本发明涉及一种导电材料,它包括一种非晶二氧化硅和细结晶含锑氧化锡的均匀混合物,及其制备方法。 可用来使薄膜赋予导电特性的组合物在商业上并不总是诱人或可靠的,其中所指的薄膜如聚合物薄膜、磁记录带、涂料等。例如,导电化合物,即称作ECP的粉末,它们通常可用作导电涂料,而它们并不十分有效。碳黑可以用来使材料赋予导电率,但这又限制了涂料的颜色为黑色、深灰色和接近有关的暗色。通常掺锑氧化锡粉末可以用作ECP,但所要求的数量会导致不适宜的成本和颜料的限制。
一种由含锑氧化锡组成的导电组合物,其中氧化锡是以结晶为主的,该组合物与二氧化硅或含硅材料如硅酸盐有关,这些描述在1990年3月21日所公开的,名称为“改进的导电组合物及其制备方法”,的欧洲专利申请公开号0359569中(以下称作“EPO′569)。EPO′569的全部内容在此可结合作为参考。含锑氧化锡会在二氧化硅或含硅材料的表面上形成致密结晶的二维网络。二氧化硅或含硅材料是一种粉末,它包括成形的非硅颗粒,及惰性子晶颗粒,其中子晶颗粒是由非晶硅或由非晶硅所组成的空心壳层所覆盖。在用来制备该导电组合物的方法中,首先将二氧化硅作为覆层而沉积于子晶颗粒上,这是在悬浮液中进行的;然后可随意将子晶颗粒溶解,并且作为方法中的附加步骤,可以将含锑氧化锡层沉积于二氧化硅表面。
本发明涉及一种导电材料或粉末(ECP),它包括由硅石如SiO2和含锑氧化锡如ShO2(Sb)的均匀混合物组成的微细结晶。本发明还涉及一种用以获得EPC微晶的共沉淀方法。
与通常地EPC晶体相比,本发明的导电含锑氧化锡微晶均匀地与二氧化硅混合,而通常的组合物是沉积在二氧化硅表面上。由于二氧化硅作为本发明化合物的一种成分而存在,从而降低了在沉淀和/或烧结过程中微晶的晶粒生长,由此制成了很细的微晶。
由通常的方法可以知道,晶体大小可以通过增加锑的含量而降低。然而,为了获得具有100(埃)平均直径的晶体,通常实际需要锑的含量至少为10wt%。在该锑浓度下,会出现深兰灰色,这在许多应用场合是不利的,如,其中包括成象纸。相比之下,本发明使用了有效量的二氧化硅,其降低了晶粒的生长,并且形成了微细结晶,由此避免了采用一定量的锑而出现的兰色。
与通常的方法相比,本发明的方法只需要很少的步骤,并且本发明可以更为迅速地进行,尤其是在有阳离子促进剂的情况下。
本发明的导电粉末在与适当的粘合剂和添加剂配制后便可施加到各种表面,以赋予其导电率和抗静电特性。例如,可以将本发明的导电粉末用来使涂层或薄膜赋予导电特性,它们可以用于各种需要表面电导率或消除静电电荷的场合。在与适当的粘合剂和添加剂配制后,这些ECP便可用于涂覆纸、玻璃、波纹纸盒板、塑料薄膜或板材即聚碳酸酯、聚酯和聚丙烯酸酯,其中还包括有导电漆涂料。
图1是根据例4制成的ECP的3×130Kx放大的微观照片。
本发明涉及一种导电粉末(ECP),它包括由均匀混合二氧化硅组成的微细结晶,如SiO2,和含锑氧化锡,如SnO2(Sb)。结晶的平均尺寸小于约100(埃)。ECP通常为粉末形式,其中颗粒是由聚集的微晶组成的,其中附聚尺寸范围为亚微米到数+微米。结晶体通常包括约1~20wt%的SiO2和80~99wt%的SnO2(Sb)。在SnO2中的Sb成分通常在约0.5~12.5%范围内。晶体还可能含有微量金属阳离子,如小于0.1%。
本发明一方面还涉及一种制备上述组合物的方法,该方法包括共沉淀一种SiO2、SnO2和Sb2O3均匀混合物的介质溶液。该方法可在有一种或多种金属阳离子的情况下任意进行,同时采用20%的氢氧化钠溶液使pH值保持在约1.0~3.0范围内。将沉淀物回收,用水冲洗直到基本没有可溶解的残余物,并进行煅烧,从而获得导电粉末。
无论是在说明书中还是在权利要求书中所使用的术语均规定为如下的定义。
这里所使用的“非晶硅”意指一种相,它是在含锑氧化锡周围和/或之内均匀混合和相互扩散的,如含锑水合氧化锡。非晶硅还包括含二氧化硅的材料,它不会对含锑氧化锡的所需特性起相反作用。二氧化硅的形态是主要为无定形的或缺少任何大范围的结晶结构。
这里所使用的“含锑氧化锡”意指一种结晶的导电部分。其微晶的形态通常对应于氧化锡的结构,在氧化锡的晶格或基体内至少一部分锡已经由锑所取代,由此使微晶变为导电。既使氧化锑可以为原子态存在,而通常在ECP中的氧化锑的有效量也是不可测的。
当氧化锡微晶内锑的量增加时,最后干燥的ECP的电阻率就会降低,即导电率增加。通常,微晶的锑含量可以在约1~30%重量的范围内,而在锑含量为3~10%重量锑时,即在将ECP用来消除静电时,就可以获得所需特性。
这里所使用的“非晶硅均匀混合物”意指通过一种方法使二氧化硅与含锑氧化锡相结合。二氧化硅是通过共沉淀而与含锑氧化锡相结合的。
本发明的组合物是一种导电粉末(ECP),它包括由硅石即二氧化硅和含锑氧化锡即SnO2(Sb)组成的微细结晶的附聚物。微晶通常包括约1~20%的SiO2,和约80~99%的SnO2(Sb)。SnO2Sb含量通常在约1~12.5%重量范围。微晶还可包含有少量的金属阳离子,通常小于0.1%重量,金属阳离子可包括一种或多种选自下列组中的金属,即碱金属,碱土金属,过渡金属,稀土金属,等均包括于内。
微晶实质上是等维的,它具有约30和100之间的平均直径;通常是在约50和70之间,即,通过X-射线衍射线的扩展来测量。二氧化硅和导电的氧化锡附聚物通常是在亚微米到数+微米尺寸范围内。
微晶体和其附聚物的相对小的尺寸是所需要的特性。特别是,由于微晶的该尺寸,使得增强了用以生产导电涂料,即透明薄膜,的粉末的效力。微晶尺寸可以通过增加锑的含量而减小。在通常用来生产具有约100平均直径粉末的方法中,锑含量至少约为10wt%。然而,随着锑含量的增加,颜色会变深,在约10wt%Sb的情况下,通常的粉末显示出深兰灰色。显示的颜色在许多应用中都是不利的,如成象纸。相比之下,本发明的ECP组合物,它是由二氧化硅与含锑氧化锡的均匀混合物组成的,它会意外地产生在Sb浓度具有高导电性的微晶,在该Sb浓度含量下,颜色是透明的。令人吃惊的是,本发明的微晶在给定的相对低浓度的锑情况下要比所期望的还小。微晶的相对小的尺寸是通过相对高的粉末表面积来确定的,如,按氮的吸收来测量,粉末具有约20和200M2/g之间的表面积,通常是在约100和150M2/g之间。因此,本发明的粉末是透明导电涂料,薄膜及其涂层的特别需要的成分。
本发明的组合物是通过这样一种方法来制备的,它通常包括:
(a)在导致组合物沉淀的条件下,其组合物包括均匀混合的二氧化硅,和锡和锑含水氧化物,混合碱性硅酸盐溶液,和Sn4+与Sb3+的盐溶液;
(b)回收沉淀物,冲洗该沉淀物使其基本不含可溶于水的残余物,并干燥;和
(c)煅烧以形成一种粉末,它包括由非晶硅即SiO2和含锑氧化锡即[SnO2(Sb)]均匀混合物组成的微细结晶的附聚物。
在使用任何适当的硅酸盐溶液时,具代表性的碱性硅酸盐溶液通常包括硅酸钠和/或硅酸钾。硅酸盐的适宜形式是一种清晰的溶液,其具有SiO2/Na2O或SiO2/K2O分子比约为3.25/1,和约26.5wt%的SiO2含量,其经过过滤基本除去了任何不溶解的材料。
四价锡盐通常可用来使用本发明的方法,锡盐溶液可通过将Sncl4.5H2O溶解于水而方便的制得。在采用具有代表性的氯化锡的同时,其它水溶性盐也可用作锡源,如包括硅酸盐、硝酸盐、草酸盐、乙酸盐等。
三价锑盐通常可用来使用本发明的方法,氯化锑盐是最常用的,其溶液可通过将SbCl3溶解在标称37%Hcl中而制备。在使用具有代表性的氯化锡盐的情况下,也可使用其它盐作为锑的源,如包括硫酸盐、硝酸盐、草酸盐、乙酸盐等。在将锡和锑的盐溶液同时添加时,通常最方便的是首先将盐溶液混合在一起,并将它们加入成为一种给合溶液,虽然溶液中盐的浓度不是本发明的临界情况,但合适的浓度范围是SnO2/l在约50~500g之间,和Sb/l在约0.5~300g之间。
有利的是,在有一种或多种选自下列组中的阳离子的情况下,来混合碱性硅酸盐和锡与锑溶液,其中阳离子包括:碱金属、碱土金属、过渡金属、稀土金属等。这些阳离子通常可作为可溶性盐而引入,如氯盐、硝酸盐、硫酸盐等。ⅡA族金属有利于该目的,其中钙和钦极为有效。在没有任何理论或解释可参照的情况下,人们认识到,阳防子是可在有二氧化硅的情况下对于含锑氧化锡的共沉淀起促进剂的作用。例如,在有某些阳离子的情况下,淀积或沉积反应相对较快,或换句话说,实际上所实施的方法就象混合了氨基剂一样快。人们可以认识到,在约1.0~3.0pH值范围内,金属阳离子如Ca++可取代羟基化硅OH基的质子,然后金属阳离子又迅速地由Sn4+和/或Sb3+所取代。在较高pH值下,如大于5,OH基不明显地改变,并且Sn4+和/或Sb3+的取代也出现的较缓慢。
阳离子可首先通过制备连续搅拌的水溶液而方便地引入,其具有的催进剂阳离子的浓度是在约0.1和3.0M之间;通常是在1.0和2.0M之间。碱性硅酸盐、锡和锑盐溶液可计量地滴入该搅拌液,同时保持pH值在约1.0~3.0范围内。按要求,该pH值可通过添加20%的氢氧化钠溶液来保持在该范围的。溶液在约25和100℃温度之间进行混合。将得到的悬浮液连续搅拌约1小时,通过是约半小时,pH值是在1.0和3.0之间下,并且是在约25和100℃温度下,以保证该系统的完全稳定。在可采用任何适用的方法来搅拌悬浮液的情况下,最好使用搅拌棒。
由悬浮液沉淀出的沉淀物可通过任何方便的固液分离步骤,如真空过滤,来分离出来。然后,通常采用去离子水对分离物进行冲洗,直到基本上除去了可溶性残余物,如,采用在EPO′569中所述方法,其指导在这里可结合作参考。将经分离和冲洗的产物在约120~150℃温度下,通常是在空气烘箱中,进行干燥。通过干燥该产物,使锡和锑含水氧化物变为含锑氧化锡。然而,在将冲洗后的产物随着分离和冲洗后立即进行煅烧时,单独的干燥步骤就不必要了。
随后,将所得产物在含氧气氛中,如空气,在约500~900℃温度范围内,煅烧一段时间,使得足以生成相当的均匀混合SiO2-[SnO2(Sb)]相的微晶,并确立所需的导电率。必要的煅烧时间将取决于炉子的温度和几何形状。例如,在一小间歇生产炉中,所需煅烧时间通常约1~2小时。煅烧是本发明方法的关键方面,因为,锻烧导致了含锑氧化锡导电结晶相的生成。在煅烧过程中,由于含锑氧化锡中均匀混合有二氧化抑制了晶体生长,从而生成了微细结晶,即约70%。可采用一个或多个步骤进行煅烧,以便修整或改进微日的导电率,如,预先煅烧的粉末可以进一步煅烧,以增加微晶的电导率。
本发明一方面,粉末的形状或尺寸可通过微粒化而进行改进或修整。为实施本发明的该情况,可以使用任何适用的微粒化方法,其中包括如使用通用的喷磨机。当煅烧粉末被微粒化时,平均颗粒尺寸通常在约1~10微米范围内。例如,可将煅烧粉末进行微粒化以降低粉末的平均尺寸,由此增加了粉末的透明度和分散度。由于增加了粉末的透明度,所以可将粉末加到载体基质中,如丙烯酸类,为了形成透明的导电薄膜。另外,微粒化粉末可用来覆盖相对大的颗粒或壳层,如有色调色剂。
干燥粉末的电阻是ECP的一个重要特征,粉末的导电率是与电阻率相反的,最好是干燥粉末的电阻尽可能的低,使得在将粉末加到导电涂料,薄膜中更为有效。通常,干燥粉末的相对电阻越小,在特定使用场合下的粉末电导就越大。然而,许多其它因素也可影响到使用,如,在使用载体基质或粘合系统中形成互连网络的能力。本发明的ECP粉末具有代表性的特征在于电阻率小于约2000ohm-cm,并且通常是在1和100ohm-cm之间。
粉末电阻试验可采用柱型检测器和Carver实验压力机来完成。检测器是在上部和底部设置黄铜电极来构成,它可放置在具有约3cm内径的塑料柱形部分内。将铜引线连接到黄铜电极上,并与欧姆表相连。将底部电极置于适当位置后,将粉末试样加入塑料圆筒,并将上部电极放置在粉末上的适当位置上。在施加任何压力之前,粉末的高度应该大约2.0cm。采用Carver实验压力机,将粉末试样在底部电极的上表面和上部电极的下表面之间加压。然后,测量粉末的高度和电阻率,后者是用欧姆表来进行测量的。高度和电阻的测量在250,1000,2000,4000,6000,8000,和10,000Psi的压力下进行重复。
粉末电阻的数值相对于给定的压力,可通过下式计算:
电阻率,P=(电阻×面积)/高度。
所测电阻为欧姆,圆筒的横截面积为平方厘米,高度是在上部和底部电极之间粉末柱体的长度为厘米。在下列例子中采用检测器的情况下,面积大约为7.07cm2。
赋予涂料以导电特性的本发明组合物的有效性可通过将粉末分散于含水液料中,将涂料浇注于玻璃板上并测量表面电阻率(S.R)来加以确定。粉末分散物可用手使用涂刀来覆于玻璃板上,由此可调节所需玻璃涂层的厚度。粉末的表面负荷可通过称量涂覆前后的玻璃板重量,然后乘上分散物中粉末百分比的重量差,并除以涂覆面积来确定。表面负荷可以以表面的每1000平方英尺的磅数来表示。(1bs/Kftz)。涂层的表面电阻率可采用纽约Monroe Electronics,Lyndonville公司制造的Dr.Thiiedig Milli的双电阻/电流表来进行测量,该设备可直接给出每平方欧姆。S.R.的值愈低,电导率愈大。
本发明的导电材料及其制备方法将通过下列实例加以详细描述,这些实例不应看作是对后续权利要求的保护范围的限定。除特别说明以外,化合物的%是以重量百分比为基础的。
例1
该例描述了ECP组合物的制备,它包括含锑氧化锡和二氧化硅,SnO2与Sb的重量比约为10.6比1。ECP中的二氧化硅含量约为7.5%。
将大约2.5升的去离子水加热到约80℃,并在4升的烧杯内进行搅拌。为了将pH值调整到约2.0,可将含有约20%的HCl溶液加到加热的水中,然后,将大约220克的CaCl2颗粒溶解在酸性溶液中。
接下来,通过将约222ml的SnCl4溶液,其含有导效的约0.445gSnO2/ml,与约42ml含有一定量SbCl3的浓HCl溶液,其等效于约0.267gSb/ml,进行化合来制备SnCl4,SbCl3和HCl的水溶液。所得到溶液具有约9份的SnO2比1份的Sb。
硅酸钾水溶液可通过将约40克原料溶液,其包含胡K2SiO3,并具有SiO2/K2O约3.29的分子比,其含有约26.5wt%的SiO2,溶解在约600ml20%的NaOH中来制备的。
将SnCl3/SbCl4/Hcl溶液搅拌到CaCl2溶液中,这是在约2小时的时间内进行的,通常还要控制K2SiO3溶液的加入量。在溶液加入过程中,要将pH值保持在约2.0下,温度优质在80℃下。通过使用叶片式搅拌器进行连续搅拌,可将保持在悬浮液中的产物沉淀,将沉淀物通过约1个半小时的搅拌同时保持约2.0的pH值和约8℃的温度来处理,即用以保证系统的完全稳定。
产物或沉淀物可通过过滤,用去离子水冲洗直到基本除去了氯离子,并通过在约120℃温度下加热几小时来干燥,来回收。干燥的粉末在空气中约750℃温度下煅烧约2小时。从而获得大约128克纯白粉末。将粉末使用X射线衍射分析进行检查,它可确定对应于SnO2的主要结晶相所具有的主要峰值图形。该图形可用来计算平均微晶尺寸,其约为53。粉末还可进一步地通过使用X射线荧光分析来检查,它确定了粉末包含有约81.36%的SbO2;9.40%的Sb2O3和7.56%的SiO2。SnO2中的Sb含量为约8.65%。通过氮气吸附所测得的表面积约为98m2/g,并且干燥粉末的电阻约为3.5Ohm-cm。
例2
该例表示了增加用来沉淀粉末的二氧化硅的数量的效果。
本例中所采用的方法与例1中所述方法基本一致,所不同的是,所用硅酸钾水溶液的量由约40克增加到200克。
该方法获得约176克纯白粉末。该粉末通过使用X射线衍射分析来检查,它确定了对应于SnO2大致的峰值图形的主要结晶相。该图形还用来确定平均微晶尺寸,其约为35。粉末还可进一步通过X射线荧光分析来检验,它可确定,粉末包含约58.65%的SnO2,6.92%的Sb2O3和30.86%的SiO2。Sb的含量对应于约9%的SnO2。经过氮气吸附测得,粉末的表面积约为171.5m2/g,并且干燥粉末的电阻约为2.93×104Ohm-cm。
该例的结果表明,相对加大SiO2的添加量可减小平均的微晶尺寸,并增大表面积。然而,该含量下的二氧化硅的存在会对干燥粉末电导率起相反作用。
例3该例表示了略去二氧化硅和钙盐的效果。
将约2.5升的去离子水加热到约80℃,并在4升的烧杯中进行搅拌。基本按照例1来制备大约264ml的SnCl4/SbCl3溶液,并在约2小时的时间里将其加到加热的水中。同锡和锑盐的添加一样,为了保持pH值在约2.0下,有必要添加20%的NaOH溶液。在该例的整个过程中,要保持温度为约80℃。
沉淀物通过连续搅拌烧杯而保持在悬浮液中,将悬浮液经过约半小时的搅动处理,同时保持pH值为约2.0,并且是在约80℃的温度下。
基本按例1所述方法来制造和回收干燥煅烧产物,可获得大约115克纯白粉末。粉末经过X射线衍射分析进行检验,它确定了对应于SnO2大致峰值图形的主要结晶相。X射线图形还可用来确定粉末的平均微晶尺寸,其约为88。粉末还可进一步由X射线荧光分析进行检验,它表示出粉末包含约89.54%的SnO2,10.41%的Sb2O3和小于约0.08%的SiO2。SnO2中的Sb含量约为8.61%。由氮气吸附所测得的表面积约为35m2/g,并且干燥粉末的电阻约为0.5Ohm-cm。
该例的结果表明,在含有SiO2情况下,并且在等量Sb含量下,平均微晶尺寸会增大,并且表面积会减小。
例4
该例示出了在有促进剂阳离子情况下的影响。
在本例中所使用的方法基本与例1所述方法一致,只是在沉淀过程中不存在氯化钙。
在煅烧以后,获得约126克的纯白粉末。产物经X射线衍射分析进行检验,它确定了对应于SnO2大致峰值图形的主要结晶相。图形还可用来确定平均微晶尺寸,其约为48。粉末进一步还可通过X射线荧光分析进行检验,它确定了粉末包含约81.92%的SnO2,9.80%的Sb2O3和7.54%的SiO2。SnO2中的Sb含量约为8.92%。按氮气吸附所测得的表面积约为121m2/g,并且干燥粉末的电阻约为13.3Ohm-cm。
现参照附图,图1是按照本例制成的粉末的3×130k放大的微观照片。
例5
基本按例1来完成本例,只是将约100克的CaCl2颗粒溶解在SbCl4和SbCl3的酸性溶液中,用以代替CaCl2颗粒溶解于初始的HCl水溶液中。
该方法生产出约125克的纯白粉末。该粉末经X射线衍射分析进行检验,它确定了对应于SnO2大致峰值图形的主要结晶相,该图形还可用来确定平均微晶尺寸,其约为49,粉末还可进一步由X射线荧光分析来检验,它确定了粉末包含约80.14%的SnO2,9.48%的Sb2O3和6.99%的SiO2。SnO2中的Sb含量约为8.83%重量。按氮气吸附所测的表面积约为109.6m2/g,并且干燥粉末电阻约为7.0Ohm-cm。
本例的结果表明,本发明由于将促进剂阳离子加入锡和锑盐溶液而生产出所需的ECP。
例6
基本按例1来完成本例,只是方法中的沉淀步骤是在约40~45℃温度下进行的。
本方法获得大约130克纯白粉末。该粉末经X射线的衍射分析来检验,其表明对应于SnO2大致峰值图形的主要结晶相,该图形还可用来研究室平均微晶尺寸,其约为39。粉末还可进一步由X射线荧光分析进行检验,它表明,粉末包含约80.44%的SnO2,9.82%的Sb2O3和8.35%的SiO2。SnO2中的Sb成分约为9.08%。按氮气吸附所测得的粉末表面积约为103.1m2/g,并且干燥粉末电阻约为14.1Ohm-cm。
本例的结果表明,较低的反应温度全形成较小的平均微晶尺寸,同时避免了对干燥粉末电阻的相反作用。
比较例7.
本例包括使用本发明ECP的导电涂料,和一组合物,它是按欧洲专利申请公开号0359569(以下记作“EPO′569”)所述方法制造的,其全部内容在此可结合作参考。可参照例1的步骤来制备ECP粉末。首先使用来自Hosokawa Micron Interational,Inc.,Snmmit,New Jersey的Mikro粉末粉磨机对粉末进行锤磨。然后将粉末通过漏斗而送入包含一套转锤的室体中。锤体研磨粉末并将其推过金属网。该网包含以人字形图案设置的矩形缝。每条缝大约半英吋长,1/30英吋宽。采用Hockmeyer高速分散机将大约200克研磨和过网粉末分散于约444克高温Varnish ss-10541(Werneke-Long,Inc.,Tinley Park,Illinois的产品)中,以及包含约10克羟乙基纤维素的356克高粘度水溶液中,(来自Aqualon公司,Hopewell,Virginia的Natrosol-250Hk),并在2升的水中。高速分散机在3000r.p.m下,使用11/2″叶片运行约15分钟的时间,以至使粉末全部分散于含水基质或液料中。然后,通过添加较多含水羟乙基纤维素来稀释分散的粉末,使得粉末的浓度约为7.5%。
进一步对四个7.5%分散液试样进行稀释,以得出-系列约1~4.0%粉末浓度的分散液范围。采用稀释的试样在玻璃板上形成涂层,然后测量涂层的表面电阻。在表1中列出了在不同粉末稀释液或加料液下所测表面电阻。
表1
%例1 粉末1bs/kftz S.R.欧姆/平方
1 0.21 >1012
1.5 0.28 1×108
2 0.40 1×107
3 0.59 1×106
4 0.93 2×105
基本按EPO′569中的例1所述来制备导电粉末,它是由DuPont公司以ECP-S商标销售的。ECP-S包括二氧化硅层,其包括在该层的表面上的二维含锑氧化锡网络。首先采用上述方法对EPO′569的粉末进行锤磨,按上述方法将大约250克试样分散于约500克HTV中,以及约250克高粘度含水羟乙基纤维素中(0.5%)。如前制备-系列稀释的粉末浓度为约1~5%范围的试样,并将其用来在玻璃板上形成涂层。在表2中列出了,在不同粉末料液下所测得的表面电阻。
表2
%ECP-S 粉末1bs/kftz S.R.欧姆/平方
1 0.22 >1012
2 0.39 109~1010
2.5 0.54 2×107
3 0.60 3×106
4 0.92 1×105
5 1.09 8×104
列于表1和2的结果表明,用于两种粉末的很相似的性能。然而,本发明的粉末克服了对于二氧化硅层的需要,并且伴随着各方法步骤获得该层。另外,本发明纯白折或通常透明的粉末也具有所需的微小晶体尺寸,同时免除了大量锑的存在。
本发明的各个方面和实施例已经作了很详细的描述,在权利要求书的限定下的其它实施例和改型对于本技术领域的普通专业人员将是十分明显的。