方法以及焊料基底层形成用膏
技术领域
本发明涉及一种利用焊锡材接合由铝或铝合金构成的铝部件和被接合部件的焊接结构、利用该焊接结构的功率模块、带散热器的功率模块用基板及其制造方法以及配置在金属部件上并通过烧成在所述金属部件上形成焊料基底层的焊料基底层形成用膏。
本申请主张基于2012年2月14日在日本申请的专利申请第2012-029646号以及2012年2月14日在日本申请的专利申请第2012-029683号的优先权,并将其内容援用于本说明书中。
背景技术
作为对金属部件和被接合部件进行焊接而构成的焊接结构,例如,可举出如同专利文献1、2所示的功率模块。
功率模块具备成为电路层的金属板(例如A1(铝))接合于陶瓷基板的一面而构成的功率模块用基板和搭载于电路层的一面的功率元件(半导体元件)。
并且,在功率模块用基板的另一面侧配设有作为散热器的散热板和冷却器等,以发散来自功率元件(半导体元件)的热量。
在上述功率模块中,电路层和功率元件(半导体元件)经由焊锡材而被接合。即构成电路层为金属部件(铝部件),功率元件(半导体元件)为被接合部件的焊接结构。
并且,有时功率模块用基板和散热器也经由焊锡材而被接合。
另外,当电路层等为由铝或铝合金构成的铝部件的情况下,在电路层的表面形成有铝的氧化皮膜,因此在该状态下无法进行良好的焊接。
并且,当电路层等为由铜或铜合金构成的铜部件的情况下,因熔融的焊锡材与铜进行反应而存在焊锡材成分进入电路层等的铜部件内部,且特性改变的问题。
于是,以往,通过无电解电镀等,在电路层的表面形成作为基底层的镀Ni膜,在该镀Ni膜上配设焊锡材而接合半导体元件。
在此,上述功率模块在使用时被负载功率循环及热循环。当功率模块被负载功率 循环及热循环的情况下,因陶瓷基板和电路层(铝)的热膨胀系数之差而引起的应力作用于陶瓷基板和电路层的接合界面,接合可靠性有可能降低。于是,以往利用纯度99.99%以上的4N铝等变形阻力比较小的金属部件(铝)构成电路层,通过电路层的变形而吸收上述热应力以提高接合可靠性。
并且,在专利文献3中记载有如下的导电性组成物(焊料基底层形成用膏),该导电性组成物能够在不设置镀Ni膜的情况下形成使得由铝或铝合金构成的电路层和焊料层导通的导电接合层(焊料基底层),并公开了经由玻璃层、Ag层及焊料层接合上述电路层和被接合部件的结构。
专利文献1:日本专利公开2007-311526号公报
专利文献2:日本专利公开2008-227336号公报
专利文献3:日本专利公开2010-287554号公报
然而,当利用纯度99.99%以上(4N铝)等变形阻力比较小的金属部件(铝等)构成电路层的情况下存在如下问题,即在负载有功率循环和热循环时,导致在电路层表面产生弯曲或折皱。若电路层表面产生弯曲或折皱,则功率模块的可靠性降低。
并且,在专利文献3中,通过烧成而能够形成导电接合层,该导电接合层能够通过与自然产生于所述电路层表面的铝氧化皮膜进行反应而与所述电路层导通,然而并没有涉及针对在电路层和半导体元件进行焊接之后所产生的电路层表面的弯曲或折皱的观点。
尤其,近年来,伴随功率模块的小型化和薄型化的发展,其使用环境也开始变得苛刻,来自半导体元件等电子部件的发热量增大。因此,功率循环及热循环条件变得苛刻,并具有在电路层表面容易产生弯曲或折皱的倾向,存在功率模块的可靠性降低的问题。
另外,这种弯曲或折皱在功率模块用基板和散热器的接合部分也构成问题。
本发明是鉴于所述问题而提出的,其目的在于提供一种即使在被负载功率循环及热循环时也能够抑制在铝部件的表面上产生弯曲或折皱,且能够提高与被接合部件的接合可靠性的接合结构、利用该焊接结构的功率模块、带散热器的功率模块用基板及其制造方法。
本发明的另一目的在于提供一种焊料基底层形成用膏,其配设于金属部件上,并通过烧成与产生于金属部件表面的氧化皮膜进行反应,从而在金属部件上形成焊料基底层,即使在被负载功率循环及热循环时,也能够抑制在金属部件的表面上产生弯曲或折皱。
本发明人等经深入研究结果发现,在Ag层形成于金属部件(铝部件)的一面的情况下,即使在被负载热循环时也能够抑制焊料的变形,并且能够抑制在金属部件(铝部件)的表面上产生弯曲或折皱。这可推断为源于以下理由,即由于Ag为比铝硬的金属,因此通过Ag层能够抑制铝部件的塑性变形。
然而,有时在被负载热循环时会局部产生金属部件的塑性变形,产生弯曲或折皱。
并且,经进一步研究结果得知,在Ag向焊料内部扩散而产生Ag侵蚀的部位,有时在焊料内部产生龟裂。即,明确可知在产生Ag侵蚀的部位未充分形成Ag层,而金属部件(铝部件)的表面局部产生塑性变形,从而有可能产生弯曲或折皱,并且在焊料内部产生龟裂。
发明内容
本发明是基于上述观点而完成的,本发明的焊接结构为利用焊锡材接合由铝或铝合金构成的铝部件和被接合部件的焊接结构,其中,具备:形成于所述铝部件的表面的玻璃层;层压于该玻璃层的Ag层;及层压于所述Ag层的焊料层,并且所述Ag层中分散有结晶性氧化物颗粒。
根据该结构的焊接结构,由于在Ag层中分散有结晶性氧化物颗粒,因此抑制Ag向焊料内部扩散。并且,通过抑制在铝部件有可能产生的弯曲或折皱而能够防止焊料中产生龟裂,因此能够提高与被接合部件的焊接结构的可靠性。
并且,在铝部件的表面形成有玻璃层,因此能够使存在于铝部件的表面的氧化皮膜与该玻璃层进行反应而将其去除,并经由焊锡材能够可靠地接合铝部件和被接合部件。因此,无需在铝部件表面设置镀Ni膜等。
另外,优选所述结晶性氧化物颗粒由氧化钛、氧化硅和氧化锌中的任1种或2种以上构成。
若选自氧化钛、氧化硅和氧化锌的结晶性氧化物颗粒分散于与焊接的Ag层中,则抑制Ag向焊料内部扩散。由于Ag中分散有氧化物颗粒,因此在进行烧成时Ag层的缩颈面积变小。若对这样被烧结的Ag层进行焊接,则与完全缩颈的Ag层相比,不易产生Ag向焊料内部扩散,因此能够抑制对焊料的Ag侵蚀。
本发明的功率模块,具备:功率模块用基板,在绝缘层的一面配设有由铝部件构成的电路层;及半导体元件,接合于所述电路层的一面,其中,所述电路层与所述半导体元件的接合部为上述焊接结构。
具有这种结构的本发明的功率模块中,成为铝部件的电路层和成为被接合部件的 半导体元件,经由玻璃层、分散有结晶性氧化物颗粒的Ag层和焊料层而被接合。因此抑制了Ag向焊料扩散,能够维持Ag层的形成,并且能够抑制在电路层表面产生弯曲或折皱。
从而,能够提供一种能够抑制焊料层中产生龟裂且半导体元件的接合可靠性优异的功率模块。
本发明的带散热器的功率模块用基板,具备:功率模块用基板,电路层配设于绝缘层的一面;及散热器,接合于该功率模块用基板的另一面侧,其中,所述散热器的接合面及所述功率模块用基板的接合面中的至少一个接合面由铝部件构成,并且所述散热器与所述功率模块用基板的接合部为上述焊接结构。
在具有这种结构的本发明的带散热器的功率模块用基板中,由于所述功率模块用基板的接合面及所述散热器的接合面中的至少一个接合面由铝部件构成,因此在具有所述功率模块用基板的接合面的部件以及具有所述散热器的接合面的部件中,其中一个部件相当于上述焊接结构的铝部件,而另一个部件相当于被接合部件。并且,该铝部件和被接合部件经由玻璃层、分散有结晶性氧化物颗粒的Ag层和焊料层而被接合。因此,抑制Ag向焊料的扩散而能够维持Ag层,并且能够抑制在铝部件的表面产生弯曲或折皱。
从而,提高功率模块用基板和散热器的接合可靠性,且能够使热量通过散热器而有效地发散。
另外,作为散热器,包括以通过发散热量而降低温度为目的的如下金属部件,即板状散热板、内部供制冷剂流通的冷却器、形成有散热片的液冷/空冷散热器和热管等。
本发明的焊接结构的制造方法为,利用焊锡材接合由铝或铝合金构成的铝部件和被接合部件的焊接结构的制造方法,其中,具备:涂布工序,将含有玻璃及结晶性氧化物颗粒的焊料基底层形成用膏涂布于所述铝部件的表面;烧成工序,在涂布有所述焊料基底层形成用膏的状态下,进行加热处理而烧成所述焊料基底层形成用膏;及焊接工序,经由焊锡材将所述被接合部件焊接于由所述焊料基底层形成用膏的烧成体构成的Ag烧成层的表面,并且所述Ag烧成层中分散有结晶性氧化物颗粒。
根据这种制造方法,能够使结晶性氧化物颗粒分散于Ag烧结层中,因此能够制造在焊接工序中可抑制Ag向焊料内部扩散的焊接结构。并且,通过抑制有可能在铝部件产生的弯曲或折皱而能够防止在焊料中产生龟裂,因此可提高与被接合部件的焊接结构的可靠性。
本发明的功率模块的制造方法中,所述功率模块具备由铝部件构成的电路层配设 于绝缘层的一面的功率模块用基板和接合于电路层的一面的半导体元件,并且将电路层和半导体元件作为焊接部,其中,该焊接部通过上述焊接结构的制造方法而形成。
并且,本发明的带散热器的功率模块用基板的制造方法中,所述带散热器的功率模块用基板具备电路层配设于绝缘层的一面的功率模块用基板和接合于该功率模块用基板的另一面侧的散热器,并且散热器的接合面及所述功率模块用基板的接合面中的至少一个接合面由所述铝部件构成,所述散热器和所述功率模块用基板作为焊接部,其中,该焊接部通过上述焊接结构的制造方法而形成。
根据如同上述焊接结构、功率模块及带散热器的功率模块用基板的制造方法,由于在焊接部能够形成分散有结晶性氧化物颗粒的Ag烧成层,因此在进行焊接时抑制Ag向焊料扩散,从而能够维持Ag层的形成,能够抑制在铝部件的表面产生弯曲或折皱。
并且,基于上述观点而构成的本发明的焊料基底层形成用膏为通过配设于金属部件上并通过烧成而在所述金属部件上形成焊料基底层的焊料基底层形成用膏,其中,所述膏含有银粉末、玻璃粉末、结晶性氧化物粉末、树脂及溶剂。
根据具有该结构的焊料基底层形成用膏,具备结晶性氧化物粉末及银粉末,并且通过烧成,银粉末形成Ag层,进而形成结晶性氧化物颗粒分散于Ag层内部的所述焊料基底层。并且,当经由焊锡材将被接合部件接合于金属部件上的情况下,分散于Ag层内部的结晶性氧化物颗粒在进行焊接时抑制Ag向焊料内部扩散,从而能够维持Ag层。因此,即使在被负载热循环时,也能够抑制在金属部件产生弯曲或折皱。
并且,所述膏具备玻璃粉末和银粉末,并且通过烧成而生成的所述焊料基底层具备由玻璃粉末软化形成的玻璃层和银粉末烧结于玻璃层上而形成的Ag层,因此所述玻璃层与所述金属部件上的氧化皮膜进行反应而去除该氧化皮膜,并能够形成直接接合于金属部件的表面的焊料基底层。并且,在该焊料基底层中,导电颗粒分散于玻璃层内部,因此通过该导电颗粒而确保了导电性。从而,例如,在经由焊锡材将半导体元件接合于电路层上的情况下,通过烧成该焊料基底层形成用膏而得到的焊料基底层可以使电路层和半导体元件导通,并能够构成功率模块等半导体装置。即通过使用该焊料基底层形成用膏而能够形成导电性及导热性优异的焊料基底层。
在此,所述银粉末的含量为60质量%以上且90质量%以下,就所述玻璃粉末而言,所述银粉末的重量A和所述玻璃粉末的重量G之比A/G优选被设定在80/20至99/1的范围内,就所述结晶性氧化物粉末而言,所述银粉末的重量A和所述结晶性氧化物粉末的重量O之比A/O优选被设定在90/10至99/1的范围内。
在该情况下,所述银粉末的含量为60质量%以上,因此能够对上述焊料基底层赋予导电性。并且,所述银粉末的含量为90质量%以下,因此确保了流动性且能够涂布于金属部件。
另外,所述银粉末的重量A与所述玻璃粉末的重量G之比A/G被设定在80/20至99/1的范围内,因此能够可靠地形成玻璃层和Ag层。
另外,银粉末的重量A和所述结晶性氧化物粉末的重量O之比A/O中,结晶性氧化物粉末的重量O为90/10以下,因此不使上述焊料基底层的电阻值增大而能够形成导电性良好的焊料基底层。因为导电性良好,所以能够作为热传递性也优异的焊料基底层。并且,在银粉末的重量A和结晶性氧化物粉末的重量O之比A/O中,结晶性氧化物粉末的重量O为99/1以上,因此通过分散于Ag层中的结晶性氧化物颗粒能够抑制Ag向焊料扩散。
并且,所述结晶性氧化物粉末优选由氧化钛、氧化硅和氧化锌中的任1种或2种以上构成。
若由选自氧化钛、氧化硅和氧化锌的结晶性氧化物粉末分散于与焊接的Ag层中,则能够抑制Ag向焊料内部扩散。由于氧化物颗粒分散于Ag中,因此在烧成时Ag层的缩颈面积变小。若对这样被烧结的Ag层进行焊接,则与完全缩颈的Ag层相比,Ag不易向焊料内部扩散,因此能够抑制对焊料的Ag侵蚀。
并且,优选所述玻璃粉末的软化温度为600℃以下。
在该情况下,玻璃粉末的软化温度为600℃以下,因此,即使以较低温度烧成该焊料基底层形成用膏,玻璃也能够进行流动,并可形成焊料基底层。因此能够防止在烧成焊料基底层形成用膏时金属部件劣化。
并且,优选所述玻璃粉末含有氧化铅、氧化锌、氧化硅、氧化棚、氧化磷及氧化铋中的任1种或2种以上。
含有这些氧化物的玻璃粉末的软化温度比较低,能够将烧成温度设定为较低。并且,结晶化温度比较高,在焊料基底层形成用膏内部的流动性得到确保,并且提高了与金属部件的附着性。
另外,优选所述银粉末的平均粒径为0.05μm以上且1.0μm以下。
在该情况下,因为银粉末的平均粒径为0.05μm以上且1.0μm以下,因此在将该焊料基底层形成用膏涂布于所述电路层上时,导电颗粒均匀地分散,通过烧成该焊料基底层形成用膏,能够形成具有均匀的导电性的焊料基底层,经由焊料基底层能够使半导体元件和电路层可靠地导通。
根据本发明,能够提供一种即使在被负载功率循环及热循环时也能够抑制在铝部件的表面上产生弯曲或折皱且可提高与被接合部件的接合可靠性的焊接结构、利用该焊接结构的功率模块、带散热器的功率模块用基板及其制造方法。
并且,根据本发明,能够提供一种焊料基底层形成用膏,其配设于金属部件上,并通过烧成与产生于金属部件表面的氧化皮膜进行反应,从而在金属部件上形成焊料基底层,在进行焊接时防止Ag侵蚀,因此,即使在被负载功率循环及热循环时也能够抑制在金属部件的表面上产生弯曲或折皱。
附图说明
图1是本发明的第一实施方式的带散热板的功率模块用基板及功率模块的概略说明图。
图2是图1中的金属层与散热板的接合部的放大说明图。
图3是图1中的电路层与半导体元件的接合部的放大说明图。
图4是表示在本发明的各实施方式中使用的焊料基底层形成用膏的一种制造方法的流程图。
图5是表示图1的功率模块的制造方法的流程图。
图6是本发明的第二实施方式的带冷却器的功率模块用基板及功率模块的概略说明图。
图7是图6中的缓冲层与冷却器的接合部的放大说明图。
图8是表示在本发明的各实施方式中使用的焊料基底层形成用膏的一种制造方法的流程图。
具体实施方式
以下,参考附图对本发明的实施方式的焊接结构进行说明。
图1表示本发明的第1实施方式的功率模块1及带散热板的功率模块用基板20。该第1实施方式中,将散热板21用作散热器。
该功率模块1具备配设有电路层12及金属层13的功率模块用基板10、搭载于电路层12的一面(图1中的上表面)的半导体元件3、接合于金属层13的另一面(图1中的下表面)的散热板21及层压于该散热板21的另一面侧的冷却器31。
功率模块用基板10具备构成绝缘层的陶瓷基板11、配设于该陶瓷基板11的一面(图1中的上表面)的电路层12、配设于陶瓷基板11的另一面(图1中的下 表面)的金属层13。
陶瓷基板11防止电路层12和金属层13之间的电连接,由绝缘性高的AlN(氮化铝)构成。并且,陶瓷基板11的厚度设定在0.2~1.5mm的范围内,在第1实施方式中被设定为0.635mm。
电路层12通过具有导电性的金属板接合于陶瓷基板11的一面而形成。在第1实施方式中,电路层12通过由纯度99.99%以上的铝(所谓的4N铝)轧制板构成的铝板接合于陶瓷基板11而形成。
通过金属板接合于陶瓷基板11的另一面而形成金属层13。在第1实施方式中,与电路层12相同,通过由纯度99.99%以上的铝(所谓的4N铝)轧制板构成的铝板接合于陶瓷基板11而形成金属层13。
散热板21使来自所述功率模块用基板10的热量向表面方向扩散,在第1实施方式中为导热性优异的铜板。
如图1所示,冷却器31具备用于使冷却介质(例如冷却水)流通的流路32。冷却器31优选由导热性良好的材质构成,在第1实施方式中由A6063(铝合金)构成。
另外,如图1所示,散热板21和冷却器31通过固定螺钉22而被紧固。
并且,如图2所示,由4N铝构成的金属层13和由铜板构成的散热板21之间的第1接合部40,具备形成于金属层13的另一面(图2中为下表面)的第1玻璃层41、层压于该第1玻璃层41的另一面的第1Ag层42及层压于该第1Ag层42的另一面的第1焊料层43。
并且,如图3所示,由4N铝构成的电路层12与半导体元件3之间的第2接合部50,具备形成于电路层12的一面(图3中为上表面)的第2玻璃层51、层压于该第2玻璃层51的一面的第2Ag层52及层压于该第2Ag层52的一面的第2焊料层53。
在此,第1焊料层43及第2焊料层53例如由Sn-Ag系、Sn-Cu系、Sn-Sb系、Sn-In系或Sn-Ag-Cu系焊锡材(所谓的无铅焊锡材)构成。并且,第1焊料层43及第2焊料层53的厚度th被设定在20μm≤th≤600μm的范围内。
第1玻璃层41及第2玻璃层51的厚度tg被设定在0.05μm≤tg≤10μm的范围内。
在此,在第1玻璃层41及第2玻璃层51的内部分散有平均粒径为数纳米程度的微细导电颗粒。该导电颗粒为含有Ag或Al中的至少一种的结晶性颗粒。另 外,可利用例如透射电子显微镜(TEM)观察第1玻璃层41及第2玻璃层51内的导电颗粒。
并且,在第1Ag层42及第2Ag层52中分别分散有结晶性氧化物颗粒44及结晶性氧化物颗粒54。结晶性氧化物颗粒44、54由氧化钛、氧化硅和氧化锌中的任1种或2种以上构成。
并且,结晶性氧化物颗粒的结晶平均粒径为0.1μm以上且5μm以下,在第1实施方式中平均粒径为0.5μm。
由第1Ag层42及第2Ag层52的剖面的元素分析而能够确认该结晶性氧化物颗粒。作为元素分析方法,例如使用EPMA(电子探针显微分析仪)或EDS(能谱)等基于电子射线的分析方法即可。
这里的平均粒径是指通过激光衍射/散射法求出的粒度分布中累积频率达到50%的粒径(D50)。
并且,第1Ag层42及第2Ag层52的厚度at被设定在1μm≤ta≤100μm的范围内。优选在1.5μm≤ta≤50μm的范围内。
在此,第1接合部40及第2接合部50如下形成,即在金属层13及电路层12的表面,通过将以下说明的焊料基底层形成用膏进行涂布和烧成而形成Ag烧成层,并经由焊锡材将散热板21及半导体元件3接合于该Ag烧成层的表面。
其次,对第1实施方式中所使用的焊料基底层形成用膏进行说明。
该焊料基底层膏中含有银粉末、玻璃粉末、结晶性氧化物粉末、树脂及分散剂,银粉末的含量为整个焊料基底层形成用膏的60质量%以上且90质量%以下,余量为玻璃粉末、结晶性氧化物粉末、树脂、溶剂及分散剂。银粉末的含量优选为61质量%以上且80质量%以下。
并且,玻璃粉末的含量优选为0.7质量%以上且15质量%以下,更优选为1.0质量%以上且10质量%以下。若玻璃粉末的含量为20质量%以上,则对焊料润湿性造成影响,若玻璃粉末的含量为0.1质量%以下,则有可能焊料基底与电路层的附着性降低。
结晶性氧化物粉末的含量优选为0.6质量%以上且10质量%以下,更优选为1.0质量%以上且8.0质量%以下。若结晶性氧化物粉末的含量为0.6质量%以上,则能够抑制焊料侵蚀,若结晶性氧化物粉末的含量为8.0质量%以下,则能够得到无焊料润湿性问题的焊料基底层。
树脂的含量优选为0.5质量%以上且5.0质量%以下,更优选为0.8质量%以上 且4.0质量%以下。若树脂的含量为0.5质量%以上,则作为膏能够赋予充分的印刷性,若树脂的含量为5.0质量%以下,则对银的烧结不会造成影响。
溶剂的含量优选为5质量%以上且30质量%以下,更优选为8质量%以上且28质量%以下。若溶剂的含量为5质量%以上,则作为膏能够赋予充分的印刷性,若溶剂的含量为28质量%以下,则对银的烧结不会造成影响。
分散剂的含量优选为0.5质量%以上且7质量%以下,更优选为1质量%以上且5质量%以下。若分散剂的含量为0.5质量%以上,则能够抑制焊料基底层膏的劣化,若含量为7质量%以下,则对银的烧结不会造成影响。
另外,在第1实施方式中,焊料基底层形成用膏(导电性组成物)的粘度被调整为10Pa·s以上且500Pa·s以下,更优选被调整为50Pa·s以上且300Pa·s以下。
在此,在测定焊料基底层形成用膏的粘度时,使用应力控制型流变仪(美国TA仪器公司(TAインスツルメント社)制AR1000),并利用20mm的平行板测头进行了测定。将测定台的温度设为25℃,将测定台和测头的间隙设定为200μm。将成为测定对象的膏10g载置于测定台上,并以规定间隙调整测头。此时,在利用抹刀去除从测头突出的膏的基础上开始进行测定。
银粉末的平均粒径为0.05μm以上且1.0μm以下,在第1实施方式中使用了平均粒径为0.8μm的银粉末。
玻璃粉末含有例如氧化铅、氧化锌、氧化硅、氧化硼、氧化磷及氧化铋中的任1种或2种以上,其软化温度为600℃以下。玻璃粉末的软化温度更优选为370℃以上且560℃以下。
并且,玻璃粉末根据需要也可以含有氧化铝、氧化铁、氧化铜、氧化硒、氧化锆、碱性金属氧化物、碱土金属氧化物等。可通过球磨机、喷磨机等粉碎玻璃块并对粗大颗粒进行分级而得到玻璃粉末。对玻璃粉末的平均粒径并无特别的限定,能够使用平均粒径为0.5μm以上且10.0μm以下的玻璃粉末。
并且,银粉末的重量A与玻璃粉末的重量G的重量比A/G被调整为80/20至99/1的范围内,更优选为85/15至97/3的范围内。在第1实施方式中,A/G为85/15。
另外,银粉末的重量A与结晶性氧化物颗粒的重量O的重量比A/O被调整为90/10至99/1的范围内,更优选为95/5至98/2的范围内。
结晶性氧化物粉末例如为氧化钛、氧化锌、氧化硅粉末,只要选择任1种或2种以上的结晶性金属氧化物粉末即可。
结晶性金属氧化物粉末的平均粒径优选为0.05μm以上且1.0μm以下,平均粒径也可以为0.1μm以上且5μm以下。在第1实施方式中使用平均粒径为0.5μm的结晶性金属氧化物粉末。
另外,银粉末及结晶性氧化物粉末的平均粒径是指在通过激光衍射/散射法求出的粒度分布中累积频率达到50%的粒径(D50)。
溶剂的合适的沸点为200℃以上,例如可适用α萜品醇、丁基卡必醇乙酸酯或二甘醇二丁醚等。另外,在第1实施方式中使用了α萜品醇。
树脂用来调整焊料基底层形成用膏(导电性组成物)的粘度,合适的有在500℃以上的温度下被分解的树脂,例如,可适用乙基纤维素、丙烯酸树脂或醇酸树脂等。另外,在第1实施方式中使用了乙基纤维素。
并且,在第1实施方式中添加了二羧酸系分散剂。另外,也可以不添加分散剂而构成焊料基底层形成用膏(导电性组合物)。作为二羧酸系分散剂,例如可使用CRODA公司制KD-15S。
其次,参考图4所示的流程图对第1实施方式中所使用的焊料基底层形成用膏的制造方法进行说明。
首先,将所述银粉末、玻璃粉末和结晶性氧化物粉末进行混合而生成混合粉末(混合粉末形成工序S1)。并且,将溶剂、树脂及分散剂进行混合而生成有机混合物(有机物混合工序S2)。
并且,通过混合机将混合粉末形成工序S1中所得到的混合粉末和有机物混合工序S2中所得到的有机混合物进行预混合(预混合工序S3)。
接着,利用具有多个辊子的辊磨机将预混合物一边捏合一边进行混合(混炼工序S4)。
利用膏过滤机过滤通过混炼工序S4而得到的混炼物质(过滤工序S5)。
由此制造出在第1实施方式中使用的焊料基底层形成用膏。
作为在第1实施方式中使用的其他焊料基底层形成用膏,可举出将二甘醇二丁醚用作溶剂。
此时,树脂最优选为在氮气气氛中可分解的丙烯树脂。
接着,参考图8所示的流程图对第1实施方式中所使用的其他焊料基底层形成用膏的制造方法进行说明。
首先,混合所述银粉末、玻璃粉末和结晶性氧化物粉末而生成混合粉末(混合粉末形成工序S1)。并且,混合溶剂和树脂而生成有机混合物(有机物混合工 序S2)。
并且,通过混合机对混合粉末形成工序S1中所得到的混合粉末和有机物混合工序S2中所得到的有机混合物进行预混合(预混合工序S3)。
接着,利用具有多个辊子的辊磨机将预混合物一边捏合一边进行混合(混炼工序S4)。
利用膏过滤机过滤通过混炼工序S4而得到的混炼物质(过滤工序S5)。
由此制造出第1实施方式中所使用的其他焊料基底层形成用膏。
接着,参考图5的流程图对第1实施方式的功率模块的制造方法进行说明。
首先,准备成为电路层12的铝板以及成为金属层13的铝板,将这些铝板分别经由钎料层压于陶瓷基板11的一面及另一面,并进行加压/加热后冷却,从而接合所述铝板和陶瓷基板11(电路层及金属层接合工序S11)。另外,该焊接温度被设定为640℃~650℃。
接着,在金属层13的另一面涂布所述焊料基底层形成用膏(第1焊料基底层形成用膏涂布工序S12)。另外,在涂布焊料基底层形成用膏时可采用网版印刷法、胶版印刷法、感光性工艺等各种方法。
在金属层13的另一面涂布有焊料基底层形成用膏的状态下装入到加热炉内进行焊料基底层形成用膏的烧成(第1烧成工序S13)。由此,形成第1Ag烧成层(未图示)。另外,此时的烧成温度被设定为350℃~645℃,更优选被设定为450℃~620℃。
并且,经由焊锡材将散热板21层压于第1Ag烧成层,并在还原炉内进行焊接(散热板接合工序S14)。
由此,在金属层13与散热板21之间形成具有第1玻璃层41、分散有结晶性氧化物颗粒44的第1Ag层42和第1焊料层43的第1接合部40,制造出第1实施方式的带散热板的功率模块用基板20。
接着,将冷却器31层压于散热板21的另一面侧并通过固定螺钉22进行固定(冷却器层压工序S15)。
并且,将所述焊料基底层形成用膏涂布于电路层12的一面(第2焊料基底层形成用膏涂布工序S16)。另外,在涂布焊料基底层形成用膏时,可采用网版印刷法、胶版印刷法或感光性工艺等各种方法。在第1实施方式中,通过网版印刷法将焊料基底层形成用膏形成为图案形状。
在电路层12的一面涂布有焊料基底层形成用膏的状态下装入到加热炉内进行 焊料基底层形成用膏的烧成(第2烧成工序S17)。由此,形成第2Ag烧成层(未图示)。另外,此时的烧成温度被设定为350℃~645℃。
并且,经焊锡材将半导体元件3载置于第2Ag烧成层的表面并在还原炉内进行焊接(半导体元件接合工序S18)。
由此,在电路层12与半导体元件3之间形成有具有第2玻璃层51、分散有结晶性氧化物颗粒54的第2Ag层52和第2焊料层53的第2接合部50,制造出第1实施方式的功率模块1。
具有上述结构的第1实施方式的功率模块1中,在金属层13与散热板21之间形成有具有第1玻璃层41、第1Ag层42和第1焊料层43的第1接合部40,在电路层12与半导体元件3之间形成有具有第2玻璃层51、第2Ag层52和第2焊料层53的第2接合部50。该第1Ag层42及第2Ag层52中含有结晶性氧化物颗粒44、54。因此,在焊接工序中,能够抑制Ag向液相焊料内部扩散,并能够维持形成Ag层。并且,即使在被负载功率循环及热循环的情况下,也能够抑制在由4N铝构成的金属层13及电路层12的表面产生弯曲或折皱。由此,散热板21与金属板13的接合可靠性以及半导体元件3和电路层12的接合可靠性提高,通过散热板21能够使热量有效地扩散。
并且,在第1实施方式中,结晶性氧化物颗粒44、54通过由氧化钛、氧化硅和氧化锌中的任1种或2种以上构成的颗粒而构成,因此抑制Ag向焊料扩散的效果明显。
并且,第1玻璃层41形成于金属层13的另一面,第2玻璃层51形成于电路层12的一面,因此通过这些第1玻璃层41及第2玻璃层51能够去除存在于金属层13及电路层12的表面的氧化皮膜,并且可经由焊锡材可靠地接合金属层13和散热板21及电路层12和半导体元件3。从而,无需在金属层13及电路层12的表面设置镀Ni膜。
另外,在第1实施方式中,在搭载半导体元件3的电路层12的一面形成的第2玻璃层51的内部分散有平均粒径为数纳米程度的微细的导电颗粒,因此在第2玻璃层51中确保了导电性,能够将电路层12和半导体元件3电连接。
另外,根据具有上述结构的第1实施方式的焊料基底层形成用膏,具备结晶性氧化物粉末和银粉末,并且通过烧成银粉末形成Ag层,另外,可形成结晶性氧化物颗粒44、54分散于所述Ag层内部的焊料基底层。并且,经由焊锡材将被接合部件接合于电路层12及金属层13的情况下,分散于Ag层内部的结晶性氧化物 颗粒44、54在进行焊接时能够抑制焊料向Ag扩散,从而维持第1Ag层42和第2Ag层52的形成,能够抑制在第1焊料层43和第2焊料层53中产生龟裂。因此,即使在被负载热循环时仍残留有Ag膜,因此能够抑制铝表面的塑性变形,其结果能够抑制在电路层12及金属层13产生弯曲或折皱。
并且,由于具备玻璃粉末和银粉末,且通过烧成所生成的焊料基底层具备由玻璃粉末软化而形成的玻璃层41、51和在玻璃层41、51上烧结有银粉末的Ag层42、52,因此玻璃层41、51与电路层12及金属层13的铝氧化皮膜进行反应而去除铝氧化皮膜,由此能够形成直接接合于电路层12及金属层13的表面的焊料基底层。并且,导电颗粒分散于玻璃层51的内部,因此通过该导电颗粒而确保了导电性。
从而,例如经由焊锡材将半导体元件3接合于电路层12上的情况下,通过烧成该焊料基底层形成用膏而得到的焊料基底层,能够使电路层12和半导体元件3导通,并且能够构成功率模块1等半导体装置。即通过使用焊料基底层形成用膏能够形成导电性良好的焊料基底层。
并且,因为导电性良好而能够作为热传递性优异的焊料基底层,并且从功率模块用基板向散热板有效地传递热量。
并且,银粉末的含量为60质量%以上,因此能够可靠地形成具有上述导电性的焊料基底层。并且,银粉末的含量为90质量%以下,因此流动性得到确保,并且可涂布于电路层12及金属层13。
并且,银粉末的重量A和玻璃粉末的重量G之比A/G被设定在80/20至99/1的范围内,因此能够可靠地形成玻璃层41、51和Ag层42、52。
另外,在银粉末的重量A与结晶性氧化物粉末的重量O的重量比A/O中,结晶性氧化物粉末的重量O为90/10以下,因此无需增大上述焊料基底层的电阻值而能够形成导电性良好的焊料基底层。因导电性良好而能够作为热传递性也优异的焊料基底层。并且,在银粉末的重量A和结晶性氧化物粉末的重量O之比A/O中,结晶性氧化物粉末的重量O为99/1以上,因此通过分散于Ag层42、52中的结晶性氧化物颗粒44、54而能够抑制Ag向焊料的扩散。
并且,结晶性氧化物粉末选自氧化钛、氧化硅及氧化锌,因此若分散于与焊接的Ag层中,则能够抑制Ag向焊料内部扩散。
并且,玻璃粉末的软化温度为600℃以下,因此即使以较低温度烧成该焊料基底层形成用膏,玻璃也能够流动,因此能够形成焊料基底层,在烧成焊料基底层 形成用膏时,也能够防止由铝或铝合金构成的电路层12及金属层13劣化。
并且,玻璃粉末含有氧化铅、氧化锌、氧化硅、氧化棚、氧化磷及氧化铋中的任1种或2种以上,因此其软化温度较低,可将烧成温度设定得较低。并且,结晶性温度较高,在焊料基底层形成用膏内部的流动性得到确保,能够提高电路层12及金属层13的附着性。
另外,银粉末的粒径为0.05μm以上且1.0μm以下,因此将该焊料基底层形成用膏涂布于电路层12及金属层13时,导电颗粒均匀地分散,并通过烧成该焊料基底层形成用膏,可均匀地形成具有导电性的焊料基底层。
接着,参考图6、图7对本发明的第2实施方式的功率模块101及带冷却器的功率模块用基板130进行说明。另外,在该第2实施方式中将冷却器131用作散热器。
该功率模块101具备:配设有电路层112及金属层113的功率模块用基板110;搭载于电路层112的一面(图6中为上表面)的半导体元件103;及层压于功率模块用基板110的另一面侧的冷却器131。
功率模块用基板110具备:构成绝缘层的陶瓷基板111;配设于该陶瓷基板111的一面(图6中为上表面)的电路层112;配设于陶瓷基板111的另一面(图6中为下表面)的金属层113;及配设于金属层113的另一面侧的缓冲层115。
陶瓷基板111防止电路层112与金属层113之间的电连接,并由绝缘性高的AlN(氮化铝)构成。
通过具有导电性的金属板接合于陶瓷基板111上而形成电路层112及金属层113。
在第2实施方式中,通过由纯度99.99%以上的铝(所谓的4N铝)的轧制板构成的铝板接合于陶瓷基板111而形成电路层112及金属层113。
缓冲层115由铝或铝合金、铜或铜合金或者含铝的复合材料(例如AlSip等)构成。
如图6所示,冷却器131具备用于使冷却介质(例如冷却水)流通的流路132。优选地,冷却器131由导热性良好的材质构成,在第2实施方式中由A6063(铝合金)构成。
并且,如图7所示,在由A6063(铝合金)构成的冷却器131与缓冲层115之间的第1接合部140,具备:形成于冷却器131的一面的第1玻璃层141;层压于该第1玻璃层141的第1Ag层142;及层压于该第1Ag层142的第1焊料层143。 其中,在第1Ag层142中分散有结晶性氧化物颗粒144。可利用与第1实施方式相同的焊料基底层形成用膏形成第1Ag层142。
在具有上述结构的第2实施方式的功率模块101及带冷却器的功率模块用基板130中,由铝合金构成的冷却器131与功率模块用基板110的缓冲层115之间形成有具有第1玻璃层141、第1Ag层142和第1焊料层143的第1接合部140。另外,在第1Ag层142中分散有结晶性氧化物颗粒144,因此在进行焊接时能够抑制Ag向焊料内部扩散。其结果,可抑制在由铝合金构成的冷却器131的表面上产生弯曲或折皱。由此,冷却器131与功率模块用基板110的接合可靠性提高,通过冷却器131能够有效地冷却功率模块用基板110。
以上,对本发明的各实施方式进行了说明,然而,本发明并不限定于此,在不脱离本发明的技术思想的范围内可进行适当的变更。
例如,举例说明了在功率模块中使用的焊接结构,然而,并不限定于此,只要能够接合铝部件(电极部件)与被接合部件则对用途并无限定。尤其,适用于与LED元件、珀耳帖元件等产生功率循环或热循环的元件的接合部件。
并且,作为散热器,利用散热板及冷却器已进行说明,然而,并不限定于此,也可以是形成有散热片的空冷/液冷散热器或热管等。
并且,在本发明的各实施方式中,已说明构成电路层及金属层的金属板为纯度99.99%的纯铝轧制板,然而,并不限定于此,也可以是纯度99%的铝(2N铝)。
另外,对于将由AlN构成的陶瓷基板用作绝缘层的情况进行了说明,然而,并不限定于此,也可以使用由Si3N4或Al2O3等构成的陶瓷基板,也可以通过绝缘树脂构成绝缘层。
并且,构成电路层及金属层的金属板也可以为由其他铝或铝合金构成的铝部件,也可为由铜或铜合金构成的铜部件,也可为由其他金属构成的金属部件。
并且,在第1实施方式中,已说明将金属层接合于散热板的情况,然而,并不限定于此,也可以构成为金属层接合于冷却器、形成有散热片的空冷/液冷散热器或热管等散热器。
另外,对于将由AlN构成的陶瓷基板用作绝缘层的情况进行了说明,然而,并不限定于此,也可以使用由Si3N4或Al2O3等构成的陶瓷基板,也可以通过绝缘树脂构成绝缘层。
并且,关于焊料基底层形成用膏原料的调配量,并不限定于各实施方式中所记载的调配量,也可以使用其他玻璃粉末、树脂、溶剂及分散剂。软化温度为金 属部件(铝等)的熔点以下即可,更优选为600℃以下即可。
并且,作为树脂也可以使用丙烯树脂及醇酸树脂。另外,作为溶剂也可以使用α-萜品醇、丁基卡必醇乙酸酯或二甘醇二丁醚等。
实施例
以下,关于为确认本发明效果而进行的确认实验结果进行说明。
在由纯度99.99%以上的铝板构成的电路层上,形成烧成表1及表2所示组成的焊料基底层形成用膏而成的烧成层,在该烧成层上,利用Sn-Ag-Cu系无铅焊料在还原炉内接合半导体元件。表1及表2的A/G指(银粉末的重量)/(玻璃粉末的重量),A/O指(银粉末的重量)/(结晶性氧化物粉末的重量)。另外,焊料基底层形成用膏的涂布厚度为10μm。并且,烧成温度为575℃,烧成时间为10分钟。由此,获得烧成层的厚度约为8μm且玻璃层厚度约为1μm的Ag烧成层(焊料基底层)。
另外,作为玻璃粉末,实施例1~实施例6中使用了无铅Bi2O3-ZnO-B2O3系(玻化温度:352℃、软化温度402℃)的玻璃料。
在实施例7~实施例15以及比较例1~比较例2中,作为玻璃粉末使用了具有表2中所记载的软化温度的无铅Bi2O3-ZnO-B2O3系玻璃料。
另外,所使用的陶瓷基板由AlN构成,30mm×20mm,厚度为0.6mm。
并且,所使用的电路层及金属层由4N铝构成,13mm×10mm,厚度为0.6mm。
所使用的半导体元件被用作IGBT(绝缘栅双极型晶体管)元件(加热片),12.5mm×9.5mm,厚度为0.25mm。
(功率循环试验)
对于如同上述而获得的试验片的IGBT元件(加热片),在15V、150A的通电条件下,以通电2秒钟、断电(冷却时间)8秒钟的条件重复进行通电,使IGBT元件(加热片)的温度在30℃至130℃的范围内变化。实施该功率循环10万次。
(Ag层残留部的比例评价)
在进行功率循环试验之后,利用金刚石锯切断试验片,对剖面进行树脂包埋后进行研磨并通过EPMA进行元素分析(映射)。利用EPMA对焊接部剖面进行分析而分类成焊料层、Ag侵蚀层和Ag层残留部,并对Ag层残留部/Ag层整体的剖面面积比例进行了评价。另外,Ag层整体为烧成焊接之前的焊料基底层形成用膏时的Ag层的整个剖面面积。
(热阻测定)
测定了功率循环试验时的初始热阻和试验后的热阻。如下进行热阻测定。用100W的电力加热IGBT元件(加热片),并利用热电偶来测定IGBT元件(加热片)的温度。并且,对冷却器(散热器)中流通的冷却介质(乙二醇:水=9:1)的温度进行实测。然后,将加热片的温度与冷却介质的温度差除以功率的值作为热阻,算出进行功率循环试验之后的热阻相对于初始热阻的上升率。
(Ag层中的结晶性氧化物颗粒的确认)
结晶性氧化物颗粒不像玻璃料那样在热处理时流动,且不易与其他物质进行反应,因此以刚进行添加的状态存在于Ag膜中。因此,可通过如同SEM的剖面观察方法确认氧化物颗粒。并且,也可利用所谓EDS或EPMA的分析方法确认氧化物的种类。

如表1所示,实施例1至实施例6中,在Ag层的内部分散有结晶性氧化物颗粒。因此在进行焊接工序之后存在充分的Ag残留部,功率循环之后的热阻率的上升率小,而且电路层及金属层与陶瓷基板的接合可靠性高。
另一方面,在比较例1及比较例2中,由于Ag层不含有结晶性氧化物颗粒,因此导致Ag残留部减少,功率循环后的热阻的上升率大,因此与实施例相比接合可靠性差。

如表2所示,实施例7至实施例15中,由于含有结晶性氧化物粉末,因此功率循环试验之后的Ag残留部多,热阻率的上升率小,并且电路层及金属层与陶瓷基板的接合可靠性高。实施例7至实施例12中,A(银粉末的重量)/O(结晶性氧化物粉末的重量)在90/10至99/1的范围内,与实施例13至实施例15相比,可知热阻率的上升率小且接合可靠性高。
另一方面,在比较例1及比较例2中,由于不含有结晶性氧化物颗粒,因此功率循环后的热阻率的上升率大,因此与实施例7至实施例15相比接合可靠性差。
附图标记说明
1-功率模块,3-半导体元件(被接合部件),10-功率模块用基板,11-陶瓷基板(绝缘层),12-电路层(铝部件、金属部件),13-金属层(铝部件,金属部件),20-带散热板的功率模块用基板(带散热器的功率模块用基板),21-散热板(被接合部件、散热器),40-第1接合部(焊接结构),41-第1玻璃层(玻璃层),42-第1Ag层(Ag层),43-第1焊料层(焊料层),44-结晶性氧化物颗粒,50-第2接合部(焊接结构),51-第2玻璃层(玻璃层),52-第2Ag层(Ag层),53-第2焊料层(焊料层),54-结晶性氧化物颗粒,101-功率模块,110-功率模块用基板,115-缓冲层(被接合部件),130-带冷却器的功率模块用基板(带散热器的功率模块用基板),131-冷却器(铝部件、散热器),140-第1接合部(焊接结构),141-第1玻璃层(玻璃层),142-第1Ag层(Ag层),143-第1焊料层(焊料层),144-结晶性氧化物颗粒。

焊接结构、功率模块、带散热器的功率模块用基板及其制造方法以及焊料基底层形成用膏.pdf_第1页
第1页 / 共26页
焊接结构、功率模块、带散热器的功率模块用基板及其制造方法以及焊料基底层形成用膏.pdf_第2页
第2页 / 共26页
焊接结构、功率模块、带散热器的功率模块用基板及其制造方法以及焊料基底层形成用膏.pdf_第3页
第3页 / 共26页
点击查看更多>>
资源描述

《焊接结构、功率模块、带散热器的功率模块用基板及其制造方法以及焊料基底层形成用膏.pdf》由会员分享,可在线阅读,更多相关《焊接结构、功率模块、带散热器的功率模块用基板及其制造方法以及焊料基底层形成用膏.pdf(26页珍藏版)》请在专利查询网上搜索。

1、10申请公布号CN104126226A43申请公布日20141029CN104126226A21申请号201380008901922申请日20130214201202964620120214JP201202968320120214JPH01L23/40200601B23K1/00200601B23K1/1920060171申请人三菱综合材料株式会社地址日本东京72发明人西元修司西川仁人长友义幸74专利代理机构北京德琦知识产权代理有限公司11018代理人齐葵周艳玲54发明名称焊接结构、功率模块、带散热器的功率模块用基板及其制造方法以及焊料基底层形成用膏57摘要本发明提供一种焊接结构、利用所述接合。

2、结构的功率模块、带散热器的功率模块用基板及其制造方法以及焊料基底层形成用膏,本发明的焊料基底层形成用膏配设于金属部件上,并通过烧成而与产生于金属部件表面的氧化皮膜进行反应,从而,在金属部件上形成焊料基底层,即使在被负载功率循环及热循环时,也能够抑制在铝部件的表面上产生弯曲或折皱,并能够提高与被接合部件的接合可靠性。30优先权数据85PCT国际申请进入国家阶段日2014081186PCT国际申请的申请数据PCT/JP2013/0534882013021487PCT国际申请的公布数据WO2013/122126JA2013082251INTCL权利要求书2页说明书17页附图6页19中华人民共和国国家。

3、知识产权局12发明专利申请权利要求书2页说明书17页附图6页10申请公布号CN104126226ACN104126226A1/2页21一种焊接结构,利用焊锡材接合由铝或铝合金构成的铝部件和被接合部件,其特征在于,具备形成于所述铝部件表面的玻璃层;层压于该玻璃层的AG层;及层压于所述AG层的焊料层,所述AG层中分散有结晶性氧化物颗粒。2根据权利要求1所述的焊接结构,其特征在于,所述结晶性氧化物颗粒由氧化钛、氧化硅和氧化锌中的任1种或2种以上构成。3一种功率模块,其具备由所述铝部件构成的电路层配设于绝缘层的一面的功率模块用基板和接合于所述电路层的一面的半导体元件,所述功率模块的特征在于,所述电路层。

4、和所述半导体元件的接合部为权利要求1或权利要求2所述的焊接结构。4一种带散热器的功率模块用基板,具备功率模块用基板,电路层配设于绝缘层的一面;及散热器,接合于该功率模块用基板的另一面侧,所述带散热器的功率模块用基板的特征在于,所述散热器的接合面及所述功率模块用基板的接合面中的至少一个接合面由所述铝部件构成,所述散热器和所述功率模块用基板的接合部为权利要求1或权利要求2所述的焊接结构。5一种焊接结构的制造方法,利用焊锡材接合由铝或铝合金构成的铝部件和被接合部件,所述焊接结构的制造方法的特征在于,具备涂布工序,将含有玻璃及结晶性氧化物颗粒的焊料基底层形成用膏涂布于所述铝部件的表面;烧成工序,在涂布。

5、有所述焊料基底层形成用膏的状态下,进行加热处理而烧成所述焊料基底层形成用膏;及焊接工序,经由焊锡材将所述被接合部件焊接于由所述焊料基底层形成用膏的烧成体构成的AG烧成层的表面,所述AG烧成层中分散有结晶性氧化物颗粒。6根据权利要求5所述的焊接结构的制造方法,其特征在于,所述结晶性氧化物颗粒由氧化钛、氧化硅和氧化锌中的任1种或2种以上构成。7一种功率模块的制造方法,所述功率模块具备由所述铝部件构成的电路层配设于绝缘层的一面的功率模块用基板和接合于所述电路层的一面的半导体元件,并且所述电路层和所述半导体元件为焊接部,所述功率模块的制造方法的特征在于,所述焊接部通过权利要求5或权利要求6所述的焊接结。

6、构的制造方法而形成。8一种带散热器的功率模块用基板的制造方法,所述带散热器的功率模块用基板具备电路层配设于绝缘层的一面的功率模块用基板和接合于该功率模块用基板的另一面侧的散热器,所述散热器的接合面及所述功率模块用基板的接合面中的至少一个接合面由所述铝部件构成,所述散热器和所述功率模块用基板为焊接部,所述带散热器的功率模块用基板的制造方法的特征在于,所述焊接部通过权利要求5或权利要求6所述的焊接结构的制造方法而形成。9一种焊料基底层形成用膏,其配设于金属部件上,并通过烧成在所述金属部件上形成焊料基底层,所述焊料基底层形成用膏的特征在于,含有银粉末、玻璃粉末、结晶性氧化物粉末、树脂及溶剂。权利要求。

7、书CN104126226A2/2页310根据权利要求9所述的焊料基底层形成用膏,其特征在于,所述银粉末的含量为60质量以上且90质量以下,就所述玻璃粉末而言,所述银粉末的重量A和所述玻璃粉末的重量G之比A/G被设定在80/20至99/1的范围内,就所述结晶性氧化物粉末而言,所述银粉末的重量A和所述结晶性氧化物粉末的重量O之比A/O被设定在90/10至99/1的范围内。11根据权利要求9或权利要求10所述的焊料基底层形成用膏,其特征在于,所述结晶性氧化物粉末由氧化钛、氧化硅和氧化锌中的任1种或2种以上构成。12根据权利要求9至权利要求11中任一项所述的焊料基底层形成用膏,其特征在于,所述玻璃粉末。

8、的软化温度为600以下。13根据权利要求9至权利要求12中任一项所述的焊料基底层形成用膏,其特征在于,所述玻璃粉末含有氧化铅、氧化锌、氧化硅、氧化棚、氧化磷及氧化铋中的任1种或2种以上。14根据权利要求9至权利要求13中任一项所述的焊料基底层形成用膏,其特征在于,所述银粉末的粒径为005M以上且10M以下。权利要求书CN104126226A1/17页4焊接结构、功率模块、带散热器的功率模块用基板及其制造方法以及焊料基底层形成用膏技术领域0001本发明涉及一种利用焊锡材接合由铝或铝合金构成的铝部件和被接合部件的焊接结构、利用该焊接结构的功率模块、带散热器的功率模块用基板及其制造方法以及配置在金属。

9、部件上并通过烧成在所述金属部件上形成焊料基底层的焊料基底层形成用膏。0002本申请主张基于2012年2月14日在日本申请的专利申请第2012029646号以及2012年2月14日在日本申请的专利申请第2012029683号的优先权,并将其内容援用于本说明书中。背景技术0003作为对金属部件和被接合部件进行焊接而构成的焊接结构,例如,可举出如同专利文献1、2所示的功率模块。0004功率模块具备成为电路层的金属板例如A1铝接合于陶瓷基板的一面而构成的功率模块用基板和搭载于电路层的一面的功率元件半导体元件。0005并且,在功率模块用基板的另一面侧配设有作为散热器的散热板和冷却器等,以发散来自功率元件。

10、半导体元件的热量。0006在上述功率模块中,电路层和功率元件半导体元件经由焊锡材而被接合。即构成电路层为金属部件铝部件,功率元件半导体元件为被接合部件的焊接结构。0007并且,有时功率模块用基板和散热器也经由焊锡材而被接合。0008另外,当电路层等为由铝或铝合金构成的铝部件的情况下,在电路层的表面形成有铝的氧化皮膜,因此在该状态下无法进行良好的焊接。0009并且,当电路层等为由铜或铜合金构成的铜部件的情况下,因熔融的焊锡材与铜进行反应而存在焊锡材成分进入电路层等的铜部件内部,且特性改变的问题。0010于是,以往,通过无电解电镀等,在电路层的表面形成作为基底层的镀NI膜,在该镀NI膜上配设焊锡材。

11、而接合半导体元件。0011在此,上述功率模块在使用时被负载功率循环及热循环。当功率模块被负载功率循环及热循环的情况下,因陶瓷基板和电路层铝的热膨胀系数之差而引起的应力作用于陶瓷基板和电路层的接合界面,接合可靠性有可能降低。于是,以往利用纯度9999以上的4N铝等变形阻力比较小的金属部件铝构成电路层,通过电路层的变形而吸收上述热应力以提高接合可靠性。0012并且,在专利文献3中记载有如下的导电性组成物焊料基底层形成用膏,该导电性组成物能够在不设置镀NI膜的情况下形成使得由铝或铝合金构成的电路层和焊料层导通的导电接合层焊料基底层,并公开了经由玻璃层、AG层及焊料层接合上述电路层和被接合部件的结构。。

12、0013专利文献1日本专利公开2007311526号公报0014专利文献2日本专利公开2008227336号公报说明书CN104126226A2/17页50015专利文献3日本专利公开2010287554号公报0016然而,当利用纯度9999以上4N铝等变形阻力比较小的金属部件铝等构成电路层的情况下存在如下问题,即在负载有功率循环和热循环时,导致在电路层表面产生弯曲或折皱。若电路层表面产生弯曲或折皱,则功率模块的可靠性降低。0017并且,在专利文献3中,通过烧成而能够形成导电接合层,该导电接合层能够通过与自然产生于所述电路层表面的铝氧化皮膜进行反应而与所述电路层导通,然而并没有涉及针对在电路层。

13、和半导体元件进行焊接之后所产生的电路层表面的弯曲或折皱的观点。0018尤其,近年来,伴随功率模块的小型化和薄型化的发展,其使用环境也开始变得苛刻,来自半导体元件等电子部件的发热量增大。因此,功率循环及热循环条件变得苛刻,并具有在电路层表面容易产生弯曲或折皱的倾向,存在功率模块的可靠性降低的问题。0019另外,这种弯曲或折皱在功率模块用基板和散热器的接合部分也构成问题。0020本发明是鉴于所述问题而提出的,其目的在于提供一种即使在被负载功率循环及热循环时也能够抑制在铝部件的表面上产生弯曲或折皱,且能够提高与被接合部件的接合可靠性的接合结构、利用该焊接结构的功率模块、带散热器的功率模块用基板及其制。

14、造方法。0021本发明的另一目的在于提供一种焊料基底层形成用膏,其配设于金属部件上,并通过烧成与产生于金属部件表面的氧化皮膜进行反应,从而在金属部件上形成焊料基底层,即使在被负载功率循环及热循环时,也能够抑制在金属部件的表面上产生弯曲或折皱。0022本发明人等经深入研究结果发现,在AG层形成于金属部件铝部件的一面的情况下,即使在被负载热循环时也能够抑制焊料的变形,并且能够抑制在金属部件铝部件的表面上产生弯曲或折皱。这可推断为源于以下理由,即由于AG为比铝硬的金属,因此通过AG层能够抑制铝部件的塑性变形。0023然而,有时在被负载热循环时会局部产生金属部件的塑性变形,产生弯曲或折皱。0024并且。

15、,经进一步研究结果得知,在AG向焊料内部扩散而产生AG侵蚀的部位,有时在焊料内部产生龟裂。即,明确可知在产生AG侵蚀的部位未充分形成AG层,而金属部件铝部件的表面局部产生塑性变形,从而有可能产生弯曲或折皱,并且在焊料内部产生龟裂。发明内容0025本发明是基于上述观点而完成的,本发明的焊接结构为利用焊锡材接合由铝或铝合金构成的铝部件和被接合部件的焊接结构,其中,具备形成于所述铝部件的表面的玻璃层;层压于该玻璃层的AG层;及层压于所述AG层的焊料层,并且所述AG层中分散有结晶性氧化物颗粒。0026根据该结构的焊接结构,由于在AG层中分散有结晶性氧化物颗粒,因此抑制AG向焊料内部扩散。并且,通过抑制。

16、在铝部件有可能产生的弯曲或折皱而能够防止焊料中产生龟裂,因此能够提高与被接合部件的焊接结构的可靠性。0027并且,在铝部件的表面形成有玻璃层,因此能够使存在于铝部件的表面的氧化皮膜与该玻璃层进行反应而将其去除,并经由焊锡材能够可靠地接合铝部件和被接合部件。因此,无需在铝部件表面设置镀NI膜等。说明书CN104126226A3/17页60028另外,优选所述结晶性氧化物颗粒由氧化钛、氧化硅和氧化锌中的任1种或2种以上构成。0029若选自氧化钛、氧化硅和氧化锌的结晶性氧化物颗粒分散于与焊接的AG层中,则抑制AG向焊料内部扩散。由于AG中分散有氧化物颗粒,因此在进行烧成时AG层的缩颈面积变小。若对这。

17、样被烧结的AG层进行焊接,则与完全缩颈的AG层相比,不易产生AG向焊料内部扩散,因此能够抑制对焊料的AG侵蚀。0030本发明的功率模块,具备功率模块用基板,在绝缘层的一面配设有由铝部件构成的电路层;及半导体元件,接合于所述电路层的一面,其中,所述电路层与所述半导体元件的接合部为上述焊接结构。0031具有这种结构的本发明的功率模块中,成为铝部件的电路层和成为被接合部件的半导体元件,经由玻璃层、分散有结晶性氧化物颗粒的AG层和焊料层而被接合。因此抑制了AG向焊料扩散,能够维持AG层的形成,并且能够抑制在电路层表面产生弯曲或折皱。0032从而,能够提供一种能够抑制焊料层中产生龟裂且半导体元件的接合可。

18、靠性优异的功率模块。0033本发明的带散热器的功率模块用基板,具备功率模块用基板,电路层配设于绝缘层的一面;及散热器,接合于该功率模块用基板的另一面侧,其中,所述散热器的接合面及所述功率模块用基板的接合面中的至少一个接合面由铝部件构成,并且所述散热器与所述功率模块用基板的接合部为上述焊接结构。0034在具有这种结构的本发明的带散热器的功率模块用基板中,由于所述功率模块用基板的接合面及所述散热器的接合面中的至少一个接合面由铝部件构成,因此在具有所述功率模块用基板的接合面的部件以及具有所述散热器的接合面的部件中,其中一个部件相当于上述焊接结构的铝部件,而另一个部件相当于被接合部件。并且,该铝部件和。

19、被接合部件经由玻璃层、分散有结晶性氧化物颗粒的AG层和焊料层而被接合。因此,抑制AG向焊料的扩散而能够维持AG层,并且能够抑制在铝部件的表面产生弯曲或折皱。0035从而,提高功率模块用基板和散热器的接合可靠性,且能够使热量通过散热器而有效地发散。0036另外,作为散热器,包括以通过发散热量而降低温度为目的的如下金属部件,即板状散热板、内部供制冷剂流通的冷却器、形成有散热片的液冷/空冷散热器和热管等。0037本发明的焊接结构的制造方法为,利用焊锡材接合由铝或铝合金构成的铝部件和被接合部件的焊接结构的制造方法,其中,具备涂布工序,将含有玻璃及结晶性氧化物颗粒的焊料基底层形成用膏涂布于所述铝部件的表。

20、面;烧成工序,在涂布有所述焊料基底层形成用膏的状态下,进行加热处理而烧成所述焊料基底层形成用膏;及焊接工序,经由焊锡材将所述被接合部件焊接于由所述焊料基底层形成用膏的烧成体构成的AG烧成层的表面,并且所述AG烧成层中分散有结晶性氧化物颗粒。0038根据这种制造方法,能够使结晶性氧化物颗粒分散于AG烧结层中,因此能够制造在焊接工序中可抑制AG向焊料内部扩散的焊接结构。并且,通过抑制有可能在铝部件产生的弯曲或折皱而能够防止在焊料中产生龟裂,因此可提高与被接合部件的焊接结构的可靠性。0039本发明的功率模块的制造方法中,所述功率模块具备由铝部件构成的电路层配设说明书CN104126226A4/17页。

21、7于绝缘层的一面的功率模块用基板和接合于电路层的一面的半导体元件,并且将电路层和半导体元件作为焊接部,其中,该焊接部通过上述焊接结构的制造方法而形成。0040并且,本发明的带散热器的功率模块用基板的制造方法中,所述带散热器的功率模块用基板具备电路层配设于绝缘层的一面的功率模块用基板和接合于该功率模块用基板的另一面侧的散热器,并且散热器的接合面及所述功率模块用基板的接合面中的至少一个接合面由所述铝部件构成,所述散热器和所述功率模块用基板作为焊接部,其中,该焊接部通过上述焊接结构的制造方法而形成。0041根据如同上述焊接结构、功率模块及带散热器的功率模块用基板的制造方法,由于在焊接部能够形成分散有。

22、结晶性氧化物颗粒的AG烧成层,因此在进行焊接时抑制AG向焊料扩散,从而能够维持AG层的形成,能够抑制在铝部件的表面产生弯曲或折皱。0042并且,基于上述观点而构成的本发明的焊料基底层形成用膏为通过配设于金属部件上并通过烧成而在所述金属部件上形成焊料基底层的焊料基底层形成用膏,其中,所述膏含有银粉末、玻璃粉末、结晶性氧化物粉末、树脂及溶剂。0043根据具有该结构的焊料基底层形成用膏,具备结晶性氧化物粉末及银粉末,并且通过烧成,银粉末形成AG层,进而形成结晶性氧化物颗粒分散于AG层内部的所述焊料基底层。并且,当经由焊锡材将被接合部件接合于金属部件上的情况下,分散于AG层内部的结晶性氧化物颗粒在进行。

23、焊接时抑制AG向焊料内部扩散,从而能够维持AG层。因此,即使在被负载热循环时,也能够抑制在金属部件产生弯曲或折皱。0044并且,所述膏具备玻璃粉末和银粉末,并且通过烧成而生成的所述焊料基底层具备由玻璃粉末软化形成的玻璃层和银粉末烧结于玻璃层上而形成的AG层,因此所述玻璃层与所述金属部件上的氧化皮膜进行反应而去除该氧化皮膜,并能够形成直接接合于金属部件的表面的焊料基底层。并且,在该焊料基底层中,导电颗粒分散于玻璃层内部,因此通过该导电颗粒而确保了导电性。从而,例如,在经由焊锡材将半导体元件接合于电路层上的情况下,通过烧成该焊料基底层形成用膏而得到的焊料基底层可以使电路层和半导体元件导通,并能够构。

24、成功率模块等半导体装置。即通过使用该焊料基底层形成用膏而能够形成导电性及导热性优异的焊料基底层。0045在此,所述银粉末的含量为60质量以上且90质量以下,就所述玻璃粉末而言,所述银粉末的重量A和所述玻璃粉末的重量G之比A/G优选被设定在80/20至99/1的范围内,就所述结晶性氧化物粉末而言,所述银粉末的重量A和所述结晶性氧化物粉末的重量O之比A/O优选被设定在90/10至99/1的范围内。0046在该情况下,所述银粉末的含量为60质量以上,因此能够对上述焊料基底层赋予导电性。并且,所述银粉末的含量为90质量以下,因此确保了流动性且能够涂布于金属部件。0047另外,所述银粉末的重量A与所述玻。

25、璃粉末的重量G之比A/G被设定在80/20至99/1的范围内,因此能够可靠地形成玻璃层和AG层。0048另外,银粉末的重量A和所述结晶性氧化物粉末的重量O之比A/O中,结晶性氧化物粉末的重量O为90/10以下,因此不使上述焊料基底层的电阻值增大而能够形成导电性良好的焊料基底层。因为导电性良好,所以能够作为热传递性也优异的焊料基底层。并且,在银粉末的重量A和结晶性氧化物粉末的重量O之比A/O中,结晶性氧化物粉末的重量O说明书CN104126226A5/17页8为99/1以上,因此通过分散于AG层中的结晶性氧化物颗粒能够抑制AG向焊料扩散。0049并且,所述结晶性氧化物粉末优选由氧化钛、氧化硅和氧。

26、化锌中的任1种或2种以上构成。0050若由选自氧化钛、氧化硅和氧化锌的结晶性氧化物粉末分散于与焊接的AG层中,则能够抑制AG向焊料内部扩散。由于氧化物颗粒分散于AG中,因此在烧成时AG层的缩颈面积变小。若对这样被烧结的AG层进行焊接,则与完全缩颈的AG层相比,AG不易向焊料内部扩散,因此能够抑制对焊料的AG侵蚀。0051并且,优选所述玻璃粉末的软化温度为600以下。0052在该情况下,玻璃粉末的软化温度为600以下,因此,即使以较低温度烧成该焊料基底层形成用膏,玻璃也能够进行流动,并可形成焊料基底层。因此能够防止在烧成焊料基底层形成用膏时金属部件劣化。0053并且,优选所述玻璃粉末含有氧化铅、。

27、氧化锌、氧化硅、氧化棚、氧化磷及氧化铋中的任1种或2种以上。0054含有这些氧化物的玻璃粉末的软化温度比较低,能够将烧成温度设定为较低。并且,结晶化温度比较高,在焊料基底层形成用膏内部的流动性得到确保,并且提高了与金属部件的附着性。0055另外,优选所述银粉末的平均粒径为005M以上且10M以下。0056在该情况下,因为银粉末的平均粒径为005M以上且10M以下,因此在将该焊料基底层形成用膏涂布于所述电路层上时,导电颗粒均匀地分散,通过烧成该焊料基底层形成用膏,能够形成具有均匀的导电性的焊料基底层,经由焊料基底层能够使半导体元件和电路层可靠地导通。0057根据本发明,能够提供一种即使在被负载功。

28、率循环及热循环时也能够抑制在铝部件的表面上产生弯曲或折皱且可提高与被接合部件的接合可靠性的焊接结构、利用该焊接结构的功率模块、带散热器的功率模块用基板及其制造方法。0058并且,根据本发明,能够提供一种焊料基底层形成用膏,其配设于金属部件上,并通过烧成与产生于金属部件表面的氧化皮膜进行反应,从而在金属部件上形成焊料基底层,在进行焊接时防止AG侵蚀,因此,即使在被负载功率循环及热循环时也能够抑制在金属部件的表面上产生弯曲或折皱。附图说明0059图1是本发明的第一实施方式的带散热板的功率模块用基板及功率模块的概略说明图。0060图2是图1中的金属层与散热板的接合部的放大说明图。0061图3是图1中。

29、的电路层与半导体元件的接合部的放大说明图。0062图4是表示在本发明的各实施方式中使用的焊料基底层形成用膏的一种制造方法的流程图。0063图5是表示图1的功率模块的制造方法的流程图。0064图6是本发明的第二实施方式的带冷却器的功率模块用基板及功率模块的概略说明图。说明书CN104126226A6/17页90065图7是图6中的缓冲层与冷却器的接合部的放大说明图。0066图8是表示在本发明的各实施方式中使用的焊料基底层形成用膏的一种制造方法的流程图。具体实施方式0067以下,参考附图对本发明的实施方式的焊接结构进行说明。0068图1表示本发明的第1实施方式的功率模块1及带散热板的功率模块用基板。

30、20。该第1实施方式中,将散热板21用作散热器。0069该功率模块1具备配设有电路层12及金属层13的功率模块用基板10、搭载于电路层12的一面图1中的上表面的半导体元件3、接合于金属层13的另一面图1中的下表面的散热板21及层压于该散热板21的另一面侧的冷却器31。0070功率模块用基板10具备构成绝缘层的陶瓷基板11、配设于该陶瓷基板11的一面图1中的上表面的电路层12、配设于陶瓷基板11的另一面图1中的下表面的金属层13。0071陶瓷基板11防止电路层12和金属层13之间的电连接,由绝缘性高的ALN氮化铝构成。并且,陶瓷基板11的厚度设定在0215MM的范围内,在第1实施方式中被设定为0。

31、635MM。0072电路层12通过具有导电性的金属板接合于陶瓷基板11的一面而形成。在第1实施方式中,电路层12通过由纯度9999以上的铝所谓的4N铝轧制板构成的铝板接合于陶瓷基板11而形成。0073通过金属板接合于陶瓷基板11的另一面而形成金属层13。在第1实施方式中,与电路层12相同,通过由纯度9999以上的铝所谓的4N铝轧制板构成的铝板接合于陶瓷基板11而形成金属层13。0074散热板21使来自所述功率模块用基板10的热量向表面方向扩散,在第1实施方式中为导热性优异的铜板。0075如图1所示,冷却器31具备用于使冷却介质例如冷却水流通的流路32。冷却器31优选由导热性良好的材质构成,在第。

32、1实施方式中由A6063铝合金构成。0076另外,如图1所示,散热板21和冷却器31通过固定螺钉22而被紧固。0077并且,如图2所示,由4N铝构成的金属层13和由铜板构成的散热板21之间的第1接合部40,具备形成于金属层13的另一面图2中为下表面的第1玻璃层41、层压于该第1玻璃层41的另一面的第1AG层42及层压于该第1AG层42的另一面的第1焊料层43。0078并且,如图3所示,由4N铝构成的电路层12与半导体元件3之间的第2接合部50,具备形成于电路层12的一面图3中为上表面的第2玻璃层51、层压于该第2玻璃层51的一面的第2AG层52及层压于该第2AG层52的一面的第2焊料层53。0。

33、079在此,第1焊料层43及第2焊料层53例如由SNAG系、SNCU系、SNSB系、SNIN系或SNAGCU系焊锡材所谓的无铅焊锡材构成。并且,第1焊料层43及第2焊料层53的厚度TH被设定在20MTH600M的范围内。0080第1玻璃层41及第2玻璃层51的厚度TG被设定在005MTG10M的范说明书CN104126226A7/17页10围内。0081在此,在第1玻璃层41及第2玻璃层51的内部分散有平均粒径为数纳米程度的微细导电颗粒。该导电颗粒为含有AG或AL中的至少一种的结晶性颗粒。另外,可利用例如透射电子显微镜TEM观察第1玻璃层41及第2玻璃层51内的导电颗粒。0082并且,在第1A。

34、G层42及第2AG层52中分别分散有结晶性氧化物颗粒44及结晶性氧化物颗粒54。结晶性氧化物颗粒44、54由氧化钛、氧化硅和氧化锌中的任1种或2种以上构成。0083并且,结晶性氧化物颗粒的结晶平均粒径为01M以上且5M以下,在第1实施方式中平均粒径为05M。0084由第1AG层42及第2AG层52的剖面的元素分析而能够确认该结晶性氧化物颗粒。作为元素分析方法,例如使用EPMA电子探针显微分析仪或EDS能谱等基于电子射线的分析方法即可。0085这里的平均粒径是指通过激光衍射/散射法求出的粒度分布中累积频率达到50的粒径D50。0086并且,第1AG层42及第2AG层52的厚度AT被设定在1MTA。

35、100M的范围内。优选在15MTA50M的范围内。0087在此,第1接合部40及第2接合部50如下形成,即在金属层13及电路层12的表面,通过将以下说明的焊料基底层形成用膏进行涂布和烧成而形成AG烧成层,并经由焊锡材将散热板21及半导体元件3接合于该AG烧成层的表面。0088其次,对第1实施方式中所使用的焊料基底层形成用膏进行说明。0089该焊料基底层膏中含有银粉末、玻璃粉末、结晶性氧化物粉末、树脂及分散剂,银粉末的含量为整个焊料基底层形成用膏的60质量以上且90质量以下,余量为玻璃粉末、结晶性氧化物粉末、树脂、溶剂及分散剂。银粉末的含量优选为61质量以上且80质量以下。0090并且,玻璃粉末。

36、的含量优选为07质量以上且15质量以下,更优选为10质量以上且10质量以下。若玻璃粉末的含量为20质量以上,则对焊料润湿性造成影响,若玻璃粉末的含量为01质量以下,则有可能焊料基底与电路层的附着性降低。0091结晶性氧化物粉末的含量优选为06质量以上且10质量以下,更优选为10质量以上且80质量以下。若结晶性氧化物粉末的含量为06质量以上,则能够抑制焊料侵蚀,若结晶性氧化物粉末的含量为80质量以下,则能够得到无焊料润湿性问题的焊料基底层。0092树脂的含量优选为05质量以上且50质量以下,更优选为08质量以上且40质量以下。若树脂的含量为05质量以上,则作为膏能够赋予充分的印刷性,若树脂的含量。

37、为50质量以下,则对银的烧结不会造成影响。0093溶剂的含量优选为5质量以上且30质量以下,更优选为8质量以上且28质量以下。若溶剂的含量为5质量以上,则作为膏能够赋予充分的印刷性,若溶剂的含量为28质量以下,则对银的烧结不会造成影响。0094分散剂的含量优选为05质量以上且7质量以下,更优选为1质量以上且5质量以下。若分散剂的含量为05质量以上,则能够抑制焊料基底层膏的劣化,若含说明书CN104126226A108/17页11量为7质量以下,则对银的烧结不会造成影响。0095另外,在第1实施方式中,焊料基底层形成用膏导电性组成物的粘度被调整为10PAS以上且500PAS以下,更优选被调整为5。

38、0PAS以上且300PAS以下。0096在此,在测定焊料基底层形成用膏的粘度时,使用应力控制型流变仪美国TA仪器公司TA社制AR1000,并利用20MM的平行板测头进行了测定。将测定台的温度设为25,将测定台和测头的间隙设定为200M。将成为测定对象的膏10G载置于测定台上,并以规定间隙调整测头。此时,在利用抹刀去除从测头突出的膏的基础上开始进行测定。0097银粉末的平均粒径为005M以上且10M以下,在第1实施方式中使用了平均粒径为08M的银粉末。0098玻璃粉末含有例如氧化铅、氧化锌、氧化硅、氧化硼、氧化磷及氧化铋中的任1种或2种以上,其软化温度为600以下。玻璃粉末的软化温度更优选为37。

39、0以上且560以下。0099并且,玻璃粉末根据需要也可以含有氧化铝、氧化铁、氧化铜、氧化硒、氧化锆、碱性金属氧化物、碱土金属氧化物等。可通过球磨机、喷磨机等粉碎玻璃块并对粗大颗粒进行分级而得到玻璃粉末。对玻璃粉末的平均粒径并无特别的限定,能够使用平均粒径为05M以上且100M以下的玻璃粉末。0100并且,银粉末的重量A与玻璃粉末的重量G的重量比A/G被调整为80/20至99/1的范围内,更优选为85/15至97/3的范围内。在第1实施方式中,A/G为85/15。0101另外,银粉末的重量A与结晶性氧化物颗粒的重量O的重量比A/O被调整为90/10至99/1的范围内,更优选为95/5至98/2的。

40、范围内。0102结晶性氧化物粉末例如为氧化钛、氧化锌、氧化硅粉末,只要选择任1种或2种以上的结晶性金属氧化物粉末即可。0103结晶性金属氧化物粉末的平均粒径优选为005M以上且10M以下,平均粒径也可以为01M以上且5M以下。在第1实施方式中使用平均粒径为05M的结晶性金属氧化物粉末。0104另外,银粉末及结晶性氧化物粉末的平均粒径是指在通过激光衍射/散射法求出的粒度分布中累积频率达到50的粒径D50。0105溶剂的合适的沸点为200以上,例如可适用萜品醇、丁基卡必醇乙酸酯或二甘醇二丁醚等。另外,在第1实施方式中使用了萜品醇。0106树脂用来调整焊料基底层形成用膏导电性组成物的粘度,合适的有在。

41、500以上的温度下被分解的树脂,例如,可适用乙基纤维素、丙烯酸树脂或醇酸树脂等。另外,在第1实施方式中使用了乙基纤维素。0107并且,在第1实施方式中添加了二羧酸系分散剂。另外,也可以不添加分散剂而构成焊料基底层形成用膏导电性组合物。作为二羧酸系分散剂,例如可使用CRODA公司制KD15S。0108其次,参考图4所示的流程图对第1实施方式中所使用的焊料基底层形成用膏的制造方法进行说明。0109首先,将所述银粉末、玻璃粉末和结晶性氧化物粉末进行混合而生成混合粉末说明书CN104126226A119/17页12混合粉末形成工序S1。并且,将溶剂、树脂及分散剂进行混合而生成有机混合物有机物混合工序S。

42、2。0110并且,通过混合机将混合粉末形成工序S1中所得到的混合粉末和有机物混合工序S2中所得到的有机混合物进行预混合预混合工序S3。0111接着,利用具有多个辊子的辊磨机将预混合物一边捏合一边进行混合混炼工序S4。0112利用膏过滤机过滤通过混炼工序S4而得到的混炼物质过滤工序S5。0113由此制造出在第1实施方式中使用的焊料基底层形成用膏。0114作为在第1实施方式中使用的其他焊料基底层形成用膏,可举出将二甘醇二丁醚用作溶剂。0115此时,树脂最优选为在氮气气氛中可分解的丙烯树脂。0116接着,参考图8所示的流程图对第1实施方式中所使用的其他焊料基底层形成用膏的制造方法进行说明。0117首。

43、先,混合所述银粉末、玻璃粉末和结晶性氧化物粉末而生成混合粉末混合粉末形成工序S1。并且,混合溶剂和树脂而生成有机混合物有机物混合工序S2。0118并且,通过混合机对混合粉末形成工序S1中所得到的混合粉末和有机物混合工序S2中所得到的有机混合物进行预混合预混合工序S3。0119接着,利用具有多个辊子的辊磨机将预混合物一边捏合一边进行混合混炼工序S4。0120利用膏过滤机过滤通过混炼工序S4而得到的混炼物质过滤工序S5。0121由此制造出第1实施方式中所使用的其他焊料基底层形成用膏。0122接着,参考图5的流程图对第1实施方式的功率模块的制造方法进行说明。0123首先,准备成为电路层12的铝板以及。

44、成为金属层13的铝板,将这些铝板分别经由钎料层压于陶瓷基板11的一面及另一面,并进行加压/加热后冷却,从而接合所述铝板和陶瓷基板11电路层及金属层接合工序S11。另外,该焊接温度被设定为640650。0124接着,在金属层13的另一面涂布所述焊料基底层形成用膏第1焊料基底层形成用膏涂布工序S12。另外,在涂布焊料基底层形成用膏时可采用网版印刷法、胶版印刷法、感光性工艺等各种方法。0125在金属层13的另一面涂布有焊料基底层形成用膏的状态下装入到加热炉内进行焊料基底层形成用膏的烧成第1烧成工序S13。由此,形成第1AG烧成层未图示。另外,此时的烧成温度被设定为350645,更优选被设定为4506。

45、20。0126并且,经由焊锡材将散热板21层压于第1AG烧成层,并在还原炉内进行焊接散热板接合工序S14。0127由此,在金属层13与散热板21之间形成具有第1玻璃层41、分散有结晶性氧化物颗粒44的第1AG层42和第1焊料层43的第1接合部40,制造出第1实施方式的带散热板的功率模块用基板20。0128接着,将冷却器31层压于散热板21的另一面侧并通过固定螺钉22进行固定冷却器层压工序S15。0129并且,将所述焊料基底层形成用膏涂布于电路层12的一面第2焊料基底层形成说明书CN104126226A1210/17页13用膏涂布工序S16。另外,在涂布焊料基底层形成用膏时,可采用网版印刷法、胶。

46、版印刷法或感光性工艺等各种方法。在第1实施方式中,通过网版印刷法将焊料基底层形成用膏形成为图案形状。0130在电路层12的一面涂布有焊料基底层形成用膏的状态下装入到加热炉内进行焊料基底层形成用膏的烧成第2烧成工序S17。由此,形成第2AG烧成层未图示。另外,此时的烧成温度被设定为350645。0131并且,经焊锡材将半导体元件3载置于第2AG烧成层的表面并在还原炉内进行焊接半导体元件接合工序S18。0132由此,在电路层12与半导体元件3之间形成有具有第2玻璃层51、分散有结晶性氧化物颗粒54的第2AG层52和第2焊料层53的第2接合部50,制造出第1实施方式的功率模块1。0133具有上述结构。

47、的第1实施方式的功率模块1中,在金属层13与散热板21之间形成有具有第1玻璃层41、第1AG层42和第1焊料层43的第1接合部40,在电路层12与半导体元件3之间形成有具有第2玻璃层51、第2AG层52和第2焊料层53的第2接合部50。该第1AG层42及第2AG层52中含有结晶性氧化物颗粒44、54。因此,在焊接工序中,能够抑制AG向液相焊料内部扩散,并能够维持形成AG层。并且,即使在被负载功率循环及热循环的情况下,也能够抑制在由4N铝构成的金属层13及电路层12的表面产生弯曲或折皱。由此,散热板21与金属板13的接合可靠性以及半导体元件3和电路层12的接合可靠性提高,通过散热板21能够使热量。

48、有效地扩散。0134并且,在第1实施方式中,结晶性氧化物颗粒44、54通过由氧化钛、氧化硅和氧化锌中的任1种或2种以上构成的颗粒而构成,因此抑制AG向焊料扩散的效果明显。0135并且,第1玻璃层41形成于金属层13的另一面,第2玻璃层51形成于电路层12的一面,因此通过这些第1玻璃层41及第2玻璃层51能够去除存在于金属层13及电路层12的表面的氧化皮膜,并且可经由焊锡材可靠地接合金属层13和散热板21及电路层12和半导体元件3。从而,无需在金属层13及电路层12的表面设置镀NI膜。0136另外,在第1实施方式中,在搭载半导体元件3的电路层12的一面形成的第2玻璃层51的内部分散有平均粒径为数。

49、纳米程度的微细的导电颗粒,因此在第2玻璃层51中确保了导电性,能够将电路层12和半导体元件3电连接。0137另外,根据具有上述结构的第1实施方式的焊料基底层形成用膏,具备结晶性氧化物粉末和银粉末,并且通过烧成银粉末形成AG层,另外,可形成结晶性氧化物颗粒44、54分散于所述AG层内部的焊料基底层。并且,经由焊锡材将被接合部件接合于电路层12及金属层13的情况下,分散于AG层内部的结晶性氧化物颗粒44、54在进行焊接时能够抑制焊料向AG扩散,从而维持第1AG层42和第2AG层52的形成,能够抑制在第1焊料层43和第2焊料层53中产生龟裂。因此,即使在被负载热循环时仍残留有AG膜,因此能够抑制铝表面的塑性变形,其结果能够抑制在电路层12及金属层13产生弯曲或折皱。0138并且,由于具备玻璃粉末和银粉末,且通过烧成所生成的焊料基底层具备由玻璃粉末软化而形成的玻璃层41、51和在玻璃层41、51上烧结有银粉末的AG层42、52,因此玻璃层41、51与电路层12及金属层13的铝氧化皮膜进行反应而去除铝氧化皮膜,由此能够形成直接接合于电路层12及金属层13的表面的焊料基。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 电学 > 基本电气元件


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1