新型的N-乙烯基内酰胺衍生物和其聚合物 本发明涉及新型的N-乙烯基内酰胺衍生物和其用于微平版印刷的聚合物。更具体的说,本发明涉及N-乙烯基内酰胺衍生物和其用作光刻胶的原料的聚合物,该光刻胶通过使用深紫外光(UV)能够形成高灵敏度和高分辨率的图象,以及涉及它们的用作光刻胶的均聚物和共聚物。
通常,光刻胶主要由碱可溶的苯酚(或甲酚)-甲醛清漆树脂和作为光敏材料(光活性成分)的取代萘醌二叠氮化物化合物组成,这在US No.3,666,473,4,115,128和4,173,470中有描述。
在用于此类光刻胶的酚醛清漆树脂溶于碱的水溶液的同时,萘醌光敏材料用作光刻胶的溶解抑制剂。然而,当涂有光刻胶的基底选择性地进行化学辐射时,光敏剂被诱发这样一种结构变化:光刻胶涂层的暴露区域比未暴露区域具有更强的碱溶解性。借助于这一溶解度差异,能够在基底涂层上刻蚀出可靠的图象。即,当基底被浸入碱性显影液中时,光刻胶涂层的暴露区域被溶解,而未暴露区域基本上不受影响,得以形成图象。然而,上述酚醛清漆树脂型光刻胶已发现不适用于将来使用的采用较短波长的分挡器(steper),因为它们在深紫外光范围内(200-300nm)显示出较高的吸光性。
为了在半导体制造的平版印刷工艺中获得高地灵敏度,最近已开发了化学放大光刻胶。事实上,化学放大光刻胶已经引起人们的注意,因为已发现它能够比普通的正性酚醛清漆树脂光刻胶提高100倍的灵敏度。化学放大光刻胶,它利用光化酸产生剂(photoacid generator)(下文称作“PAG”),一般是通过在具有易与酸反应的结构的母体聚合物中配制PAG而获得的。对于光化反应的机理,当PAG暴露于光或受高能束如X射线和电子束的辐射时,会产生强质子酸,布朗斯特酸,引起母体聚合物的主链或侧链发生分解反应,交联反应或极性改变很大。酸的这一作用在辐射区域中引发所给定的显影溶液的溶解性的变化。即,或者提高,或者下降。结果能够形成精细的图象。
能够对光和辐射作出反映的嗡盐已知可用作光化酸产生剂。嗡盐典型地包括铵盐,氧嗡盐和锍盐等。近年来已有报道,有机磺酸酯能够用作所产生的光化酸。
适合作为能够与酸反应的母体聚合物的是,例如,具有侧链如叔丁基酯、叔丁基碳酸酯、叔丁氧基或叔丁氧基羰基的聚合物,这些侧链能够被酸分解成羧酸,酚或醇官能基。在这类侧链保护基团当中,叔丁氧基羰基在敏感性上是最高的。处在被保护状态或在与酸反应前的此类可与酸反应的聚合物能够溶于有机溶剂,但不溶于碱的水溶液。但是,如果可与酸反应的聚合物通过与酸反应被去保护,它会溶于碱的水溶液,因为它的极性显著变化。
通过使用这一原理,化学放大光刻胶的开发已是近年来热门的话题。叔丁氧基羰基保护的聚乙烯基苯酚(下文称作“t-bocPVP”),据报道,是最有希望的树脂中的一种,这在US No.4,491,628,4,405,708和4,311,782中已介绍。
最近在亚微平版印刷方法中的趋势是,作为光源深UV(波长200-300nm),优选使用高能(248nm)的KrF准分子激光器,而不是普通的UV,例如g线(波长436nm)或i线(波长365nm),为的是获得高的灵敏度和高的分辨率。所以,母体聚合物的吸光性应该在深UV的波长范围内,尤其在KrF准分子激光器的波长248nm处,被降低到最低。但是,由于t-bocPVP也含有苯基,它具有在短波长范围内显示出大的吸光性的突出缺点。
本发明人反复地进行深入的研究,其目的是为了开发用于亚微平版印刷方法的光刻胶,它除了具有为加工工艺所需要的高的玻璃化转变温度以外,还不吸收深紫外光(UV),从而获得以下发现:用脂环族化合物(N-乙烯基内酰胺)聚合而成的、被可与酸反应的基团保护的化学放大光刻胶在去保护后被转化成水性聚合物,并且通过使用弱碱性水溶液或仅仅使用纯水经过设计能够形成图象,从而显著改进形成图象的方法。
所以,本发明的主要目的是提供N-乙烯基内酰胺衍生物单体(其中乙烯基在3-位被各种保护基封闭),作为微平版印刷方法的光刻胶原料,能够满足高的灵敏度和高的分辨率。
本发明的另一目的是提供从该单体制备的聚合物。
本发明再一目的是提供用于光刻胶的聚合物。
本发明提供乙烯基内酰胺衍生物单体,其中乙烯基内酰胺在3-位被保护。通过让乙烯基内酰胺与强碱在低温下反应得到烯醇化物和向乙烯基内酰胺的3-位引入保护基,能够制备该单体。乙烯基内酰胺的具体实例包括N-乙烯基吡咯烷酮,N-乙烯基-4-丁基吡咯烷酮,N-乙烯基-4-丙基吡咯烷酮,N-乙烯基-4-乙基吡咯烷酮,N-乙烯基-4-甲基吡咯烷酮,N-乙烯基-4-甲基-5-乙基吡咯烷酮,N-乙烯基-4-甲基-5-丙基吡咯烷酮,N-乙烯基-5-甲基-5-乙基吡咯烷酮,N-乙烯基-5-丙基吡咯烷酮,N-乙烯基-5-丁基吡咯烷酮,N-乙烯基-5-哌啶酮,N-乙烯基-4-甲基哌啶酮,N-乙烯基-4-丙基哌啶酮,N-乙烯基-4-丁基哌啶酮,N-乙烯基-6-丁基哌啶酮,N-乙烯基己内酰胺,N-乙烯基-4-甲基己内酰胺,N-乙烯基-6-甲基己内酰胺,N-乙烯基-6-丙基己内酰胺,N-乙烯基-7-丁基己内酰胺和N-乙烯基酰亚胺。强碱可以例举叔丁基锂,氢化钠和正丁基锂。这一单体的制备能够在溶剂中进行,例子包括正戊烷,正己烷,正庚烷,环己烷,乙醚和四氢呋喃。作为保护基团的来源,能够使用氯甲酸叔丁酯,氯甲酸异丁酯,二(叔丁基)二碳酸酯,甲烷磺酰氯,甲磺酸酐,四氢吡喃,2-氯四氢呋喃,三甲基·氯化硅,4-甲氧基苄基氯,4-硝基苄基氯,二乙基·异丙基·氯化硅和叔-丁基·二甲基·氯化硅。
本发明的N-乙烯基内酰胺衍生物由以下结构式(I)表示:
其中
R1是氢,含有1-10个碳原子的烷基,含有6-12个碳原子的芳基或含有3-9个碳原子的三烷基甲硅烷基;
R2是-OR’,-SO3R’,-CO2R’,-PO3R’,-SO2R’或-PO2R’,其中R’是含有1-10个碳原子的烷基,环烷基,含有杂原子如N、O、P和S的环状基团,或含有6-12个碳原子的芳基;
R3是氢,含有1-10个碳原子的烷基,含有6-12个碳原子的芳基,含有3-9个碳原子的三烷基甲硅烷基或与R2一样;
R4和R5是-OH,-OR,其中R是含有1-10个碳原子的烷基或含有6-12个碳原子的芳基,或与R1一样;和
m是整数0-10。
由本发明方法可以合成各种单体,包括:3-(叔丁氧基羰基)-1-乙烯基-2-吡咯烷酮,3-(叔丁氧基羰基)-1-乙烯基-4-丁基-2-吡咯烷酮,3-(叔丁氧基羰基)-1-乙烯基-4-丙基-2-吡咯烷酮,3-(四氢吡喃氧基羰基)-1-乙烯基-2-吡咯烷酮,3-(四氢吡喃氧基羰基)-1-乙烯基-5-乙基-2-吡咯烷酮,3-(叔丁氧基羰基)-1-乙烯基-4-甲基-2-哌啶酮,3-(叔丁氧基羰基)-1-乙烯基-4-丙基-2-哌啶酮,3-(叔丁氧基羰基)-1-乙烯基-2-己内酰胺,3-(叔丁氧基羰基)-1-乙烯基-4-丁基-2-己内酰胺,3-(叔丁氧基羰基)-1-乙烯基-6-甲基-2-己内酰胺,3-(四氢吡喃氧基羰基)-1-乙烯基-2-己内酰胺,3-(四氢吡喃氧基羰基)-1-乙烯基-5-丁基-2-己内酰胺,3-(四氢吡喃氧基羰基)-1-乙烯基-6-丙基-2-己内酰胺,3-(四氢吡喃氧基羰基)-1-乙烯基-2-吡咯烷酮,3-(四氢吡喃氧基羰基)-1-乙烯基-4-丁基-2-吡咯烷酮,3-(四氢吡喃氧基羰基)-1-乙烯基-2-己内酰胺和3-(四氢吡喃氧基羰基)-1-乙烯基-6-丁基-2-己内酰胺。
所合成的单体能够通过使用自由基聚合引发剂,按常规自由基聚合技术容易地进行聚合反应。通过使用上述各种单体,从上述单体能够制备均聚物和从有合适摩尔比的各单体的结合物能够合成共聚物。对于共聚物,可以使用其它单体,如4-(叔丁氧基羰基)-1-乙烯基环己烷,3,5-(二叔丁氧基羰氧基)-1-乙烯基环己烷,4-(四氢吡喃氧基)-1-乙烯基环己烷,4-(四氢呋喃氧基)-1-乙烯基环己烷,3,5-(双四氢吡喃氧基)-1-乙烯基环己烷,3,5-(双四氢呋喃氧基)-1-乙烯基环己烷,叔丁氧基羰氧基苯乙烯,苯乙烯和四氢吡喃氧基苯乙烯。
这些单体在本体聚合反应或在溶液聚合反应中进行聚合。对于聚合反应用的溶剂,可以使用环己酮,甲基乙基酮,苯,甲苯,二恶烷,二甲基甲酰胺或它们的结合物。通常,聚合反应在聚合引发剂如过氧苯甲酰,2,2’-偶氮二异丁腈(AIBN),过氧化乙酰,过氧化月桂酰或过乙酸叔丁酯。
根据本发明,提供了聚合物,该由以下通式(II)和(III)表示:其中
R1是氢,含有1-10个碳原子的烷基,含有6-12个碳原子的芳基或含有3-9个碳原子的三烷基甲硅烷基;
R2是-OR’,-SO3R’,-CO2R’,-PO3R’,-SO2R’或-PO2R’,其中R’是含有1-10个碳原子的烷基,环烷基,含有杂原子如N、O、P和S的环状基团,或含有6-12个碳原子的芳基;
R3是氢,含有1-10个碳原子的烷基,含有6-12个碳原子的芳基,含有3-9个碳原子的三烷基甲硅烷基或与R2一样;
R4和R5是-OH,-OR,其中R是含有1-10个碳原子的烷基或含有6-12个碳原子的芳基,或与R1一样;
R”是含有6-12个碳原子的芳基或表示丙烯酸酯基-COOR,其中R是含有1-10个碳原子的烷基或含有6-12个碳原子的芳基;
m是整数0-10;
n是整数10-10,000;
k是0.5-0.95范围内的摩尔分数;和
l是0.05-0.5范围内的摩尔分数。
从这些通式可以看出,聚合物(II)是从一种上述单体得到的均聚物或通过聚合至少两种N-乙烯基内酰胺衍生物单体得到的共聚物。聚合物(III)是从N-乙烯基内酰胺衍生物和苯乙烯衍生物或乙烯基丙烯酸酯衍生物得到的共聚物。
在这些优选的聚合物当中,已发现聚3-(叔丁氧基羰基)-1-乙烯基-2-吡咯烷酮(下文称作“P(BCVP)”)是高度透明的,这已在试验中证实,其中1μm厚的膜在深UV范围内(200-300nm)显示出0.05或更低的吸光度。热解重量分析法(下面称作“TGA”)表明P(BCVP)在高达210℃的温度下是稳定的。在高于210℃的温度下,发生叔丁氧基羰基的快速去保护,产生2-甲基丙烯和CO2。在酸存在下,去保护分两步进行。首先,叔丁基在低温例如60℃下开始脱离聚合物骨架并在100℃下完全断裂。之后,在150℃产生CO2。这一事实告诉我们,P(BCVP)因其高的热分解温度和易在酸存在下于低温受到保护而具有非常优异的热性能。示差扫描量热法(下面称作“DSC”)表明,P(BCVP)的玻璃化转变温度在145-155℃范围内,这取决于它的分子量。
所有在3-位上受到保护的N-乙烯基内酰胺衍生物的聚合物都显示出优异的成膜性能。尤其是,P(BCVP)和聚3-(叔丁氧基羰基)-1-乙烯基-2-己内酰胺(下面称作“P(BCVC)”),它们都很好地溶于有机溶剂如二恶烷,氯仿,四氢呋喃,环己酮,2-乙氧基乙基乙酸酯,丙酮或甲基乙基酮。相反,去保护的聚合物很好地溶于碱的水溶液,如氢氧化钠或铵盐的溶液,在不溶于绝大多数的有机溶剂。在叔丁基的去保护之前或之后的这一选择性显影作用赋予聚合物优异的图象形成能力。在P(BCVP)的情况下,甚至只用纯水就能实现显影。对于包括P(BCVC)的其它聚合物,通过在弱碱溶液中使图象显影能够获得具有高分辨率的图象。在3-位上受到保护的乙烯基内酰胺衍生物的聚合物当中,发现P(BCVP)和P(BCVC)都具有高的灵敏度,例如1mJ/cm2,并显示出高的对比度。
代表性聚合物P(BCVP)和P(BCVC)在各种溶剂中的溶解度将随去保护而变化。结果总结在下表1中。
在酸的存在下,在这类聚合物的膜中于100℃或更低的温度下观察到叔丁基的去保护。形成精细图象的普通试验已证实本发明的聚合物能够用于高敏感性的化学放大光刻胶。聚合物的热分解行为的分析是借助于DSC(购自DuPont公司,MODEL 2100)和TGA在氮气气氛中以10℃/min的升温速度进行的。
表1
根据去保护的P(BCVP)和P(BCVC)的溶解度溶剂 P(BCVP) P(BCVC) P(VPCA)* P(VCCA)*丙酮 ++ ++ - -二恶烷 ++ ++ + +氯仿 ++ ++ - -己烷 - - - -四氢呋喃 ++ ++ + +苯甲醚 + + - -环己酮 ++ ++ + +2-乙氧基乙基乙酸酯 ++ ++ - -N,N-二甲基甲酰胺 ++ ++ + +甲基乙基酮 ++ ++ + +3.0wt%NaOH溶液 + - ++ ++2.38wt%TMAH溶液 + - ++ ++纯水 - - ++ ++甲醇 + + + +异丙醇 + + + +纯水/甲醇(1/1) + ++ + +++很好地溶解,+少量溶解,-不溶解P(VPCA):聚(1-乙烯基-2-吡咯烷酮-3-羧酸)P(VCCA):聚(1-乙烯基-2-己内酰胺-3-羧酸)
借助于实施例能够更好地理解本发明,这些实施例是供说明本发明用的,但不应认为限制了本发明。
实施例I
3-(叔丁氧基羰基)-1-乙烯基-2-吡咯烷酮的合成
向14ml(100mmol)二异丙基胺在40ml无水四氢呋喃中的溶液中添加40ml(100mmol)的2.5M正丁基锂,所得到的溶液在-78℃下搅拌30分钟,并让其发生反应,一直到温度升至室温为止。在冷却至-78℃后,将11.1g(100mmol)N-乙烯基吡咯烷酮加入到溶液中并在同样的温度下反应30分钟。之后,滴加24g(110mmol)的二(叔丁基)二碳酸酯,然后在-78℃下反应2小时。这一反应液用乙醚稀释,并用纯水多次洗涤。蒸发有机相的有机溶剂,残余物经过硅胶柱色谱分离得到15g纯3-(叔丁氧基羰基)-1-乙烯基-2-吡咯烷酮(下面称作“BCVP”)。它的化学结构由IR谱和NMR测定。
实施例II
3-(叔丁氧基羰基)-1-乙烯基-2-己内酰胺的合成
按照与实施例I类似的方法只是代替N-乙烯基吡咯烷酮使用13.9g(100mmol)N-乙烯基己内酰胺,合成17.2g纯3-(叔丁氧基羰基)-1-乙烯基-2-己内酰胺(下面称作“BCVC”)。采用IR谱和NMR分析方法测定所合成的BCVC的化学结构。
实施例III
3-(四氢吡喃氧基羰基)-1-乙烯基-2-吡咯烷酮的合成
将10.6g(0.05mol)在实施例I中合成的BCVP溶于50ml无水四氢呋喃中。向这一溶液添加4.3g(0.05mol)四氢吡喃和0.3g对-甲苯磺酸,并在0℃下反应4小时。反应液用乙醚稀释,用纯水洗涤几次。蒸发有机相的有机溶剂,残余物经过硅胶柱色谱分离,得到9.8g的纯3-(四氢吡喃氧基羰基)-1-乙烯基-2-吡咯烷酮(下面称作“TPVP”),由IR谱和NMR测定所得到的TPVP的化学结构。
实施例IV
3-(四氢呋喃氧基羰基)-1-乙烯基-2-吡咯烷酮的合成
将8.9g的N-乙烯基-2-吡咯烷酮-3-碳酸钠溶于50ml无水四氢呋喃中。向这一溶液中加入7ml三乙胺和5.3g 2-氯四氢呋喃,并在室温下反应1小时。这一溶液用乙醚稀释并纯水洗涤几次。蒸发有机相的有机溶剂,残余物经过硅胶柱色谱分离,得到9.3g纯3-(四氢呋喃氧基羰基)-1-乙烯基-2-吡咯烷酮(下面称作“TFVP”)。由IR谱和NMR测定它的化学结构。
实施例V
3-(四氢吡喃氧基羰基)-1-乙烯基-2-己内酰胺的合成
按照与实施例III类似的方法,只是代替BCVP使用6.7g的N-乙烯基己内酰胺,合成10.7g纯3-(四氢呋喃氧基羰基)-1-乙烯基-2-己内酰胺(下面称作“TPVC”)。
采用IR谱和NMR分析方法测定TPVC的化学结构。
实施例VI
3-(四氢呋喃氧基羰基)-1-乙烯基-2-己内酰胺的合成
按照与实施例IV中类似的方法,只是代替N-乙烯基-2-吡咯烷酮-3-碳酸钠使用10.3gN-乙烯基-2-己内酰胺-3-碳酸钠,合成10.8g的纯3-(四氢呋喃氧基羰基)-1-乙烯基-2-己内酰胺(下面称作“TFVC”)。采用IR谱和NMR分析方法测定所合成的TFVC的化学结构。
实施例VII
BCVP聚合物的合成
将2.1g在实施例I中合成的BCVP单体溶于纯的或混合的溶剂并装入聚合反应玻璃小瓶中。反应物在聚合引发剂AIBN存在下在真空下于70℃聚合6小时。反应产物被沉淀在石油醚中,干燥沉淀物得到1.8g的聚合物,P(BCVP);转化率80%。观察到它的特性粘度随所使用的溶剂的变化而变化,但是,通过使用玻璃粘度管在25 ℃下测得聚合物的环己酮溶液的粘度是0.5g/dl。结果示于下表2。
表2
P(BCVP)在各种溶剂中的物理性能溶剂a AIPNb M/Sc 时间 转化率 特性粘度 Tgd
(mol%) (g/ml) (hr) (%) (dL/g) (℃)A 1 1 10 89 <0.10 -B 1 1 5 89 0.12 -C 1 1 10 91 0.18 143D 0.5 1 5 90 0.20 151E 0.5 1 6 91 0.30 152F 0.5 1 7 90 0.77 155a A甲基乙基酮,B环己酮,C二恶烷/环己酮(3/1体积比),
D二恶烷/环己酮(5/1体积比),
E二恶烷/环己酮(10/1体积比),
F二恶烷
b mol%,以单体为基础计
c 溶剂体积与单体总重量的比率
d 玻璃化转变温度
实施例VIII至XII
BCVC,TPVP,TFVP,TPVC和TFVC聚合物的合成
使用与实施例VII中相同的操作程序,通过分别使用在实施例II至VI中合成的单体BCVC,TPVP,TFVP,TPVC和TFVC,制备聚合物P(BCVC),P(TPVP),P(TFVP),P(TPVC)和P(TFVC)。
实施例XIII
光刻胶溶液的制备和正性精细图象(I)的形成
将10-30wt%的P(BCVP)溶于环己酮。在这一溶液中,添加5-30wt%的用作光化酸产生剂的翁盐或有机磺酸,以光刻胶聚合物的重量为基础计。用超细过滤器进行过滤,得到化学放大光刻胶溶液。随后,将它旋转涂覆在硅晶片上,形成约1.0μm厚的薄膜。此硅晶片在升温至120℃的烘箱或热板中预烘烤1-5分钟,暴露于从深UV分挡器或准分子激光分挡器辐射出的光线中,在升温至120-140℃的烘箱或热板中进行曝光后烘烤达1-5分钟并浸入纯水中90秒进行显影。结果,获得亚微米级的正性光刻胶图象。
实施例XIV
光刻胶溶液的制备和正性精细图象(II)的形成
使用P(BCVC),重复实施例XIII的操作程序获得光刻胶溶液。在0.8wt%TMAH水溶液中浸渍90秒,获得亚微米级的正性光刻胶图象。
正如前面所描述和证明的那样,本发明的新型的N-乙烯基内酰胺衍生物是用作(适合深UV的)化学放大光刻胶的均聚物或共聚物的原料。还有,由本发明的聚合物制得的光刻胶具有高度的敏感性,这样形成具有高分辨率的图象。因而辐射敏感性聚合物能够用于高度集成的半导体装置和电子装置平版印刷方法。从而,通过使用本发明制备的光刻胶,能够形成超细电路并能够在图案形成上具有优异的改进。
现已按说明性方式描述了本发明,应该理解,所使用的命名希望是说明性的而不是限制性的。
在以上叙述内容的启发下对本发明作许多改进和变化是可能的。所以,应该理解到,在本发明的范围内,本发明能够还能由除了具体描述的那些方法以外的方法实施。