一种氮碳材料包覆二氧化锰纳米线的制备及应用方法.pdf

上传人:111****11 文档编号:50167 上传时间:2018-01-20 格式:PDF 页数:9 大小:1.33MB
返回 下载 相关 举报
摘要
申请专利号:

CN201410404833.4

申请日:

2014.08.15

公开号:

CN104176783A

公开日:

2014.12.03

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效IPC(主分类):C01G 45/02申请日:20140815|||公开

IPC分类号:

C01G45/02; B82Y30/00(2011.01)I; H01G11/86(2013.01)I

主分类号:

C01G45/02

申请人:

东南大学

发明人:

李颖; 梅园; 陆慧佳; 刘松琴

地址:

210096 江苏省南京市四牌楼2号

优先权:

专利代理机构:

南京苏高专利商标事务所(普通合伙) 32204

代理人:

柏尚春

PDF下载: PDF下载
内容摘要

本发明是一种氮碳材料包覆二氧化锰纳米线的制备及应用方法,1)采用水热法合成二氧化锰纳米线:2)将得到的二氧化锰纳米线与聚合物表面活性剂一起分散在水中,得到二氧化锰纳米线/聚邻苯二胺复合物;3)将二氧化锰纳米线/聚邻苯二胺复合物置于管式炉中,在氮气保护下,高温热处理,得到氮碳材料包覆二氧化锰纳米线;4)将氮碳材料包覆二氧化锰纳米线在空气中热处理活化。制备具有低内阻、高工作窗口、高比容量、高能量密度、高倍率性能、长循环寿命的复合型超级电容器。本发明的制备方法成本低、工艺简单,操作方便,便于控制,材料的电容性能得到有效提高,适合大规模工业化生产。

权利要求书

1.  一种氮碳材料包覆二氧化锰纳米线的制备方法,其特征在于该方法包括以下步骤:
1)采用水热法合成二氧化锰纳米线:将醋酸锰与表面活性剂溶解于水中,加热使其形成均匀溶液;加入高锰酸钾,搅拌下反应后转移至反应釜中反应,待其自然冷却后将所得物质进行抽滤、水洗、醇洗、烘干,制得二氧化锰纳米线;
2)将得到的二氧化锰纳米线与聚合物表面活性剂一起分散在水中,控制pH为6.5~9.5,经超声混合均匀后加入邻苯二胺单体,搅拌使其在室温下继续反应,反应结束后抽滤、水洗、真空干燥,得到二氧化锰纳米线/聚邻苯二胺复合物;
3)将二氧化锰纳米线/聚邻苯二胺复合物置于管式炉中,在氮气保护下,高温热处理,得到氮碳材料包覆二氧化锰纳米线;
4)将氮碳材料包覆二氧化锰纳米线在空气中热处理活化。

2.
  根据权利要求1所述的氮碳材料包覆二氧化锰纳米线的制备方法,其特征在于:步骤1)所述的高锰酸钾和醋酸锰的摩尔比为1:1~1:5。

3.
  根据权利要求1所述的氮碳材料包覆二氧化锰纳米线的制备方法,其特征在于:步骤1)所述表面活性剂为十二烷基苯磺酸钠,浓度为10~300mmolL-1

4.
  根据权利要求1所述的氮碳材料包覆二氧化锰纳米线的制备方法,其特征在于:步骤1)中反应温度为120~180℃,反应时间为1~5h。

5.
  如权利要求1所述的氮碳材料包覆二氧化锰纳米线的制备方法,其特征在于:步骤2)所述聚合物表面活性剂为聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物P123,采用三羟甲基氨基甲烷tris缓冲溶液控制pH值。

6.
  根据权利要求1所述的氮碳材料包覆二氧化锰纳米线的制备方法,其特征在于:步骤2)所述二氧化锰与邻苯二胺的质量比为1:1~1:2.5,反应时间为1~8h,邻苯二胺的聚合时间为2~5h。

7.
  根据权利要求1所述的氮碳材料包覆二氧化锰纳米线的制备方法,其特征在于:步骤3)中高温热处理温度为400~900℃,时间2~5h。

8.
  根据权利要求1所述的氮碳材料包覆二氧化锰纳米线的制备方法,其特征在于:步骤4)中热处理温度为200~250℃,处理时间为3~6h。

9.
  一种采用权利要求1的制备方法制备的氮碳材料包覆二氧化锰纳米线应用于超级电容器正极极片。

说明书

一种氮碳材料包覆二氧化锰纳米线的制备及应用方法
技术领域
本发明属于电化学科学与能源技术领域,涉及一种氮碳材料包覆二氧化锰纳米线的制备及以其作为电容器正极的复合型超级电容器。
背景技术
超级电容器是近年来发展起来的一种新型储能元件,具有比传统电容器更高的比电容和能量密度,比电池更高的功率密度和更长的循环寿命,可以应用于电动汽车的电源启动系统,为起电动汽车的加速和爬坡提供能量,因而在环保型电动汽车领域具有广阔的应用前景。目前应用于超级电容器的电极材料主要有三种:碳材料、过渡金属氧化物或水合氧化物以及导电聚合物。其中二氧化锰(MnO2)的理论比电容高达1370Fg-1,且储量丰富、电位窗口较宽、价格低廉、对环境无污染、价态丰富、制备简单,是一种极具潜力的赝电容电极活性材料。然而MnO2材料的电导率很低(10-5~10-6Scm-1),离子传输能力也很差,造成MnO2活性成分无法充分利用,因而其实际比电容很低。如马军等合成的MnO2纳米颗粒比电容仅为149Fg-1,Ghimbeu等合成的多孔λ-MnO2在放电电流为1Ag-1时,比电容仅为120Fg-1。而且,MnO2粉末通常颗粒较大,导致活性物质与集流体、活性物质彼此之间接触不充分,增大了电池的内阻,并使电容器的高倍率充放电性能很差,循环性能也不够理想。
人们常将MnO2与各种高电导率、高孔隙率的碳材料进行复合,来提高MnO2的利用率、比容量、倍率性能和循环寿命。Jiang等通过C2H5OH与KMnO4之间简单的氧化还原反应制备的α-MnO2修饰多壁碳纳米管在1molL-1Na2SO4电解液溶液中5mVs-1扫速下获得的比电容值为179Fg-1。电子科技大学邓梅根等采用浓硝酸和浓硫酸的混合液对碳纳米管进行表面改性,并在其表面负载MnO2。以此CNT/MnO2复合材料制备电极,其比容可达134Fg-1,并具有良好的功率特性和循环寿命。Chen等采用水-异丙醇双溶剂体系中软化学方法合成了针状MnO2修饰的石墨烯复合材料,在1mol L-1Na2SO4溶液中的比电容为197.2Fg-1,1000次充放电循环后仍保持较高的165.9Fg-1。北京化工大学田艳红等通过共沉淀法制备了石墨烯/MnO2复合材料,提高了活性材料的电导率,进而提高了活性材料的利用率,使其比电容达到313Fg-1,其高倍率充放电性能和循环寿命均得到提高。然而,目前这些碳纳米材料大多采用化学气相沉积法进行制备,反应条件苛刻,需要高温高压,并且产量低,后处理复杂,其工业化生产技术还不成熟,制备成本非常高,离实际应用还有一段较长的距离。因此,寻求制备周期短、价格便宜、步骤简单的方法来制备新型MnO2材料,用作超级电容器的正极材料,组装高性能器件化的超级电容器,将促进超级电容器技术的进步和发展。
发明内容
技术问题:本发明的目的是提供一种氮碳材料包覆二氧化锰纳米线的制备方法,解决现有MnO2导电性差、利用率低、比容量低的缺点,以及材料制备技术上存在的成本高,步骤复杂等问题,提供一种简单、温和的方法合成高性能MnO2改性电容材料,提高其电容性和电化学稳定性。并以其作为超级电容器正极材料,以活性炭为负极材料,构建高性能复合型超级电容器。
技术方案:本发明公布的一种氮碳材料包覆二氧化锰纳米线的制备方法包括以下步骤:
1)采用水热法合成二氧化锰纳米线:将醋酸锰与表面活性剂溶解于水中,加热使其形成均匀溶液;加入高锰酸钾,搅拌下反应后转移至反应釜中反应,待其自然冷却后将所得物质进行抽滤、水洗、醇洗、烘干,制得二氧化锰纳米线;
2)将得到的二氧化锰纳米线与聚合物表面活性剂一起分散在水中,控制pH为6.5~9.5,经超声混合均匀后加入邻苯二胺单体,搅拌使其在室温下继续反应,反应结束后抽滤、水洗、真空干燥,得到二氧化锰纳米线/聚邻苯二胺复合物;
3)将二氧化锰纳米线/聚邻苯二胺复合物置于管式炉中,在氮气保护下,高温热处理,得到氮碳材料包覆二氧化锰纳米线;
4)将氮碳材料包覆二氧化锰纳米线在空气中热处理活化。
其中:
步骤1)所述的高锰酸钾和醋酸锰的摩尔比为1:1~1:5。所述表面活性剂为十二烷基苯磺酸钠,浓度为10~300mmolL-1。反应温度为120~180℃,反应时间为1~5h。
步骤2)所述聚合物表面活性剂为聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物P123,采用三羟甲基氨基甲烷tris缓冲溶液控制pH值;所述二氧化锰与邻苯二胺的质量比为1:1~1:2.5,反应时间为1~8h,邻苯二胺的聚合时间为2~5h。
步骤3)中高温热处理温度为400~900℃,时间2~5h。
步骤4)中热处理温度为200~250℃,处理时间为3~6h。
本发明的制备方法制备的氮碳材料包覆二氧化锰纳米线应用于超级电容器正极极片。
有益效果:本发明制备的二氧化锰纳米线,其径向长度为15~25nm,轴向长度为2μm。这种纳米结构可以有效地增加其轴向电导率,降低二氧化锰晶界电阻以及活性物质之间的接触电阻,从而增加活性物质的利用率,提高其比容量,高倍率充放电性能和循环寿命。
本发明以二氧化锰纳米线为模板剂和氧化剂引发邻苯二胺在其表面原位聚合,保证二氧化锰和聚邻苯二胺在分子水平的接触,然后经过热解过程制备出氮碳材料包覆的二氧化锰纳米线。聚合过程中无需引入其它氧化剂(例如过硫酸铵),反应后没有杂相产生,因此产物无需纯化,后处理简单,非常适合于工业化生产。
本发明所述的氮碳材料是石墨片层结构中的碳原子被氮原子取代,形成杂环共轭大分子结构。邻苯二胺本身具有平面分子结构,其聚合物热解发生石墨化的温度较低,可以有效降低材料热处理的成本,有利于大规模生产。氮原子含有孤对电子,对碳材料的掺杂属于n型参杂,可以有效提高材料的电子云密度,使氮碳材料具有良好的电子传导性。因而在二氧化锰表面包覆氮碳材料后,其晶界电阻降低,制成的电极内阻低。氮原子的孤对电子还可与过渡金属形成配位键,对二氧化锰起到锚定作用,抑制二氧化锰活性材料在充放电过程中的迁移和团聚,提高电极的循环寿命。氮原子的存在还会引起石墨片层六边形拓扑结构的畸变,使材料的缺陷位点增多,结构变粗糙,比表面积增大。热解法制得的氮碳材料由于在氮碳前驱体的热解过程中会释放出小分子气体,形成具有大量纳米孔洞结构的产物,从而进一步提高其比表面积、孔隙率。氮碳材料的这种疏松多孔结构,有利于电解液中活性离子在整个基体电极中的充分渗透、扩散,大大提高离子和电子在整个电极中的传输速度,可有效提高电极活性材料的利用率、高倍率充放电性能和循环寿命。此外,作为一种双电层电容器材料,氮碳材料的存在也会进一步增加电极比容量。因此,这种氮碳材料包覆二氧化锰实现了两种材料性能的优化,最大限度地提高了活性 物质的利用率,其比电容(总活性物质)可达302Fg-1,比能量为50.4Whg-1,50mVs-1扫速下1000次循环后电容为初始值的95%。,其性能明显的优于单一的二氧化锰或聚邻苯二胺电容器。本发明所制备的氮碳材料包覆二氧化锰纳米线制备工艺简单,原材料价格低廉,克服了现有技术存在的成本高,步骤复杂等问题,有利于超级电容器的大规模生产及商业化应用。
本发明所述氮碳材料包覆二氧化锰纳米线作为正极活性材料,负极活性材料为活性炭,电解液为1molL-1Na2SO4水溶液,封装组成复合型超级电容器。由于利用了不同材料在同一电解液中不同的电化学窗口,该复合型超级电容器的单体电压可达1.7V或以上。因此,该电容器具有高比容量、高比能量和高比功率等特点,并且所用材料成本低,安全,无污染。
附图说明
图1为二氧化锰纳米线SEM图,
图2为氮碳材料包覆二氧化锰纳米线的TEM图,
图3为氮碳材料包覆二氧化锰纳米线构建的超级电容器电极充放电测试图。
具体实施方式
(1)二氧化锰纳米线的合成
称量一定质量的醋酸锰及高锰酸钾,十二烷基苯磺酸钠SDBS,将SDBS溶于40mL水中超声分散至均匀溶液,加入醋酸锰,在室温至75℃下搅拌至均匀溶液,加入高锰酸钾继续搅拌约30分钟,然后转移至50mL聚四氟乙烯内衬的不锈钢反应釜,与140℃~180℃反应4~6小时,待其自然冷却,将所得物质用真空泵进行抽滤,采用水洗和乙醇清洗,将所得物质在烘箱内80℃烘干备用。
(2)二氧化锰纳米线/聚邻苯二胺复合物的合成
在100mL圆底烧瓶中,将二氧化锰纳米线和Tris、P123分散在40mL水中,超声10分钟后冷却至室温,然后搅拌至均匀的溶液;后加入在水中预溶解的邻苯二胺单体,反应的时间为1~8h;聚合反应的环境温度为30℃;反应后干燥的温度为80℃。
(3)氮碳材料包覆二氧化锰纳米线的合成
将所得二氧化锰纳米线/聚邻苯二胺复合物置于管式炉中,在氮气保护下,下高温处理一定时间,得到氮碳材料包覆二氧化锰纳米线。
(4)氮碳材料包覆二氧化锰纳米线的活化
将氮碳材料包覆二氧化锰纳米线于200~250℃,在空气中处理一定时间,得到活化的氮碳材料包覆二氧化锰纳米线。
(5)超级电容器正极片的制备
将活化后的氮碳材料包覆二氧化锰纳米线与PTFE和活性炭按照80:10:10的质量比,用乙醇配制成浆料,涂在泡沫镍集流体上,真空干燥后辊压制成正极片。
(6)超级电容器的组装
该超级电容器包括正极片、负极片、无纺布隔膜和水系电解液。负极片采用活性炭制备,制备方法同正极片制备方法。电解液为1MNa2SO4水溶液。
下面通过具体实例进一步说明本发明二氧化锰纳米线/聚邻苯二胺制备的具体方法。
实例一
(1)二氧化锰纳米线的合成
称量醋酸锰0.2632g及高锰酸钾0.1580g,十二烷基苯磺酸钠SDBS0.3845g,将SDBS溶于40mL水中超声分散至均匀溶液,加入醋酸锰,在室温至75℃下搅拌至均匀溶液,加入高锰酸钾继续搅拌30分钟,然后转移至50mL聚四氟乙烯内衬的不锈钢反应釜,与160℃反应~6小时,待其自然冷却,将所得物质用真空泵进行抽滤,采用水洗和乙醇清洗,将所得物质在烘箱内80℃烘干备用。
(2)二氧化锰纳米线/聚邻苯二胺复合物的合成
在100mL圆底烧瓶中,将40mg二氧化锰纳米线和50mg Tris、40mg P123分散在40mL水中,超声10分钟后冷却至室温,然后搅拌至均匀的溶液;后加入在水中预溶解的邻苯二胺单体56.47mg,反应的时间为1h;聚合反应的环境温度为30℃;反应后干燥的温度为80℃。
(3)氮碳材料包覆二氧化锰纳米线的合成
将所得二氧化锰纳米线/聚邻苯二胺复合物置于管式炉中,在氮气保护下,400℃下高温煅烧3h,得到氮碳材料包覆二氧化锰纳米线。
(4)氮碳材料包覆二氧化锰纳米线的活化
将氮碳材料包覆二氧化锰纳米线于220℃,在空气中处理4h,得到活化的氮碳材料包覆二氧化锰纳米线。
实例二
(1)二氧化锰纳米线的合成
称量醋酸锰0.2632g及高锰酸钾0.1580g,十二烷基苯磺酸钠SDBS0.3845g,将SDBS溶于40mL水中超声分散至均匀溶液,加入醋酸锰,在75℃下搅拌至均匀溶液,加入高锰酸钾继续搅拌30分钟,然后转移至50mL聚四氟乙烯内衬的不锈钢反应釜,与180℃反应5小时,待其自然冷却,将所得物质用真空泵进行抽滤,采用水洗和乙醇清洗,将所得物质在烘箱内80℃烘干备用。
(2)二氧化锰纳米线/聚邻苯二胺复合物的合成
在100mL圆底烧瓶中,将40mg二氧化锰纳米线和50mgTris、40mg P123分散在40mL水中,超声10分钟后冷却至室温,然后搅拌至均匀的溶液;后加入在水中预溶解的邻苯二胺单体56.47mg,反应的时间为2h;聚合反应的环境温度为30℃;反应后干燥的温度为80℃。
(3)氮碳材料包覆二氧化锰纳米线的合成
将所得二氧化锰纳米线/聚邻苯二胺复合物置于管式炉中,在氮气保护下,600℃下高温煅烧3h,得到氮碳材料包覆二氧化锰纳米线。
(4)氮碳材料包覆二氧化锰纳米线的活化
将氮碳材料包覆二氧化锰纳米线于200℃,在空气中处理6h,得到活化的氮碳材料包覆二氧化锰纳米线。
实例三
(1)二氧化锰纳米线的合成
称量醋酸锰0.2632g及高锰酸钾0.1580g,十二烷基苯磺酸钠SDBS0.3845g,将SDBS溶于40mL水中超声分散至均匀溶液,加入醋酸锰,在75℃下搅拌至均匀溶液,加入高锰酸钾继续搅拌30分钟,然后转移至50mL聚四氟乙烯内衬的不锈钢反应釜,与160℃反应6小时,待其自然冷却,将所得物质用真空泵进行抽滤,采用水洗和乙醇清洗,将所得物质在烘箱内80℃烘干备用。
(2)二氧化锰纳米线/聚邻苯二胺复合物的合成
在100mL圆底烧瓶中,将40mg二氧化锰纳米线和50mg Tris、40mg P123分散在40mL水中,超声10分钟后冷却至室温,然后搅拌至均匀的溶液;后加入在水中预溶解的邻苯二胺单体56.47mg,反应的时间为3h;聚合反应的环境温度为30℃;反应后干燥的温度为80℃。
(3)氮碳材料包覆二氧化锰纳米线的合成
将所得二氧化锰纳米线/聚邻苯二胺复合物置于管式炉中,在氮气保护下,900℃下高温煅烧3h,得到氮碳材料包覆二氧化锰纳米线。
(4)氮碳材料包覆二氧化锰纳米线的活化
将氮碳材料包覆二氧化锰纳米线于220℃,在空气中处理4h,得到活化的氮碳材料包覆二氧化锰纳米线。
实例四
(1)二氧化锰纳米线的合成
称量醋酸锰0.2632g及高锰酸钾0.1580g,十二烷基苯磺酸钠SDBS0.3845g,将SDBS溶于40mL水中超声分散至均匀溶液,加入醋酸锰,在室温至75℃下搅拌至均匀溶液,加入高锰酸钾继续搅拌30分钟,然后转移至50mL聚四氟乙烯内衬的不锈钢反应釜,与180℃反应4小时,待其自然冷却,将所得物质用真空泵进行抽滤,采用水洗和乙醇清洗,将所得物质在烘箱内80℃烘干备用。
(2)二氧化锰纳米线/聚邻苯二胺复合物的合成在100mL圆底烧瓶中,将40mg二氧化锰纳米线和50mg Tris、40mg P123分散在40mL水中,超声10分钟后冷却至室温,然后搅拌至均匀的溶液;后加入在水中预溶解的邻苯二胺单体56.47mg,反应的时间为5h;聚合反应的环境温度为30℃;反应后干燥的温度为80℃。
(3)氮碳材料包覆二氧化锰纳米线的合成
将所得二氧化锰纳米线/聚邻苯二胺复合物置于管式炉中,在氮气保护下,700℃下高温煅烧2h,得到氮碳材料包覆二氧化锰纳米线。
(4)氮碳材料包覆二氧化锰纳米线的活化
将二氮碳材料包覆二氧化锰纳米线于230℃,在空气中处理3.5h,得到活化的氮碳材料包覆二氧化锰纳米线。
氮碳材料包覆二氧化锰纳米线应用于超级电容器正极极片。

一种氮碳材料包覆二氧化锰纳米线的制备及应用方法.pdf_第1页
第1页 / 共9页
一种氮碳材料包覆二氧化锰纳米线的制备及应用方法.pdf_第2页
第2页 / 共9页
一种氮碳材料包覆二氧化锰纳米线的制备及应用方法.pdf_第3页
第3页 / 共9页
点击查看更多>>
资源描述

《一种氮碳材料包覆二氧化锰纳米线的制备及应用方法.pdf》由会员分享,可在线阅读,更多相关《一种氮碳材料包覆二氧化锰纳米线的制备及应用方法.pdf(9页珍藏版)》请在专利查询网上搜索。

1、10申请公布号CN104176783A43申请公布日20141203CN104176783A21申请号201410404833422申请日20140815C01G45/02200601B82Y30/00201101H01G11/8620130171申请人东南大学地址210096江苏省南京市四牌楼2号72发明人李颖梅园陆慧佳刘松琴74专利代理机构南京苏高专利商标事务所普通合伙32204代理人柏尚春54发明名称一种氮碳材料包覆二氧化锰纳米线的制备及应用方法57摘要本发明是一种氮碳材料包覆二氧化锰纳米线的制备及应用方法,1采用水热法合成二氧化锰纳米线2将得到的二氧化锰纳米线与聚合物表面活性剂一起分散。

2、在水中,得到二氧化锰纳米线/聚邻苯二胺复合物;3将二氧化锰纳米线/聚邻苯二胺复合物置于管式炉中,在氮气保护下,高温热处理,得到氮碳材料包覆二氧化锰纳米线;4将氮碳材料包覆二氧化锰纳米线在空气中热处理活化。制备具有低内阻、高工作窗口、高比容量、高能量密度、高倍率性能、长循环寿命的复合型超级电容器。本发明的制备方法成本低、工艺简单,操作方便,便于控制,材料的电容性能得到有效提高,适合大规模工业化生产。51INTCL权利要求书1页说明书5页附图2页19中华人民共和国国家知识产权局12发明专利申请权利要求书1页说明书5页附图2页10申请公布号CN104176783ACN104176783A1/1页21。

3、一种氮碳材料包覆二氧化锰纳米线的制备方法,其特征在于该方法包括以下步骤1采用水热法合成二氧化锰纳米线将醋酸锰与表面活性剂溶解于水中,加热使其形成均匀溶液;加入高锰酸钾,搅拌下反应后转移至反应釜中反应,待其自然冷却后将所得物质进行抽滤、水洗、醇洗、烘干,制得二氧化锰纳米线;2将得到的二氧化锰纳米线与聚合物表面活性剂一起分散在水中,控制PH为6595,经超声混合均匀后加入邻苯二胺单体,搅拌使其在室温下继续反应,反应结束后抽滤、水洗、真空干燥,得到二氧化锰纳米线/聚邻苯二胺复合物;3将二氧化锰纳米线/聚邻苯二胺复合物置于管式炉中,在氮气保护下,高温热处理,得到氮碳材料包覆二氧化锰纳米线;4将氮碳材料。

4、包覆二氧化锰纳米线在空气中热处理活化。2根据权利要求1所述的氮碳材料包覆二氧化锰纳米线的制备方法,其特征在于步骤1所述的高锰酸钾和醋酸锰的摩尔比为1115。3根据权利要求1所述的氮碳材料包覆二氧化锰纳米线的制备方法,其特征在于步骤1所述表面活性剂为十二烷基苯磺酸钠,浓度为10300MMOLL1。4根据权利要求1所述的氮碳材料包覆二氧化锰纳米线的制备方法,其特征在于步骤1中反应温度为120180,反应时间为15H。5如权利要求1所述的氮碳材料包覆二氧化锰纳米线的制备方法,其特征在于步骤2所述聚合物表面活性剂为聚环氧乙烷聚环氧丙烷聚环氧乙烷三嵌段共聚物P123,采用三羟甲基氨基甲烷TRIS缓冲溶液。

5、控制PH值。6根据权利要求1所述的氮碳材料包覆二氧化锰纳米线的制备方法,其特征在于步骤2所述二氧化锰与邻苯二胺的质量比为11125,反应时间为18H,邻苯二胺的聚合时间为25H。7根据权利要求1所述的氮碳材料包覆二氧化锰纳米线的制备方法,其特征在于步骤3中高温热处理温度为400900,时间25H。8根据权利要求1所述的氮碳材料包覆二氧化锰纳米线的制备方法,其特征在于步骤4中热处理温度为200250,处理时间为36H。9一种采用权利要求1的制备方法制备的氮碳材料包覆二氧化锰纳米线应用于超级电容器正极极片。权利要求书CN104176783A1/5页3一种氮碳材料包覆二氧化锰纳米线的制备及应用方法技。

6、术领域0001本发明属于电化学科学与能源技术领域,涉及一种氮碳材料包覆二氧化锰纳米线的制备及以其作为电容器正极的复合型超级电容器。背景技术0002超级电容器是近年来发展起来的一种新型储能元件,具有比传统电容器更高的比电容和能量密度,比电池更高的功率密度和更长的循环寿命,可以应用于电动汽车的电源启动系统,为起电动汽车的加速和爬坡提供能量,因而在环保型电动汽车领域具有广阔的应用前景。目前应用于超级电容器的电极材料主要有三种碳材料、过渡金属氧化物或水合氧化物以及导电聚合物。其中二氧化锰MNO2的理论比电容高达1370FG1,且储量丰富、电位窗口较宽、价格低廉、对环境无污染、价态丰富、制备简单,是一种。

7、极具潜力的赝电容电极活性材料。然而MNO2材料的电导率很低105106SCM1,离子传输能力也很差,造成MNO2活性成分无法充分利用,因而其实际比电容很低。如马军等合成的MNO2纳米颗粒比电容仅为149FG1,GHIMBEU等合成的多孔MNO2在放电电流为1AG1时,比电容仅为120FG1。而且,MNO2粉末通常颗粒较大,导致活性物质与集流体、活性物质彼此之间接触不充分,增大了电池的内阻,并使电容器的高倍率充放电性能很差,循环性能也不够理想。0003人们常将MNO2与各种高电导率、高孔隙率的碳材料进行复合,来提高MNO2的利用率、比容量、倍率性能和循环寿命。JIANG等通过C2H5OH与KMN。

8、O4之间简单的氧化还原反应制备的MNO2修饰多壁碳纳米管在1MOLL1NA2SO4电解液溶液中5MVS1扫速下获得的比电容值为179FG1。电子科技大学邓梅根等采用浓硝酸和浓硫酸的混合液对碳纳米管进行表面改性,并在其表面负载MNO2。以此CNT/MNO2复合材料制备电极,其比容可达134FG1,并具有良好的功率特性和循环寿命。CHEN等采用水异丙醇双溶剂体系中软化学方法合成了针状MNO2修饰的石墨烯复合材料,在1MOLL1NA2SO4溶液中的比电容为1972FG1,1000次充放电循环后仍保持较高的1659FG1。北京化工大学田艳红等通过共沉淀法制备了石墨烯/MNO2复合材料,提高了活性材料的。

9、电导率,进而提高了活性材料的利用率,使其比电容达到313FG1,其高倍率充放电性能和循环寿命均得到提高。然而,目前这些碳纳米材料大多采用化学气相沉积法进行制备,反应条件苛刻,需要高温高压,并且产量低,后处理复杂,其工业化生产技术还不成熟,制备成本非常高,离实际应用还有一段较长的距离。因此,寻求制备周期短、价格便宜、步骤简单的方法来制备新型MNO2材料,用作超级电容器的正极材料,组装高性能器件化的超级电容器,将促进超级电容器技术的进步和发展。发明内容0004技术问题本发明的目的是提供一种氮碳材料包覆二氧化锰纳米线的制备方法,解决现有MNO2导电性差、利用率低、比容量低的缺点,以及材料制备技术上存。

10、在的成本高,步骤复杂等问题,提供一种简单、温和的方法合成高性能MNO2改性电容材料,提高其电容性和电化学稳定性。并以其作为超级电容器正极材料,以活性炭为负极材料,构建高性能复合说明书CN104176783A2/5页4型超级电容器。0005技术方案本发明公布的一种氮碳材料包覆二氧化锰纳米线的制备方法包括以下步骤00061采用水热法合成二氧化锰纳米线将醋酸锰与表面活性剂溶解于水中,加热使其形成均匀溶液;加入高锰酸钾,搅拌下反应后转移至反应釜中反应,待其自然冷却后将所得物质进行抽滤、水洗、醇洗、烘干,制得二氧化锰纳米线;00072将得到的二氧化锰纳米线与聚合物表面活性剂一起分散在水中,控制PH为65。

11、95,经超声混合均匀后加入邻苯二胺单体,搅拌使其在室温下继续反应,反应结束后抽滤、水洗、真空干燥,得到二氧化锰纳米线/聚邻苯二胺复合物;00083将二氧化锰纳米线/聚邻苯二胺复合物置于管式炉中,在氮气保护下,高温热处理,得到氮碳材料包覆二氧化锰纳米线;00094将氮碳材料包覆二氧化锰纳米线在空气中热处理活化。0010其中0011步骤1所述的高锰酸钾和醋酸锰的摩尔比为1115。所述表面活性剂为十二烷基苯磺酸钠,浓度为10300MMOLL1。反应温度为120180,反应时间为15H。0012步骤2所述聚合物表面活性剂为聚环氧乙烷聚环氧丙烷聚环氧乙烷三嵌段共聚物P123,采用三羟甲基氨基甲烷TRIS。

12、缓冲溶液控制PH值;所述二氧化锰与邻苯二胺的质量比为11125,反应时间为18H,邻苯二胺的聚合时间为25H。0013步骤3中高温热处理温度为400900,时间25H。0014步骤4中热处理温度为200250,处理时间为36H。0015本发明的制备方法制备的氮碳材料包覆二氧化锰纳米线应用于超级电容器正极极片。0016有益效果本发明制备的二氧化锰纳米线,其径向长度为1525NM,轴向长度为2M。这种纳米结构可以有效地增加其轴向电导率,降低二氧化锰晶界电阻以及活性物质之间的接触电阻,从而增加活性物质的利用率,提高其比容量,高倍率充放电性能和循环寿命。0017本发明以二氧化锰纳米线为模板剂和氧化剂引。

13、发邻苯二胺在其表面原位聚合,保证二氧化锰和聚邻苯二胺在分子水平的接触,然后经过热解过程制备出氮碳材料包覆的二氧化锰纳米线。聚合过程中无需引入其它氧化剂例如过硫酸铵,反应后没有杂相产生,因此产物无需纯化,后处理简单,非常适合于工业化生产。0018本发明所述的氮碳材料是石墨片层结构中的碳原子被氮原子取代,形成杂环共轭大分子结构。邻苯二胺本身具有平面分子结构,其聚合物热解发生石墨化的温度较低,可以有效降低材料热处理的成本,有利于大规模生产。氮原子含有孤对电子,对碳材料的掺杂属于N型参杂,可以有效提高材料的电子云密度,使氮碳材料具有良好的电子传导性。因而在二氧化锰表面包覆氮碳材料后,其晶界电阻降低,制。

14、成的电极内阻低。氮原子的孤对电子还可与过渡金属形成配位键,对二氧化锰起到锚定作用,抑制二氧化锰活性材料在充放电过程中的迁移和团聚,提高电极的循环寿命。氮原子的存在还会引起石墨片层六边形拓扑结构的畸变,使材料的缺陷位点增多,结构变粗糙,比表面积增大。热解法制得的氮碳材料由于在氮碳前驱体的热解过程中会释放出小分子气体,形成具有大量纳米孔洞结构的产物,说明书CN104176783A3/5页5从而进一步提高其比表面积、孔隙率。氮碳材料的这种疏松多孔结构,有利于电解液中活性离子在整个基体电极中的充分渗透、扩散,大大提高离子和电子在整个电极中的传输速度,可有效提高电极活性材料的利用率、高倍率充放电性能和循。

15、环寿命。此外,作为一种双电层电容器材料,氮碳材料的存在也会进一步增加电极比容量。因此,这种氮碳材料包覆二氧化锰实现了两种材料性能的优化,最大限度地提高了活性物质的利用率,其比电容总活性物质可达302FG1,比能量为504WHG1,50MVS1扫速下1000次循环后电容为初始值的95。,其性能明显的优于单一的二氧化锰或聚邻苯二胺电容器。本发明所制备的氮碳材料包覆二氧化锰纳米线制备工艺简单,原材料价格低廉,克服了现有技术存在的成本高,步骤复杂等问题,有利于超级电容器的大规模生产及商业化应用。0019本发明所述氮碳材料包覆二氧化锰纳米线作为正极活性材料,负极活性材料为活性炭,电解液为1MOLL1NA。

16、2SO4水溶液,封装组成复合型超级电容器。由于利用了不同材料在同一电解液中不同的电化学窗口,该复合型超级电容器的单体电压可达17V或以上。因此,该电容器具有高比容量、高比能量和高比功率等特点,并且所用材料成本低,安全,无污染。附图说明0020图1为二氧化锰纳米线SEM图,0021图2为氮碳材料包覆二氧化锰纳米线的TEM图,0022图3为氮碳材料包覆二氧化锰纳米线构建的超级电容器电极充放电测试图。具体实施方式00231二氧化锰纳米线的合成0024称量一定质量的醋酸锰及高锰酸钾,十二烷基苯磺酸钠SDBS,将SDBS溶于40ML水中超声分散至均匀溶液,加入醋酸锰,在室温至75下搅拌至均匀溶液,加入高。

17、锰酸钾继续搅拌约30分钟,然后转移至50ML聚四氟乙烯内衬的不锈钢反应釜,与140180反应46小时,待其自然冷却,将所得物质用真空泵进行抽滤,采用水洗和乙醇清洗,将所得物质在烘箱内80烘干备用。00252二氧化锰纳米线/聚邻苯二胺复合物的合成0026在100ML圆底烧瓶中,将二氧化锰纳米线和TRIS、P123分散在40ML水中,超声10分钟后冷却至室温,然后搅拌至均匀的溶液;后加入在水中预溶解的邻苯二胺单体,反应的时间为18H;聚合反应的环境温度为30;反应后干燥的温度为80。00273氮碳材料包覆二氧化锰纳米线的合成0028将所得二氧化锰纳米线/聚邻苯二胺复合物置于管式炉中,在氮气保护下,。

18、下高温处理一定时间,得到氮碳材料包覆二氧化锰纳米线。00294氮碳材料包覆二氧化锰纳米线的活化0030将氮碳材料包覆二氧化锰纳米线于200250,在空气中处理一定时间,得到活化的氮碳材料包覆二氧化锰纳米线。00315超级电容器正极片的制备0032将活化后的氮碳材料包覆二氧化锰纳米线与PTFE和活性炭按照801010的质量说明书CN104176783A4/5页6比,用乙醇配制成浆料,涂在泡沫镍集流体上,真空干燥后辊压制成正极片。00336超级电容器的组装0034该超级电容器包括正极片、负极片、无纺布隔膜和水系电解液。负极片采用活性炭制备,制备方法同正极片制备方法。电解液为1MNA2SO4水溶液。。

19、0035下面通过具体实例进一步说明本发明二氧化锰纳米线/聚邻苯二胺制备的具体方法。0036实例一00371二氧化锰纳米线的合成0038称量醋酸锰02632G及高锰酸钾01580G,十二烷基苯磺酸钠SDBS03845G,将SDBS溶于40ML水中超声分散至均匀溶液,加入醋酸锰,在室温至75下搅拌至均匀溶液,加入高锰酸钾继续搅拌30分钟,然后转移至50ML聚四氟乙烯内衬的不锈钢反应釜,与160反应6小时,待其自然冷却,将所得物质用真空泵进行抽滤,采用水洗和乙醇清洗,将所得物质在烘箱内80烘干备用。00392二氧化锰纳米线/聚邻苯二胺复合物的合成0040在100ML圆底烧瓶中,将40MG二氧化锰纳米。

20、线和50MGTRIS、40MGP123分散在40ML水中,超声10分钟后冷却至室温,然后搅拌至均匀的溶液;后加入在水中预溶解的邻苯二胺单体5647MG,反应的时间为1H;聚合反应的环境温度为30;反应后干燥的温度为80。00413氮碳材料包覆二氧化锰纳米线的合成0042将所得二氧化锰纳米线/聚邻苯二胺复合物置于管式炉中,在氮气保护下,400下高温煅烧3H,得到氮碳材料包覆二氧化锰纳米线。00434氮碳材料包覆二氧化锰纳米线的活化0044将氮碳材料包覆二氧化锰纳米线于220,在空气中处理4H,得到活化的氮碳材料包覆二氧化锰纳米线。0045实例二00461二氧化锰纳米线的合成0047称量醋酸锰02。

21、632G及高锰酸钾01580G,十二烷基苯磺酸钠SDBS03845G,将SDBS溶于40ML水中超声分散至均匀溶液,加入醋酸锰,在75下搅拌至均匀溶液,加入高锰酸钾继续搅拌30分钟,然后转移至50ML聚四氟乙烯内衬的不锈钢反应釜,与180反应5小时,待其自然冷却,将所得物质用真空泵进行抽滤,采用水洗和乙醇清洗,将所得物质在烘箱内80烘干备用。00482二氧化锰纳米线/聚邻苯二胺复合物的合成0049在100ML圆底烧瓶中,将40MG二氧化锰纳米线和50MGTRIS、40MGP123分散在40ML水中,超声10分钟后冷却至室温,然后搅拌至均匀的溶液;后加入在水中预溶解的邻苯二胺单体5647MG,反。

22、应的时间为2H;聚合反应的环境温度为30;反应后干燥的温度为80。00503氮碳材料包覆二氧化锰纳米线的合成0051将所得二氧化锰纳米线/聚邻苯二胺复合物置于管式炉中,在氮气保护下,600下高温煅烧3H,得到氮碳材料包覆二氧化锰纳米线。说明书CN104176783A5/5页700524氮碳材料包覆二氧化锰纳米线的活化0053将氮碳材料包覆二氧化锰纳米线于200,在空气中处理6H,得到活化的氮碳材料包覆二氧化锰纳米线。0054实例三00551二氧化锰纳米线的合成0056称量醋酸锰02632G及高锰酸钾01580G,十二烷基苯磺酸钠SDBS03845G,将SDBS溶于40ML水中超声分散至均匀溶液。

23、,加入醋酸锰,在75下搅拌至均匀溶液,加入高锰酸钾继续搅拌30分钟,然后转移至50ML聚四氟乙烯内衬的不锈钢反应釜,与160反应6小时,待其自然冷却,将所得物质用真空泵进行抽滤,采用水洗和乙醇清洗,将所得物质在烘箱内80烘干备用。00572二氧化锰纳米线/聚邻苯二胺复合物的合成0058在100ML圆底烧瓶中,将40MG二氧化锰纳米线和50MGTRIS、40MGP123分散在40ML水中,超声10分钟后冷却至室温,然后搅拌至均匀的溶液;后加入在水中预溶解的邻苯二胺单体5647MG,反应的时间为3H;聚合反应的环境温度为30;反应后干燥的温度为80。00593氮碳材料包覆二氧化锰纳米线的合成006。

24、0将所得二氧化锰纳米线/聚邻苯二胺复合物置于管式炉中,在氮气保护下,900下高温煅烧3H,得到氮碳材料包覆二氧化锰纳米线。00614氮碳材料包覆二氧化锰纳米线的活化0062将氮碳材料包覆二氧化锰纳米线于220,在空气中处理4H,得到活化的氮碳材料包覆二氧化锰纳米线。0063实例四00641二氧化锰纳米线的合成0065称量醋酸锰02632G及高锰酸钾01580G,十二烷基苯磺酸钠SDBS03845G,将SDBS溶于40ML水中超声分散至均匀溶液,加入醋酸锰,在室温至75下搅拌至均匀溶液,加入高锰酸钾继续搅拌30分钟,然后转移至50ML聚四氟乙烯内衬的不锈钢反应釜,与180反应4小时,待其自然冷却。

25、,将所得物质用真空泵进行抽滤,采用水洗和乙醇清洗,将所得物质在烘箱内80烘干备用。00662二氧化锰纳米线/聚邻苯二胺复合物的合成在100ML圆底烧瓶中,将40MG二氧化锰纳米线和50MGTRIS、40MGP123分散在40ML水中,超声10分钟后冷却至室温,然后搅拌至均匀的溶液;后加入在水中预溶解的邻苯二胺单体5647MG,反应的时间为5H;聚合反应的环境温度为30;反应后干燥的温度为80。00673氮碳材料包覆二氧化锰纳米线的合成0068将所得二氧化锰纳米线/聚邻苯二胺复合物置于管式炉中,在氮气保护下,700下高温煅烧2H,得到氮碳材料包覆二氧化锰纳米线。00694氮碳材料包覆二氧化锰纳米线的活化0070将二氮碳材料包覆二氧化锰纳米线于230,在空气中处理35H,得到活化的氮碳材料包覆二氧化锰纳米线。0071氮碳材料包覆二氧化锰纳米线应用于超级电容器正极极片。说明书CN104176783A1/2页8图1图2说明书附图CN104176783A2/2页9图3说明书附图CN104176783A。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 化学;冶金 > 无机化学


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1