图像引导放射治疗的X射线图像与锥束CT扫描的精密配准.pdf

上传人:111****11 文档编号:5014540 上传时间:2018-12-06 格式:PDF 页数:26 大小:1.12MB
返回 下载 相关 举报
摘要
申请专利号:

CN200680028160.0

申请日:

2006.06.27

公开号:

CN101248441A

公开日:

2008.08.20

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效|||公开

IPC分类号:

G06K9/00; A61B5/00

主分类号:

G06K9/00

申请人:

艾可瑞公司

发明人:

付东山; M·J·萨拉切恩; G·库达瓦里

地址:

美国加利福尼亚

优先权:

2005.6.29 US 11/171,842

专利代理机构:

北京润平知识产权代理有限公司

代理人:

周建秋;王凤桐

PDF下载: PDF下载
内容摘要

公开了一种用于图像引导的放射外科学的X射线图像与锥束CT扫描的精密配准的方法,该方法包括获得感兴趣区域的2-D治疗前X射线图像(802);获得在近似的治疗期间的感兴趣区域的2-D X射线图像(804);将该2-D X射线图像与对应的2-D治疗前X射线图像配准以获得在近似的治疗期间的2-D配准结果(806);以及将所述2-D配准结果转换为3-D跟踪结果以跟踪感兴趣区域(807)。

权利要求书

权利要求书
1.  一种方法,该方法包括:
在近似的治疗期间获得感兴趣区域的一个或多个二维X射线图像;以及
在所述近似的治疗期间将所述二维X射线图像与多个二维治疗前X射线图像中对应的一个相配准以获得二维配准结果。

2.  根据权利要求1所述的方法,该方法进一步包括在所述近似的治疗期间将所述二维配准结果转换为三维跟踪结果以跟踪所述感兴趣区域。

3.  根据权利要求1所述的方法,其中所述多个二维治疗前X射线图像对应于在所述近似的治疗期间的所述感兴趣区域的二维X射线图像的期望范围。

4.  根据权利要求3所述的方法,其中所述二维X射线图像的期望范围对应于在所述近似的治疗期间的患者位置的期望范围。

5.  根据权利要求1所述的方法,其中所述多个二维治疗前X射线图像包括所述感兴趣区域的多个成对的正交投影,且其中所述二维X射线图像包括在所述近似的治疗期间的所述感兴趣区域的另一对正交投影。

6.  根据权利要求1所述的方法,其中在所述近似的治疗期间将所述二维X射线图像与多个二维治疗前X射线图像中对应的一个相配准,该配准包括计算平面内平移、平面内旋转以及平面外旋转。

7.  根据权利要求1所述的方法,其中所述多个二维治疗前X射线图像包括用于三维治疗计划的锥束计算机X射线断层摄影术扫描的子集。

8.  根据权利要求1所述的方法,该方法进一步包括采用计算机轴向X射线断层摄影术扫描来实现三维治疗计划。

9.  根据权利要求1所述的方法,其中所述多个二维治疗前X射线图像和所述二维X射线图像对应于不同的成像几何关系,所述方法进一步包括在所述近似的治疗期间缩放所述二维X射线图像以校正所述不同的成像几何关系。

10.  根据权利要求1所述的方法,该方法进一步包括处理所述多个二维治疗前X射线图像以提取用于在近似的治疗期间将该二维治疗前X射线图像与所述二维X射线图像相配准的图像特征。

11.  一种包含指令的机器可读介质,当该指令在数据处理系统中被执行时促使该系统执行一种方法,该方法包括:
在近似的治疗期间获得感兴趣区域的一个或多个二维X射线图像;以及
在所述近似的治疗期间将所述二维X射线图像与多个二维治疗前X射线图像中对应的一个相配准以获得二维配准结果。

12.  根据权利要求11所述的机器可读介质,其中所述方法进一步包括在所述近似的治疗期间将所述二维配准结果转换为三维跟踪结果以跟踪所述感兴趣区域。

13.  根据权利要求11所述的机器可读介质,其中所述多个二维治疗前X射线图像对应于在所述近似的治疗期间的所述感兴趣区域的二维X射线图像的期望范围。

14.  根据权利要求13所述的机器可读介质,其中所述二维X射线图像的期望范围对应于在所述近似的治疗期间的患者位置的期望范围。

15.  根据权利要求11所述的机器可读介质,其中所述多个二维治疗前X射线图像包括所述感兴趣区域的多个成对的正交投影,且其中所述二维X射线图像包括在所述近似的治疗期间的所述感兴趣区域的另一对正交投影。

16.  根据权利要求11所述的机器可读介质,其中在所述近似的治疗期间将所述二维X射线图像与多个二维治疗前X射线图像中对应的一个相配准,该配准包括计算平面内平移、平面内旋转以及平面外旋转。

17.  根据权利要求11所述的机器可读介质,其中所述多个二维治疗前X射线图像包括用于三维治疗计划的锥束计算机X射线断层摄影术扫描的子集。

18.  根据权利要求11所述的机器可读介质,其中所述多个二维治疗前X射线图像和所述二维X射线图像对应于不同的成像几何关系,所述方法进一步包括在所述近似的治疗期间缩放所述二维X射线图像以校正所述不同的成像几何关系。

19.  根据权利要求11所述的机器可读介质,其中所述方法进一步包括处理所述多个二维治疗前X射线图像以提取用于在所述近似的治疗期间将该二维治疗前X射线图像与所述二维X射线图像相配准的图像特征。

20.  一种装置,该装置包括:
成像系统,该成像系统用于在近似的治疗期间获得感兴趣区域的一个或多个二维X射线图像;
处理设备,该处理设备与所述成像系统耦合以控制该成像系统,该处理设备在所述近似的治疗期间将所述一个或多个二维X射线图像与多个二维治疗前X射线图像中对应的一个或多个相配准,并获得二维配准结果。

21.  根据权利要求20所述的装置,所述处理设备用于在所述近似的治疗期间将所述二维配准结果转换为三维跟踪结果以跟踪所述感兴趣区域。

22.  根据权利要求20所述的装置,其中所述多个二维治疗前X射线图像对应于在所述近似的治疗期间的所述感兴趣区域的一个或多个二维X射线图像的期望范围。

23.  根据权利要求22所述的装置,其中所述一个或多个二维X射线图像的期望范围对应于在所述近似的治疗期间患者位置的期望范围。

24.  根据权利要求20所述的装置,其中所述多个二维治疗前X射线图像包括所述感兴趣区域的多个成对的正交投影,所述成像系统被配置以在所述近似的治疗期间获得一个或多个二维X射线图像作为所述感兴趣区域的成对的正交投影。

25.  根据权利要求20所述的装置,其中所述处理设备用于在近似的治疗期间通过计算平面内平移、平面内旋转以及平面外旋转而将所述一个或多个二维X射线图像与多个二维治疗前X射线图像中对应的一个或多个相配准。

26.  根据权利要求20所述的装置,其中所述多个二维治疗前X射线图像包括用于三维治疗计划的锥束计算机X射线断层摄影术扫描的子集,所述处理设备用于将所述二维配准结果转换为三维跟踪结果。

27.  根据权利要求20所述的装置,其中所述多个二维治疗前X射线图像和所述二维X射线图像对应于不同的成像几何关系,所述装置进一步包括与所述成像系统和处理设备相耦合的第一图像处理器,该第一图像处理器用于在所述近似的治疗期间缩放所述二维X射线图像以校正所述不同的成像几何关系。

28.  根据权利要求27所述的装置,该装置进一步包括第二图像处理器,该第二图像处理器用于处理所述多个二维治疗前X射线图像以提取用于在所述近似的治疗期间将该二维治疗前X射线图像与所述二维X射线图像相配准的图像特征。

29.  根据权利要求20所述的装置,该装置进一步包括:
治疗传送系统,该治疗传送系统用以传送治疗计划;以及
控制器,该控制器与所述治疗传送系统、成像系统和处理设备相耦合,所述控制器用所述三维跟踪结果来调节所述治疗传送系统。

30.  一种图像引导的三维治疗传送系统,该系统包括:
用于在近似的治疗期间获得感兴趣区域的一个或多个二维X射线图像的装置;以及
用于在所述近似的治疗期间将二维X射线图像与对应的多个二维治疗前X射线图像中的一个相配准以获得二维配准结果的装置。

31.  根据权利要求30所述的图像引导的治疗传送系统,该系统进一步包括用于在所述近似的治疗期间将所述二维配准结果转换为三维跟踪结果以跟踪所述感兴趣区域的装置。

32.  根据权利要求30所述的图像引导的治疗传达系统,该系统进一步包括用于以计算机轴向X射线断层摄影术扫描来实现三维治疗计划的装置。

说明书

说明书图像引导放射治疗的X射线图像与锥束CT扫描的精密配准
技术领域
本发明一般地涉及图像引导的放射线治疗系统,且特别地,涉及治疗之前的X射线图像与治疗传送期间所需的X射线图像的配准。
背景技术
肿瘤学是针对肿瘤的医学分支,肿瘤学包括对肿瘤的发展、诊断、治疗以及预防的学习。肿瘤是由不可控的愈来愈严重的细胞繁殖所引起的组织的异常生长,该细胞的生长不具有任何生理学功能。肿瘤可以是恶性的(癌变的)或良性的。恶性肿瘤通过血管或淋巴系统将癌变细胞传播至身体的其他部分(即转移)。良性肿瘤不会转移,但若其生长在例如神经、血管和器官等重要的身体结构上则仍能够造成生命威胁。
放射外科学和放射线疗法是通过将处方剂量的放射线(例如,X射线或伽马射线)传送到目标区域(感兴趣的区域,即ROI)从而使用外部的放射线束治疗肿瘤和其他损害的放射线治疗系统,且在此过程中最小化发射线对周围组织的暴露。放射外科学和放射线疗法的共同目标是破坏肿瘤细胞并同时保留健康的组织和重要的结构。放射线疗法的特点是每次治疗采用较少的放射线剂量并进行多次这样的治疗(例如,治疗30-45天)。放射外科学的特点是在一次或最多几次治疗中对肿瘤采用相对较高的放射线剂量。在放射外科学和放射线疗法两者中,放射线剂量均从多个角度传送至肿瘤位置。由于每个放射线束的角度是不同的,因此每个线束均通过肿瘤位置,但在其到达肿瘤的途中穿过了健康组织的不同区域。因此,在肿瘤处积累的放射线剂量较高且健康组织所积累的平均放射线剂量较低。
常规的放射线疗法和放射外科学治疗系统使用刚性的和植入的定向(三维参考)框架以在采用诊断/治疗计划的计算机轴向X射线断层摄影术(CAT)扫描或其他3D图像形式(例如,磁共振成像(MRI)或正电子发射体层成像(PET)扫描)对感兴趣的区域成像时使患者保持固定,并同样在之后的放射线治疗中用该法保持患者的固定。所述刚性框架附着在患者的多骨结构上(例如,头骨处)从而使框架上的参考标记(基准的)与被照相的区域具有固定的空间关系。此后,在治疗期间,该框架为放射线束(或射束)的位置提供参考点。在常规的放射线外科学的系统中,使用分布式的放射线源(例如,钴60)以产生同时穿过位于机器定制的放射线防护物中的洞的大量的放射线束。在常规的放射线疗法的系统中,放射线源是安装在构台结构上的单个的射束设备,该构台结构围绕处于旋转的固定平面中的患者而旋转。每个射束通过旋转的中心(标准中心)且患者必须在每个放射线束被提供之前根据该标准中心而恰当地定位或重新定位。
图像引导的放射线疗法和放射外科学系统(以及图像引导的放射线治疗或IGR治疗系统)通过校正患者在治疗计划阶段(治疗成像阶段之前)和治疗传送阶段(治疗阶段中)间的位置偏差而避免了使用植入的框架固定。该校正由在治疗传送阶段期间所需的实时X射线图像来完成且将该X射线图像与参考图像配准,此过程即为数字重构射线照相(DRR),该配准在治疗CAT扫描前实施。
图1显示了CAT扫描机的示意性图示。如图1所示,X射线源产生X射线扇束,该扇束穿过患者且与探测器接触(impinge)。当治疗台是静止的,通过在患者周围旋转X射线源和探测器可获得患者的横截面图像并从不同角度位置扫描身体的横截切片(slice)。在每个横截切片完成之后,所述治疗台被推进(垂直于图1的平面)且下一个横截切片被获取。三维(3D)图像(计算机X射线断层摄影术(CT)容积)通过结合来自所述切片的图像数据而获得。CAT扫描被用于实现治疗计划,该治疗计划计算传送处方的放射线剂量所需的X射线波束的角度、持续时间以及强度。
DRR是通过结合来自CAT扫描切片和计算通过该切片的二维(2-D)影像的数据而产生合成的X射线图像,该2-D影像是对实时图像系统的几何关系近似。在DRR和实时X射线图像间进行的配准处理被设计以校正参考图像和实时图像间的移动和旋转的未配准。
配准的准确率受限于用于配准处理的DRR的准确率。接下来,DRR的准确率受限于诊断CAT扫描的分辨率。如上所述,DRR是一种合成的X射线。通过结合来自贯穿CT容积的切片与切片的轨迹线来获得DRR。与X射线图像相比,DRR是模糊不清的且一些图像细节可能会丢失。因此,所述配准处理将高质量的实时X射线图像与低质量的DRR图像相比较,且配准的总质量受限于DRR的分辨率。
图2显示了与使用DRR相关的一个潜在的问题。在图2中,所显示的肿块与不规则的血管临近。CAT扫描包括由一系列增量分离的一系列横截面切片,其中该增量用于限制暴露给患者的X射线的总量为安全级别。当DRR产生自CAT扫描数据时,图像通过切片间的线性插值而再现,从而将细节从所再现的图像中去除。图3示出了这样的从图2获得的数据所表示的肿块和血管的透视图。在图3中,血管的不规则消失了,因为在CAT扫描的切片间的增量大于该不规则的大小。图像数据的丢失降低了DRR和用于驱动该配准处理的实时X射线图像间的任何类似的测量的有效性。DRR透视图处理还导致增量中的密度变化数据的丢失,这使得在治疗期间跟踪软组织结构的运动变得困难或不可能。
附图说明
本发明通过实施例的方式在附图中被说明,且该实施例并不作为限制,其中:
图1示出了常规的CAT扫描设备;
图2示出了常规的CAT扫描系统中的横截面图像;
图3示出了常规的CAT扫描系统中的DRR透视图;
图4示出了在用于图像引导的放射线治疗的X射线图像与锥束CT扫描的精密配准的一种实施方式中的系统;
图5示出了图像引导的放射线治疗系统的一种实施方式;
图6示出了成像系统的一种实施方式;
图7示出了在用于图像引导的放射线治疗的X射线图像与锥束CT扫描的精密配准的一种实施方式中的实时成像系统;
图8示出了在用于图像引导的放射线治疗的X射线图像与锥束CT扫描的精密配准的一种实施方式中的方法。
具体实施方式
在以下的描述中,为了提供对本发明的实施方式的全面的理解,提出了多个特定的细节,例如特定元件、设备、方法等的实例。然而,这些特定的细节对实现本发明的实施方式来说不是必须应用的,这对本领域技术人员来说是显而易见的。在其他情况下,已知的材料或方法没有进行详细的描述以免不必要地模糊本发明的实施方式。此处所用的术语“耦合”可以表示直接耦合或通过一个或多个中间元件或系统而间接耦合。此处使用的术语“X射线图像”可以表示可视的X射线图像(例如显示在视频屏幕上)或X射线图像的数字表示(例如对应于X射线探测器的像素输出的文档)。此处所用的术语“治疗中的图像”或“实时图像”可以涉及放射外科学或放射线疗法步骤的治疗传送阶段期间在任意点及时捕获的图像,其中可以包括在放射源开启或关闭时刻捕获的图像。此处所用的术语IGR可以涉及图像引导的放射线疗法、图像引导的放射外科学或同时涉及上述两者。
描述了一种用于图像引导的放射线治疗的X射线图像与锥束CT扫描的精密配准的方法和系统。在一种实施方式中,该方法可以包括从治疗前的成像系统(例如在治疗计划阶段期间)获得感兴趣区域的2-D治疗前X射线图像。该方法还可以包括获得感兴趣区域的2-D治疗中X射线图像(例如在治疗传送阶段期间),且将该2-D治疗中X射线图像与对应的2-D治疗前X射线图像配准以获得2-D配准结果。最后,该方法可以包括将该2-D配准结果转换为3-D跟踪结果从而在图像引导的放射外科学或放射线疗法(IGR)步骤期间跟踪感兴趣区域。
在一种实施方式中,如图4中所示,治疗计划和传送系统400包括诊断成像系统401以获得患者的感兴趣区域的治疗前X射线图像。诊断成像系统401可以是直接产生高质量的2-D X射线图像的成像系统且作为3-D成像和诊断处理的一部分。例如,诊断成像系统401可以是锥束CT扫描机,该锥束CT扫描机通过在患者周围旋转一对或多对X射线源和探测器来产生一组投影的2-D X射线图像。锥束CT扫描机在本领域中是公知的,且因此在此不再详细描述。作为选择地,诊断成像系统401可以是任何其他的直接产生2-D X射线图像而不需中间转换的成像系统。由诊断成像系统401产生的X射线图像可以包括多对通过患者的感兴趣区域的正交投影,该投影由单个X射线源和探测器顺序产生或同时由两组X射线源和探测器产生。由诊断成像系统401获得的一组图像可以包括足够数量的感兴趣区域的图像以构成用于诊断和治疗计划的CT容积。作为选择地,由诊断成像系统401获得的一组治疗前2-D X射线图像可以是较少数量的图像,该较少数量的图像近似地对应于在图像引导的放射线治疗步骤期间感兴趣区域的2-D治疗中X射线图像的期望范围,在此情况下,所述的一组治疗前X射线图像可以与常规的CAT扫描相关联。2-D治疗中X射线图像的期望范围可以对应于IGR步骤期间患者的位置的期望范围,IGR步骤期间患者的位置可以与在治疗前图像获取处理期间患者的一个或多个位置相偏离。
由诊断成像系统401获得的图像可以使用本领域已知的数字增强技术来处理以通过图像处理器402来增强图像特征,且该图像可以存储在治疗计划系统403内的治疗计划库403-A中。治疗计划库403-A可以是任意类型的数字存储介质,例如能够存储数字X射线图像的磁性或固体状态的媒介。治疗计划系统403可以被配置以产生3-D诊断图像和一个或多个治疗计划,该治疗计划可以包括在预期的IGR步骤期间放射线治疗X射线源和感兴趣的区域之间的空间关系。治疗计划系统403可以耦合到系统处理器404,该系统处理器404可以是任意类型的能够执行指令并对图像数据及其他数据进行操作且能够命令诸如IGR系统406的IGR系统的通用或专用处理设备。系统处理器404可以包括存储器405,该存储器405可以是任意类型的能够存储用于操作系统400的数据及指令的存储器。在一种实施方式中,IGR系统406可以是基于无框架机器人的直线加速器(LINAC)放射外科学系统,例如,由位于加利福尼亚的桑尼维尔(Sunnyvale)的Accuray公司制造的射波刀定向放射外科手术系统(CyberKnifeStereotactic Radiosurgery System)。IGR系统406可以包括与IGR传送系统408和实时成像系统409耦合的IGR控制器407。IGR控制器407可以被配置以响应于来自系统处理器404的命令来调节IGR传送系统408和实时成像系统409的操作。从实时成像系统409获得的实时X射线图像可以被图像处理器410处理以增强图像特征,如上所述,这将改进治疗前和治疗中图像间的相似测量。治疗前和治疗中图像的配准可以由系统处理器404在图像数据上执行,该图像数据从治疗计划系统403和实时成像系统409被发送到系统处理器404。如本领域所公知的,治疗前和治疗中X射线图像的配准可以包括平面内平移、平面内旋转和平面外旋转的计算。
图5显示了一种可以与本发明一起使用的基于无框架机器人的LINAC放射外科学系统的实施方式。在图5中,治疗传送系统408可以包括直线加速器501以产生放射外科学X射线波束;机器人臂509以将LINAC 501定位于患者和感兴趣的区域;以及治疗台503以关于实时成像系统409来放置患者。在这样的系统中,LINAC501被安装在机器人臂509的末端以提供多(例如5个或更多)自由度的运动以便放置LINAC,从而使该LINAC以从患者周围的操作容积(例如,球体)中的多个角度传送的高度校准射束来照射肿瘤组织。治疗可以引入具有单个标准中心、多个标准中心或无等深通路的路径(例如射束仅需要与目标肿块相交且并不需要会聚在目标范围内的单个点或标准中心上)。治疗可以在单个部分(单一片断)或在治疗计划期间确定的一定数量的部分(低速分割)中传送。
作为选择地,还可以使用治疗传送系统的其他类型。一个实例是基于构台(标准中心)的调强适形放射线疗法(IMRT)系统。在基于构台的系统中,放射源(例如LINAC)被安装在旋转构台上从而使该放射源对应于患者的轴切片而在固定的平面内旋转。放射线之后被从旋转平面内的多个角度位置传送。在IMRT中,放射线射束的形状由多叶准直器定义,该多叶准直器允许部分射束被阻挡,从而使入射到患者身上的余下的射束具有预定义的形状。在IMRT计划中,治疗计划算法选择主射束的子集并确定每个辅助射束的暴露时间量以达到全部放射线剂量约束。治疗传送系统的其他实例包括伽马射线传送系统(例如使用钴同位素作为放射源)。
IGR控制器407(在图5中未示出)可以嵌入到机器人臂509中或可以成为独立的元件。在图5中,实时成像系统409可以包括成像X射线源506-A和506-B以及X射线图像探测器507-A和507-B。所述X射线图像探测器507-A和507-B可以是无定形硅探测器,该无定形硅探测器可以在IGR步骤期间产生高质量的2-D X射线图像,且该无定形硅探测器可以相对于彼此成90度地安装并与地板成45度。在治疗阶段期间,如下所述的,患者可以成45度的左前倾斜(LAO)和右前倾斜(RAO)的角度被成像来促进将2D图像重构为3D空间。IGR系统406的其他实施方式可以包括本领域所公知的基于构台的放射线疗法或放射外科学系统。
图6以示意的形式示出了图5中示例性的IGR系统406。在图6中,为了清楚而省略了机器人臂509。如图6所示,LINAC 501可以被放置以传送高质量的放射线至患者502身上的感兴趣的区域。机动化的治疗床503可以用于关于机械中心505来定位患者502身上的感兴趣的区域,以下对此进行了详细的描述。如上所述,机器人臂509可以在定位LINAC 501中提供六自由度(即三个笛卡尔坐标加围绕每个坐标的旋转)。LINAC 501可以被定位在围绕机器中心505的近似半球区域504中的任意点。成像X射线源506-A和506-B可以被安装在LINAC 501的运动范围的外侧且被校准以照亮两个正交放置的X射线探测器507-A和507-B。来自源506-A和506-B的X射线波束可以用于定义机器中心505,该机器中心505在分别来自X射线源506-A和506-B的轨迹射线508-A和508-B的交叉点上,在图6中以“×”表示,且轨迹射线508-A和508-B为其各自的探测器507-A和507-B的法线。机器中心505可以作为治疗前X射线图像和治疗中X射线图像配准的参考点。应该注意的是可以使用可替换的成像配置和几何关系。例如,X射线探测器507-A和507-B之间的夹角可以大于或小于90度。在其他实施方式中,可以使用另外的X射线源和探测器以定义一个或多个另外的机器中心。
图7示出了在IGR步骤期间如何通过实时成像系统409来探测患者的运动。在图7中,参考成像系统的(x,y,z)坐标系统,在601-1和601-2两个位置上的患者的投影图像显示为投影602-A和602-B,其中圆圈表示进入该图的平面的坐标方向。当投影602-B探测X-Z平面中的运动时,投影602-A探测在Y-Z平面内的运动。这样的正交投影系统在本领域是公知的,因此,在此不再详细描述。投影602-A和602-B的结合可以提供在全部三个坐标轴上的位置信息,该位置信息可以通过系统处理器405传送给IGR控制器407以关于机器中心505定位患者502。
在治疗传送阶段期间,患者的2-D实时X射线图像可以通过实时成像系统409在每次LINAC被重新定位和激活之前获得。治疗中X射线图像可以与高质量2-D治疗前X射线图像组相比较,该高质量2-D治疗前X射线图像组被维持在治疗计划库402中,且最相近的匹配可以被选择用于配准。实时X射线图像与治疗前图像的直接比较可能无法获得精确的匹配,这是因为:1)治疗前成像系统的几何关系可能与实时成像系统的几何关系不同(即从源到感兴趣区域的距离和从感兴趣区域到探测器的距离可能在两个成像系统中不相同),从而导致不同的图像尺寸,以及2)患者不是刚体且能够关于每个轴线旋转移动(偏离、倾斜和滚动),以及在治疗中相对于治疗前的位置卷曲或伸展身体。因此,治疗前图像需要与治疗中图像配准以确保放射线治疗被传送到根据治疗计划的感兴趣的区域(即,肿块)。
在一种实施方式中,在每个射束激活之前,所述两个正交投影的实时X射线图像被与两个紧密地对应于正交投影的治疗前X射线图像相比较和配准。在每个投影中的2-D配准可以独立地执行,以校正平面内的平移和旋转(即在投影602-A中的Y-Z平移和旋转以及在投影602-B中的X-Z平移和旋转),且该配准的结果被结合并转换为3-D刚性变换,该3-D刚性变换提供用于校正放射线剂量被传送前的LINAC 501的位置的3-D跟踪结果。3-D变换提供实时图像和使用基于类似测量的参考图像平面内平移和平面外旋转的估计,例如,在图像特征(例如解剖边缘、图像梯度、轮廓、目标表面或分段目标)或图像强度上。图像配准技术是本领域公知的,例如,在已公开的美国专利申请2005/0047544、2005/0049477和2005/0049478中所描述的。在本发明的实施方式中,高质量治疗前X射线图像的使用与合成DRR图像相比提高了特征提取且提高了软组织的可视程度,且通过在配准处理中使用的本领域公知的最小化技术而允许配准误差被推动至约为零。
在另一种实施方式中,所述3-D治疗计划可以实施为不同的形式(例如常规的CT扫描)且所述2-D治疗前图像可以独立地与3-D治疗计划关联。
在又一种实施方式中,所述治疗前成像系统的成像几何关系和治疗中成像系统是不同的,所述治疗中图像可以被缩放(例如,通过系统处理器中的缩放算法)以校正不同的几何关系。
图8显示了在一种用于图像引导的放射外科学和放射线治疗的X射线图像与CT扫描的精密配准的实施方式中的方法800。参考图4,所述方法可以包括,在治疗计划阶段:利用诊断成像系统401获得锥束CT扫描容积(步骤801);使用治疗计划系统402从锥束CT中选择2-D治疗前X射线图像(步骤802);以及利用图像处理器403预处理所述2-D治疗前X射线图像以提取治疗前X射线图像特征(步骤803)。在治疗传送阶段,所述方法可以包括:利用实时成像系统409获得2-D实时X射线图像(步骤804);利用图像处理器410处理所述2-D实时X射线图像以提取实时X射线图像特征并任意地缩放该2-D实时X射线图像以校正在诊断成像系统401和实时成像系统409间不同的成像几何关系(步骤805);在系统处理器404中将2-D实时X射线图像与位于对应的2-D治疗前X射线图像相配准以获得2-D配准结果(步骤806);在系统处理器404中执行几何关系转换以将2-D实时X射线图像转换为3-D实时容积(步骤807);以及对照治疗前CT容积来跟踪该3-D实时容积(步骤808)。
由此,描述了一种用于图像引导的放射外科学的X射线图像与CT扫描的精密配准的系统和方法。本发明的各方面,至少部分,在软件方面,进行了具体化,这些从之前的描述中将变得显而易见。也就是说,所述技术可以响应于例如系统处理器404的处理器而在计算机系统或其他数据处理系统中实现,来执行存储在例如存储器405的存储器中的指令序列。在各种实施方式中,可以使用硬件电路与软件指令相结合以实现本发明。由此,所述技术不限于任何硬件电路和软件或任何用于通过数据处理系统执行指令的特殊源的特定结合。此外,贯穿本说明书,描述了各种由软件编码执行或由软件编码引起的功能和操作以简化描述。然而,本领域技术人员将意识到这些表达意味着这些功能是由处理器或控制器,例如系统处理器404或IGR控制器407,执行所述编码所引发的。
可以使用机器可读介质来存储软件和数据,当由数据处理系统执行该软件和数据时,使得系统执行本发明的各种方法。这些可执行的软件和数据可以被存储在多个地方,这些地方包括例如存储器405和治疗计划库403-A或任何其他能够存储软件程序和/或数据的设备。
由此,机器可读介质包括以机器(例如,计算机、网络设备、个人数字助理、制造工具、具有一组一个或多个处理器的任意设备等)可存取的形式提供(即存储和/或传送)信息的任意机械结构。例如,机器可读介质包括可记录的/不可记录的介质(例如,只读存储器(ROM);随机存取存储器(RAM);磁盘存储器介质;光学存储器介质;快闪存储器设备等),以及电、光、声或其他形式传播的信号(例如,载波、红外信号、数字信号等)等。
可以理解的是贯穿本说明书提及的“一种实施方式”或“实施方式”意味着结合该实施方式描述的特定的特征、结构或特性被包括在本发明的至少一个实施方式中。因此,需要强调和被理解的是在本说明书的不同部分两次或多次提及的“实施方式”或“一种实施方式”或“可替换的实施方式”不一定全部指向同一个实施方式。此外,在本发明的一个或多个实施方式中的特定的特征、结构或特性可以被适当地结合。并且,虽然本发明是通过几个实施方式加以描述的,但是本领域技术人员将意识到本发明不限于所述的实施方式。本发明的实施方式可以在所附权利要求的范围内加以修改和替换而实现。由此本说明书和附图被视为示意性的而不是用于限定本发明。

图像引导放射治疗的X射线图像与锥束CT扫描的精密配准.pdf_第1页
第1页 / 共26页
图像引导放射治疗的X射线图像与锥束CT扫描的精密配准.pdf_第2页
第2页 / 共26页
图像引导放射治疗的X射线图像与锥束CT扫描的精密配准.pdf_第3页
第3页 / 共26页
点击查看更多>>
资源描述

《图像引导放射治疗的X射线图像与锥束CT扫描的精密配准.pdf》由会员分享,可在线阅读,更多相关《图像引导放射治疗的X射线图像与锥束CT扫描的精密配准.pdf(26页珍藏版)》请在专利查询网上搜索。

公开了一种用于图像引导的放射外科学的X射线图像与锥束CT扫描的精密配准的方法,该方法包括获得感兴趣区域的2-D治疗前X射线图像(802);获得在近似的治疗期间的感兴趣区域的2-D X射线图像(804);将该2-D X射线图像与对应的2-D治疗前X射线图像配准以获得在近似的治疗期间的2-D配准结果(806);以及将所述2-D配准结果转换为3-D跟踪结果以跟踪感兴趣区域(807)。。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 物理 > 计算;推算;计数


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1