半导体装置及其制造方法.pdf

上传人:Y0****01 文档编号:471574 上传时间:2018-02-18 格式:PDF 页数:30 大小:5.04MB
返回 下载 相关 举报
摘要
申请专利号:

CN201380010640.4

申请日:

2013.02.22

公开号:

CN104137246A

公开日:

2014.11.05

当前法律状态:

撤回

有效性:

无权

法律详情:

发明专利申请公布后的视为撤回IPC(主分类):H01L 21/60申请公布日:20141105|||实质审查的生效IPC(主分类):H01L 21/60申请日:20130222|||公开

IPC分类号:

H01L21/60; C09J11/06; C09J163/00; H01L21/56

主分类号:

H01L21/60

申请人:

日立化成株式会社

发明人:

本田一尊; 永井朗; 佐藤慎

地址:

日本东京

优先权:

2012.02.24 JP 2012-038550; 2012.05.25 JP 2012-119759; 2012.10.01 JP PCT/JP2012/075414

专利代理机构:

永新专利商标代理有限公司 72002

代理人:

王灵菇;白丽

PDF下载: PDF下载
内容摘要

本发明涉及一种半导体装置的制造方法,其为半导体芯片和布线电路基板各自的连接部相互电连接而成的半导体装置或多个半导体芯片各自的连接部相互电连接而成的半导体装置的制造方法,其中,所述制造方法具备将所述连接部的至少一部分用含有具有下述式(1-1)或(1-2)所示基团的化合物的半导体用粘接剂密封的工序。式中,R1表示供电子性基团、多个存在的R1相互可以相同也可以不同。

权利要求书

1.  一种半导体装置的制造方法,其为半导体芯片和布线电路基板各自的连接部相互电连接而成的半导体装置或多个半导体芯片各自的连接部相互电连接而成的半导体装置的制造方法,其中,
所述制造方法具备将所述连接部的至少一部分用含有具有下述式(1-1)或(1-2)所示的基团的化合物的半导体用粘接剂密封的工序,

式中,R1表示供电子性基团、多个存在的R1相互可以相同也可以不同。

2.
  根据权利要求1所述的半导体装置的制造方法,其中,所述化合物为具有2个羧基的化合物。

3.
  根据权利要求1或2所述的半导体装置的制造方法,其中,所述化合物为下述式(2-1)或(2-2)所示的化合物,

式中,R1表示供电子性基团、R2表示氢原子或供电子性基团、n1表示0~15的整数、n2表示1~14的整数,多个存在的R1相互可以相同也可以不同,R2多个存在时,R2相互可以相同也可以不同。

4.
  根据权利要求1~3中任一项所述的半导体装置的制造方法,其中,所述化合物为下述式(3-1)或(3-2)所示的化合物,

式中,R1表示供电子性基团、R2表示氢原子或供电子性基团、m1表示0~10的整数、m2表示0~9的整数,多个存在的R1和R2分别相互可以相同也可以不同。

5.
  根据权利要求4所述的半导体装置的制造方法,其中,所述m1为0~8的整数、m2为0~7的整数。

6.
  根据权利要求1~5中任一项所述的半导体装置的制造方法,其中,所述化合物的熔点为150℃以下。

7.
  根据权利要求1~6中任一项所述的半导体装置的制造方法,其中,所述供电子性基团为碳数为1~10的烷基。

8.
  根据权利要求1~7中任一项所述的半导体装置的制造方法,其中,所述半导体用粘接剂进一步含有重均分子量为10000以上的高分子成分。

9.
  根据权利要求1~8中任一项所述的半导体装置的制造方法,其中,所述半导体用粘接剂的形状为膜状。

10.
  一种半导体装置,其是通过权利要求1~9中任一项所述的制造方法得到的。

说明书

半导体装置及其制造方法
技术领域
本发明涉及使用了半导体用粘接剂的半导体装置的制造方法及通过该制造方法得到的半导体装置。
背景技术
以往,为了将半导体芯片与基板连接,广泛应用了使用金线等金属细线的引线接合方式。另一方面,为了应对对半导体装置的高功能化、高集成化、高速化等的要求,在半导体芯片或基板上形成被称为凸块(bump)的导电性突起而将半导体芯片与基板直接连接的倒装片连接方式(FC连接方式)逐渐得到推广。
例如,关于半导体芯片与基板间的连接,在BGA(球栅阵列封装,Ball Grid Array)、CSP(芯片尺寸封装,Chip Size Package)等中盛行使用的COB(板上芯片封装,Chip On Board)型的连接方式也属于FC连接方式。另外,关于FC连接方式,在半导体芯片上形成连接部(凸块或布线)而将半导体芯片间连接的COC(叠层芯片封装,Chip On Chip)型的连接方式也得到广泛应用(例如参照专利文献1)。
另外,对于强烈要求进一步小型化、薄型化、高功能化的封装而言,将上述连接方式层叠/多段化而成的芯片堆叠型封装(chip stack package)、POP(堆栈式封装,Package On Package)、TSV(硅通孔技术,Through-Silicon Via)等也开始得到广泛普及。这样的层叠/多段化技术由于将半导体芯片等三维地配置,因此与二维地配置的方法相比更能够使封装变小。另外,对于提高半导体的性能、减小噪声、削减安装面积、节省电量也是有效的,因此作为新一代的半导体布线技术备受注目。
另外,作为上述连接部(凸块或布线)中使用的主要金属,有焊锡、锡、金、银、铜、镍等,还可以使用含有其中多种金属的导电材料。连接部中使用的金属由于表面氧化而生成氧化膜或在表面附着有氧化物等杂 质,因此连接部的连接面上有时会产生杂质。当这样的杂质残留时,半导体芯片与基板间或2个半导体芯片间的连接性/绝缘可靠性降低,有使采用上述连接方式的益处受损的担忧。
另外,作为抑制这些杂质产生的方法,有通过作为OSP(有机保焊膜,Organic Solderbility Preservatives)处理等已知的将连接部用防氧化膜包覆的方法,但该防氧化膜有时会成为连接工艺中的焊锡润湿性降低、连接性降低等的原因。
因此,作为除去上述氧化膜或杂质的方法,提出了使半导体材料中含有助熔剂的方法(例如参照专利文献2~5)。
现有技术文献
专利文献
专利文献1:日本特开2008-294382号公报
专利文献2:日本特开2001-223227号公报
专利文献3:日本特开2002-283098号公报
专利文献4:日本特开2005-272547号公报
专利文献5:日本特开2006-169407号公报
发明内容
发明欲解决的课题
通常,从充分确保连接性和/或绝缘可靠性的观点出发,连接部之间的连接使用金属接合。半导体材料不具有充分的助熔剂活性(金属表面的氧化膜或杂质的除去效果)时,有可能无法除去金属表面的氧化膜或杂质,无法形成良好的金属-金属接合,从而无法确保导通。
另外,上述半导体装置的制造工艺中,要求连接时间(接合时间,bonding time)缩短。连接时间(接合时间)的缩短成为可能时,能够使生产率提高。但是,通常若缩短连接时间,则有可能会降低连接可靠性。
本发明的目的在于提供能够在更短时间内更大量地制造可靠性优异的半导体装置的半导体装置的制造方法以及半导体装置。
用于解决课题的手段
本发明的一个方式涉及一种半导体装置的制造方法,其为半导体芯片 和布线电路基板各自的连接部相互电连接而成的半导体装置或多个半导体芯片各自的连接部相互电连接而成的半导体装置的制造方法,其中,所述制造方法具备将上述连接部的至少一部分用含有具有下述式(1-1)或(1-2)所示基团的化合物的半导体用粘接剂密封的工序。

[式中,R1表示供电子性基团、多个存在的R1相互可以相同也可以不同。]
本方式中,通过使用含有具有式(1-1)或(1-2)所示基团的化合物的半导体用粘接剂将连接部密封,能够在短时间内制造高可靠性的半导体装置。
具有式(1-1)或(1-2)所示基团的化合物优选为具有2个羧基的化合物。具有2个羧基的化合物与具有1个羧基的化合物相比,即使在连接时的高温下也不易挥发,能够进一步抑制空隙的产生。另外,当使用具有2个羧基的化合物时,与使用了具有3个以上羧基的化合物时相比,能够进一步抑制保管时/连接操作时等的半导体用粘接剂的粘度上升,从而能够进一步提高半导体装置的连接可靠性。
具有式(1-1)或(1-2)所示基团的化合物优选为下述式(2-1)或(2-2)所示的化合物。

[式中,R1表示供电子性基团、R2表示氢原子或供电子性基团、n1表示0~15的整数、n2表示1~14的整数,多个存在的R1相互可以相同也可以不同,R2多个存在时,R2相互可以相同也可以不同。]
具有式(1-1)或(1-2)所示基团的化合物更优选为下述式(3-1)或(3-2)所示的化合物。

[式中,R1表示供电子性基团、R2表示氢原子或供电子性基团、m1表示0~10的整数、m2表示0~9的整数,多个存在的R1和R2分别相互可以相同也可以不同。]
式(3-1)中的m1优选为0~8的整数、式(3-2)中的m2优选为0~7的整数。
具有式(1-1)或(1-2)所示基团的化合物的熔点优选为150℃以下。这样的化合物由于能够在更短时间内熔融而表现出助熔剂活性,因此能够在更短时间内制造连接可靠性优异的半导体装置。
上述供电子性基团优选为碳数为1~10的烷基。供电子性基团为碳数为1~10的烷基时,发明的效果进一步变得显著。
上述半导体用粘接剂还可以进一步含有重均分子量为10000以上的高分子成分。通过该高分子成分,半导体用粘接剂的成膜性提高,因此能够谋求密封工序中的操作性的提高。另外,通过高分子成分,还能够赋予半导体用粘接剂的固化物以耐热性。此外,在含有高分子成分的半导体用粘接剂中,由具有上述式(1-1)或(1-2)所示基团的化合物带来的本发明的效果进一步变得显著。
上述半导体用粘接剂的形状优选为膜状。由此,密封工序中的操作性提高。当为膜状时,可以贴付到晶片上、一起地进行芯片切割,由于能够通过供给有底填料的单片化芯片得到简化的工序大量地进行生产,因此生 产率也提高。
本发明的另一方式涉及通过上述制造方法得到的半导体装置。本发明的半导体装置具有优异的连接可靠性。
发明效果
通过本发明,提供能够在更短时间内更大量地制造可靠性优异的半导体装置的半导体装置的制造方法和通过该制造方法得到的半导体装置。
附图说明
图1为表示本发明的半导体装置的一个实施方式的示意截面图。
图2为表示本发明的半导体装置的另一实施方式的示意截面图。
图3为表示本发明的半导体装置的另一实施方式的示意截面图。
图4为示意地表示本发明的半导体装置的制造方法的一个实施方式的工序截面图。
具体实施方式
以下,根据情况边参照附图边对本发明的优选实施方式详细地进行说明。需要说明的是,附图中,相同或相当部分使用相同符号并省略重复说明。另外,关于上下左右等位置关系,只要没有特别说明,则是基于附图所示的位置关系。此外,附图的尺寸比率并不限于图示的比率。
本发明的一个方式为半导体装置的制造方法,其为半导体芯片和布线电路基板各自的连接部相互电连接而成的半导体装置、或多个半导体芯片各自的连接部相互电连接而成的半导体装置的制造方法,其中,所述制造方法具备将连接部的至少一部分用含有具有式(1-1)或(1-2)所示基团的化合物的半导体用粘接剂密封的工序。
<半导体装置>
以下,用图1和2对本实施方式的半导体装置进行说明。图1为表示本发明的半导体装置的一个实施方式的示意截面图。如图1(a)所示,半导体装置100具有相互对置的半导体芯片10和基板(电路布线基板)20、分别配置在半导体芯片10和基板20的相互对置的面上的布线15、将半导体芯片10和基板20的布线15相互连接的连接凸块30、和无间隙地填充在 半导体芯片10和基板20间的空隙的粘接材料40。半导体芯片10和基板20通过布线15和连接凸块30形成倒装片连接。布线15和连接凸块30被粘接材料40密封而与外部环境遮断。粘接材料40为后述的半导体用粘接剂的固化物。
如图1(b)所示,半导体装置200具有相互对置的半导体芯片10和基板20、分别配置在半导体芯片10和基板20的相互对置的面上的凸块32、和无间隙地填充在半导体芯片10和基板20间的空隙的粘接材料40。半导体芯片10和基板20通过对置的凸块32相互连接而形成倒装片连接。凸块32被粘接材料40密封而与外部环境遮断。
图2为表示本发明的半导体装置的另一实施方式的示意截面图。如图2(a)所示,半导体装置300除了2个半导体芯片10通过布线15和连接凸块30形成倒装片连接这点以外,与半导体装置100是同样的。如图2(b)所示,半导体装置400除了2个半导体芯片10通过凸块32形成倒装片连接这点以外,与半导体装置200是同样的。
作为半导体芯片10,没有特别限定,可以使用硅、锗等由相同种类的元素构成的元素半导体、砷化镓、铟磷等化合物半导体。
作为基板20,只要是电路基板则没有特别限制,可以使用在以玻璃环氧树脂、聚酰亚胺、聚酯、陶瓷、环氧树脂、双马来酰亚胺三嗪等为主成分的绝缘基板的表面上具有将金属膜的不需要部位蚀刻除去而形成的布线(布线图案)15的电路基板、在上述绝缘基板的表面上通过金属镀等形成有布线15的电路基板、在上述绝缘基板的表面上印刷导电性物质而形成有布线15的电路基板。
布线15、凸块32等连接部可以含有金、银、铜、焊锡(主成分例如为锡-银、锡-铅、锡-铋、锡-铜、锡-银-铜)、镍、锡、铅等作为主成分,也可以含有多种金属。
上述金属中,从制成连接部的导电性/导热性优异的封装的观点出发,优选金、银和铜,更优选银和铜。从制成成本降低的封装的观点出发,基于价格低廉而优选银、铜和焊锡,更优选铜和焊锡,进一步优选焊锡。当在室温下在金属的表面形成氧化膜时,生产率有可能会降低、成本有可能会增加,因此从抑制氧化膜形成的观点出发,优选金、银、铜和焊锡,更 优选金、银、焊锡,进一步优选金、银。
以金、银、铜、焊锡(主成分例如为锡-银、锡-铅、锡-铋、锡-铜)、锡、镍等为主成分的金属层例如可以通过电镀形成在上述布线15和凸块32的表面上。该金属层可以仅由单一成分构成也可以由多种成分构成。另外,上述金属层还可以是单层或多个金属层层叠而成的结构。
另外,本实施方式的半导体装置可以多层层叠有如半导体装置100~400所示的结构(封装)。此时,半导体装置100~400可以通过含有金、银、铜、焊锡(主成分例如为锡-银、锡-铅、锡-铋、锡-铜、锡-银-铜)、锡、镍等的凸块或布线相互电连接。
作为将半导体装置多层层叠的方法,如图3所示,可列举出例如TSV(Through-Silicon Via)技术。图3为表示本发明的半导体装置的另一实施方式的示意截面图,其为使用TSV技术得到的半导体装置。在图3所示的半导体装置500中,形成在中介层50上的布线15介由连接凸块30与半导体芯片10的布线15连接,由此,半导体芯片10与中介层50形成倒装片连接。粘接材料40无间隙地填充在半导体芯片10与中介层50之间的空隙。在与上述半导体芯片10的中介层50相反一侧的表面上,半导体芯片10介由布线15、连接凸块30和粘接材料40重复层叠。半导体芯片10的表背面的图案面的布线15通过填充在贯通半导体芯片10内部的孔内的贯通电极34相互连接。其中,作为贯通电极34的材质,可以使用铜、铝等。
通过这样的TSV技术,从通常未被使用的半导体芯片的背面也能够获得信号。此外,由于在半导体芯片10内垂直地通过贯通电极34,因此使对置的半导体芯片10间、半导体芯片10与中介层50间的距离缩短,柔软的连接成为可能。本实施方式的半导体用粘接剂在这样的TSV技术中,可以作为对置的半导体芯片10间、半导体芯片10与中介层50间的半导体用粘接剂应用。
另外,通过区域凸块芯片(area bump chip)技术等自由度高的凸块形成方法,还能够不介由中介层而直接将半导体芯片直接安装到主板上。本实施方式的半导体用粘接剂也可应用于将这样的半导体芯片直接安装到主板上的情况。其中,本实施方式的半导体用粘接剂也可应用于将2个布线电路基板层叠时将基板间的空隙密封。
<半导体装置的制造方法>
本实施方式中,例如可以如下地制造半导体装置。首先,准备形成了电路的基板(电路基板)。接着,将半导体用粘接剂按照半导体用粘接剂层将布线和连接凸块包埋的方式供给到电路基板上,得到电路部件。在电路基板上形成半导体用粘接剂层后,在将半导体芯片的焊锡凸块与基板的铜布线用倒装片焊接器等连接装置对准位置后,在焊锡凸块的熔点以上的温度下边加热边按压半导体芯片和基板(当连接部使用焊锡时,优选对焊锡部分施加240℃以上的温度),从而将半导体芯片与基板连接,同时利用半导体用粘接剂层的固化物将连接部密封。上述半导体用粘接剂层含有具有下述式(1-1)或(1-2)所示基团的化合物。

式中,R1表示供电子性基团、多个存在的R1相互可以相同也可以不同。
以下用图4对本实施方式的半导体装置的制造方法更具体地进行说明。图4为示意地表示本发明的半导体装置的制造方法的一个实施方式的工序截面图。
首先,如图4(a)所示,在具有布线15的基板20上,在形成连接凸块30的位置形成具有开口的阻焊膜60。该阻焊膜60并不是必须设置的。但是,通过在基板20上设置阻焊膜,能够抑制布线15间发生桥接,提高连接可靠性/绝缘可靠性。阻焊膜60例如可以使用市售的封装用阻焊膜用油墨形成。作为市售的封装用阻焊膜用油墨,具体而言,可列举出SR系列(日立化成工业株式会社制,商品名)和PSR4000-AUS系列(太阳油墨制造株式会社制,商品名)。
接着,如图4(a)所示,在阻焊膜60的开口处形成连接凸块30。并且,如图4(b)所示,在形成有连接凸块30和阻焊膜60的基板20上贴付膜状的半导体用粘接剂(以下根据情况称为“膜状粘接剂”)41。膜状粘接剂 41的贴付可以通过加热加压、辊层压、真空层压等来进行。膜状粘接剂41的供给面积、厚度可根据半导体芯片10和基板20的尺寸、连接凸块30的高度来适当设定。
如上所述将膜状粘接剂41贴付到基板20上后,将半导体芯片10的布线15与连接凸块30用倒装片焊接器等连接装置对准位置。接着,将半导体芯片10与基板20在连接凸块30的熔点以上的温度下边加热边压接,如图4(c)所示,将半导体芯片10与基板20连接,同时用膜状粘接剂41的固化物即粘接材料40将半导体芯片10与基板20间的空隙密封填充。如此,得到半导体装置600。
本实施方式的半导体装置的制造方法中,在对准位置后可以进行临时固定(介有半导体用粘接剂的状态)并在回流炉中进行加热处理,由此使连接凸块30熔融,将半导体芯片10与基板20连接。临时固定的阶段中,由于形成金属接合并不是必须的,因此与上述的边加热边压接的方法相比,可以低荷重、短时间、低温度地进行压接,生产率提高,同时能够抑制连接部的劣化。
另外,将半导体芯片10与基板20连接后,在烘箱等中进行加热处理工序(固化工序),可以进一步提高连接可靠性/绝缘可靠性。加热温度优选为膜状粘接剂的固化进行的温度、更优选为膜状粘接剂完全固化的温度。加热温度、加热时间可以适当设定。
固化工序中,将连接体加热以促进半导体用粘接剂的固化。关于固化工序中的加热温度、加热时间、固化工序后的半导体用粘接剂的固化反应率,只要作为固化物的粘接材料发挥满足半导体装置的可靠性的物性,则没有特别限制。
按照使半导体用粘接剂的固化反应进行的方式适当设定固化工序中的加热温度和加热时间,优选按照使半导体用粘接剂完全固化的方式进行设定。加热温度从减少翘曲的观点出发,优选为尽可能低的温度。加热温度优选为100~200℃、更优选为110~190℃、进一步优选为120~180℃。加热时间优选为0.1~10小时、更优选为0.1~8小时、进一步优选为0.1~5小时。固化工序时优选尽可能使半导体用粘接剂的未反应部分反应,优选固化工序后的固化反应率为95%以上。固化工序中的加热可以使用烘箱等加热装 置进行。
本实施方式的半导体装置的制造方法中,可以在将膜状粘接剂41贴付到半导体芯片10上后与基板20连接。另外,在将半导体芯片10与基板20通过布线15和连接凸块30连接后,可以在半导体芯片10与基板20间的空隙填充糊状的半导体用粘接剂并使其固化。
从生产率提高的观点出发,在将半导体用粘接剂供给至多个半导体芯片10连接而成的半导体晶片后,进行芯片切割使其单片化,由此可以得到在半导体芯片10上供给有半导体用粘接剂的结构体。另外,半导体用粘接剂为糊状时,并不是进行特别限制,可以通过旋涂法等涂布方法将半导体芯片10上的布线、凸块填埋、并使厚度均匀化。此时,由于树脂的供给量变得恒定,因此生产率提高,同时能够抑制因填埋不足而导致的空隙的发生和芯片切割性的降低。另一方面,当半导体用粘接剂为膜状时,并不是进行特别限制,可以通过加热加压、辊层压和真空层压等贴付方式按照将半导体芯片10上的布线、凸块填埋的方式供给膜状的半导体用粘接剂。此时,由于树脂的供给量变得恒定,因此生产率提高,能够抑制因填埋不足导致的空隙的发生和芯片切割性的降低。
另外,与旋涂糊状的半导体用粘接剂的方法相比,通过将膜状的半导体用粘接剂层压的方法,供给后的半导体用粘接剂的平坦性有变得良好的倾向。因此,作为半导体用粘接剂的形态,优选为膜状。另外,膜状粘接剂在多种工艺中的适用性、操作性等也优异。
另外,通过将膜状粘接剂层压来供给半导体用粘接剂的方法中,有易于进一步确保半导体装置的连接性的倾向。关于其理由,并不是很清楚,但本发明者们考虑如下。即,本实施方式的助熔剂有熔点低的倾向,因此有易于表现出助熔剂活性的倾向。因此考虑,例如,即使基板20的连接凸块30被氧化膜覆盖,在将膜状粘接剂层压到基板20上时的加热下也表现出助熔剂活性,连接凸块30的表面的氧化膜的至少一部分被还原除去。通过该还原除去,在供给了膜状粘接剂时连接凸块30的至少一部分露出,考虑其有助于连接性的提高。
关于连接荷重,在考虑连接凸块30的数量和/或高度的不均、加压产生的连接凸块30、或接续连接部的凸块的布线的变形量后进行设定。关于连 接温度,优选连接部的温度在连接凸块30的熔点以上,可以是各连接部(凸块或布线)的金属接合形成的温度。连接凸块30为焊锡凸块时,优选为约240℃以上。另外,连接温度可以为500℃以下、也可以为400℃以下。
连接时的连接时间根据连接部的构成金属的不同而不同,但从生产率提高的观点出发,优选越为短时间越好。连接凸块30为焊锡凸块时,连接时间优选为20秒以下、更优选为10秒以下、进一步优选为5秒以下、更进一步优选为4秒以下、特别优选为3秒以下。为铜-铜或铜-金的金属连接时,连接时间优选为60秒以下。
在上述各种封装结构的倒装片连接部中,本实施方式的半导体用粘接剂也显示优异的耐回流性和连接可靠性。
以上,对本发明的优选的实施方式进行了说明,但本发明并不限定于上述实施方式。
以下,对本发明中使用的半导体用粘接剂的一个方式进行说明。
<半导体用粘接剂>
本实施方式的半导体用粘接剂含有具有下述式(1-1)或(1-2)所示基团的化合物(以下根据情况称为“(c)成分”)。此外,从粘接性的观点出发,优选含有热固化成分。热固化成分没有特别限制,从耐热性和粘接性的观点出发,优选含有环氧树脂(以下根据情况称为“(a)成分”)、固化剂(以下根据情况称为“(b)成分”)。

式(1-1)和(1-2)中,R1表示供电子性基团、多个存在的R1相互可以相同也可以不同。
根据本实施方式的半导体用粘接剂,通过含有具有式(1-1)或(1-2)所示基团的化合物,即使在进行金属接合的倒装片连接方式中作为半导体用粘接剂使用并缩短连接时间的情况下,也能够制作耐回流性和连接可靠 性优异的半导体装置。关于其理由,本发明者们考虑如下。
通常,当使用半导体用粘接剂进行倒装片连接时,边加热边进行连接,此时,半导体用粘接剂也被加热,在加热到助熔剂的熔点时表现出助熔剂活性。但是,由于难以使半导体用粘接剂的温度快速上升,因此难以在短时间内表现出助熔剂活性。但是,本发明的具有式(1)所示基团的化合物与通常的助熔剂相比熔点更低而有表现出助熔剂活性的温度也低的倾向。因此,能够在短时间内熔融而表现出助熔剂活性,因此短时间内的连接成为可能。
另外考虑,与目前为止的具有直链骨架的助熔剂不同,具有上述式(1-1)或(1-2)所示基团的化合物在从羧基起的2位的位置上具有2个供电子性基团、或在3位的位置上具有2个供电子性基团,因此熔点变低。考虑由此,短时间内的连接成为可能。
此外,通过含有具有式(1-1)或(1-2)所示基团的化合物,不仅表现出助熔剂活性而能够进行短时间连接,而且能够抑制连接后在高温下吸湿后的粘接力的降低,从而还能够谋求耐回流性的提高。以往,使用羧酸作为助熔剂,但本发明者们考虑以往的助熔剂由于以下的理由而发生粘接力的降低。
通常,环氧树脂与固化剂反应、固化反应进展,此时,作为助熔剂的羧酸被纳入到该固化反应中。即,有可能通过环氧树脂的环氧基与助熔剂的羧基反应而形成酯键。该酯键易于发生因吸湿等引起的水解等,该酯键的分解考虑是吸湿后粘接力降低的一个原因。
与此相对,本实施方式的半导体用粘接剂含有具有式(1-1)或(1-2)所示基团、即在附近具有2个具备供电子性的羧基的化合物。因此考虑,本实施方式的半导体用粘接剂通过羧基而充分得到助熔剂活性,同时即使在形成了上述酯键的情况下,通过2个供电子性基团而酯键部的电子密度提高、酯键的分解得到抑制。
另外考虑,本实施方式中,由于在羧基的附近存在2个取代基(供电子性基团),因此由于空间位阻,羧基与环氧基的反应被抑制而变得难以生成酯键。
由于这些理由,本实施方式的半导体用粘接剂难以发生因吸湿等引起 的组成变化,从而维持优异的粘接力。另外,上述作用还可以描述为,环氧树脂与固化剂的固化反应不易被助熔剂抑制,通过该作用,还可期待环氧树脂与固化剂的固化反应充分进行而产生连接可靠性提高的效果。
本实施方式的半导体用粘接剂根据需要还可以含有重均分子量为10000以上的高分子成分(以下根据情况称为“(d)成分”)。另外,本实施方式的半导体用粘接剂根据需要还可以含有填料(以下根据情况称为“(e)成分”)。
以下,对构成本实施方式的半导体用粘接剂的各成分进行说明。
(a)成分:环氧树脂
作为环氧树脂,只要是在分子内具有2个以上环氧基的环氧树脂,则可以没有特别限制地使用。作为(a)成分,例如可以使用双酚A型环氧树脂、双酚F型环氧树脂、萘型环氧树脂、酚醛清漆型环氧树脂、甲酚酚醛清漆型环氧树脂、苯酚芳烷基型环氧树脂、联苯基型环氧树脂、三苯基甲烷型环氧树脂、双环戊二烯型环氧树脂和各种多官能环氧树脂。它们可以单独使用也可以制成2种以上的混合物使用。
关于(a)成分,从抑制高温下连接时发生分解产生挥发成分的观点出发,当连接时的温度为250℃时,优选使用250℃下的热重量减少量率为5%以下的环氧树脂;当连接时的温度为300℃时,优选使用300℃下的热重量减少量率为5%以下的环氧树脂。
(a)成分的含量以半导体用粘接剂的总量基准计为例如5~75质量%、优选为10~50质量%、更优选为15~35质量%。
(b)成分:固化剂
作为(b)成分,例如可列举出酚醛树脂系固化剂、酸酐系固化剂、胺系固化剂、咪唑系固化剂和膦系固化剂。当(b)成分含有酚性羟基、酸酐、胺类或咪唑类时,显示出抑制连接部处产生氧化膜的助熔剂活性,从而能够提高连接可靠性/绝缘可靠性。以下,对各固化剂进行说明。
(i)酚醛树脂系固化剂
作为酚醛树脂系固化剂,只要是分子内具有2个以上酚性羟基的酚醛树脂系固化剂,则没有特别限制,例如可以使用酚醛清漆树脂、甲酚酚醛清漆树脂、苯酚芳烷基树脂、甲酚萘酚甲醛缩聚物、三苯基甲烷型多官能 酚醛树脂和各种多官能酚醛树脂。它们可以单独使用也可以制成2种以上的混合物使用。
酚醛树脂系固化剂与上述(a)成分的当量比(酚性羟基/环氧基、摩尔比)从良好的固化性、粘接性和保存稳定性的观点出发,优选为0.3~1.5、更优选为0.4~1.0、进一步优选为0.5~1.0。当当量比为0.3以上时,有固化性提高、粘接力提高的倾向,当当量比为1.5以下时,有未反应的酚性羟基不会过剩地残留、吸水率被抑制得较低且绝缘可靠性提高的倾向。
(ii)酸酐系固化剂
作为酸酐系固化剂,例如可以使用甲基环己烷四羧酸二酐、偏苯三酸酐、均苯四甲酸酐、二苯甲酮四羧酸二酐和乙二醇双偏苯三酸酐。它们可以单独使用也可以制成2种以上的混合物使用。
关于酸酐系固化剂与上述(a)成分的当量比(酸酐基/环氧基、摩尔比),从良好的固化性、粘接性和保存稳定性的观点出发,优选为0.3~1.5、更优选为0.4~1.0、进一步优选为0.5~1.0。当当量比为0.3以上时,有固化性提高、粘接力提高的倾向,当当量比为1.5以下时,有未反应的酸酐不会过剩地残留、吸水率被抑制得较低且绝缘可靠性提高的倾向。
(iii)胺系固化剂
作为胺系固化剂,可以使用例如双氰胺。
关于胺系固化剂与上述(a)成分的当量比(胺/环氧基、摩尔比),从良好的固化性、粘接性和保存稳定性的观点出发,优选为0.3~1.5、更优选为0.4~1.0、进一步优选为0.5~1.0。当当量比为0.3以上时,有固化性提高、粘接力提高的倾向,当当量比为1.5以下时,有未反应的胺不会过剩地残留、绝缘可靠性提高的倾向。
(iv)咪唑系固化剂
作为咪唑系固化剂,例如可列举出2-苯基咪唑、2-苯基-4-甲基咪唑、1-苄基-2-甲基咪唑、1-苄基-2-苯基咪唑、1-氰基乙基-2-十一烷基咪唑、1-氰基-2-苯基咪唑、1-氰基乙基-2-十一烷基咪唑偏苯三酸、1-氰基乙基-2-苯基咪唑鎓偏苯三酸、2,4-二氨基-6-[2’-甲基咪唑基-(1’)]-乙基-均三嗪、2,4-二氨基-6-[2’-十一烷基咪唑基-(1’)]-乙基-均三嗪、2,4-二氨基-6-[2’-乙基-4’-甲基咪唑基-(1’)]-乙基-均三嗪、2,4-二氨基-6-[2’-甲基咪唑基-(1’)]- 乙基-均三嗪异氰脲酸加成物、2-苯基咪唑异氰脲酸加成物、2-苯基-4,5-二羟基甲基咪唑、2-苯基-4-甲基-5-羟基甲基咪唑、以及环氧树脂与咪唑类的加成物。其中,从优异的固化性、保存稳定性和连接可靠性的观点出发,优选1-氰基乙基-2-十一烷基咪唑、1-氰基-2-苯基咪唑、1-氰基乙基-2-十一烷基咪唑偏苯三酸、1-氰基乙基-2-苯基咪唑鎓偏苯三酸、2,4-二氨基-6-[2’-甲基咪唑基-(1’)]-乙基-均三嗪、2,4-二氨基-6-[2’-乙基-4’-甲基咪唑基-(1’)]-乙基-均三嗪、2,4-二氨基-6-[2’-甲基咪唑基-(1’)]-乙基-均三嗪异氰脲酸加成物、2-苯基咪唑异氰脲酸加成物、2-苯基-4,5-二羟基甲基咪唑和2-苯基-4-甲基-5-羟基甲基咪唑。它们可以单独使用也可以将2种以上并用。另外,还可以将它们制成经微胶囊化的潜在性固化剂。
咪唑系固化剂的含量相对于(a)成分100质量份,优选为0.1~20质量份、更优选为0.1~10质量份。当咪唑系固化剂的含量为0.1质量份以上时,有固化性提高的倾向;当咪唑系固化剂的含量为20质量份以下时,有在金属接合形成前半导体用粘接剂不会固化而不易发生连接不良的倾向。
(v)膦系固化剂
作为膦系固化剂,例如可列举出三苯基膦、四苯基鏻四苯基硼酸酯、四苯基鏻四(4-甲基苯基)硼酸酯和四苯基鏻(4-氟代苯基)硼酸酯。
膦系固化剂的含量相对于(a)成分100质量份,优选为0.1~10质量份、更优选为0.1~5质量份。当膦系固化剂的含量为0.1质量份以上时,有固化性提高的倾向;当膦系固化剂的含量为10质量份以下时,有在金属接合形成前半导体用粘接剂不会固化而不易发生连接不良的倾向。
酚醛树脂系固化剂、酸酐系固化剂和胺系固化剂可以分别1种单独使用也可以制成2种以上的混合物使用。咪唑系固化剂和膦系固化剂可以分别单独使用,也可以与酚醛树脂系固化剂、酸酐系固化剂或胺系固化剂一起使用。
从保存稳定性进一步提高、吸湿所导致的分解、劣化变得不易发生的观点出发,(b)成分优选为选自由酚醛树脂系固化剂、胺系固化剂、咪唑系固化剂和膦系固化剂组成的组的固化剂。另外,从调节固化速度的容易性的观点、和能够通过速固化性实现以生产率提高为目的的短时间连接的观点出发,(b)成分优选选自由酚醛树脂系固化剂、胺系固化剂和咪唑系 固化剂组成的组的固化剂。
半导体用粘接剂含有酚醛树脂系固化剂、酸酐系固化剂或胺系固化剂作为(b)成分时,显示出将氧化膜除去的助熔剂活性,从而能够进一步提高连接可靠性。
作为实现空隙抑制与连接性的兼顾的因素,可列举出固化剂的挥发性低(不易发泡)、凝胶化时间和/或粘度适当、调节容易。另外,作为实现可靠性(特别是耐回流性)的因素,可列举出低吸湿性(不易吸湿)。从这些观点出发,作为固化剂,优选为酚醛树脂系固化剂、胺系固化剂、咪唑系固化剂和膦系固化剂、更优选为酚醛树脂系固化剂、胺系固化剂和咪唑系固化剂。
(c)成分:具有式(1-1)或(1-2)所示基团的化合物
(c)成分为具有式(1-1)或(1-2)所示基团的化合物(以下根据情况称为“助熔剂化合物”)。(c)成分为具有助熔剂活性的化合物,在本实施方式的半导体用粘接剂中,作为助熔剂发挥作用。作为(c)成分,可以将助熔剂化合物中的1种单独使用,也可以将助熔剂化合物中的2种以上并用。

式(1-1)和(1-2)中,R1表示供电子性基团、多个存在的R1相互可以相同也可以不同。
作为供电子性基团,例如可列举出烷基、羟基、氨基、烷氧基和烷基氨基。作为供电子性基团,优选不易与其它成分(例如(a)成分的环氧树脂)发生反应的基团,具体而言,优选烷基、羟基或烷氧基,更优选烷基。
供电子性基团的供电子性强时,有易于获得抑制上述酯键的分解的效果的倾向。另外,供电子性基团的空间位阻大时,变得易于获得抑制上述羧基与环氧树脂的反应的效果。供电子性基团优选平衡良好地具有供电子 性和空间位阻。
作为烷基,优选碳数为1~10的烷基、更优选碳数为1~5的烷基。烷基的碳数越多,有供电子性和空间位阻变得越大的倾向。碳数在上述范围内的烷基由于供电子性和空间位阻的平衡优异,因此通过该烷基,本发明的效果进一步变得显著。
另外,烷基可以是直链状也可以是分支状,其中优选直链状。烷基为直链状时,从供电子性和空间位阻的平衡的观点出发,烷基的碳数优选为助熔剂化合物的主链的碳数以下。例如,当助熔剂化合物为下述式(2-1)或(2-2)所示的化合物且供电子性基团为直链状的烷基时,该烷基的碳数优选为助熔剂化合物的主链的碳数(n1+1或n2+2)以下。
作为烷氧基,优选碳数为1~10的烷氧基、更优选碳数为1~5的烷氧基。烷氧基的碳数越多,有供电子性和空间位阻变得越大的倾向。碳数在上述范围内的烷氧基由于供电子性和空间位阻的平衡优异,因此通过该烷氧基,本发明的效果进一步变得显著。
另外,烷氧基的烷基部分可以是直链状也可以是分支状,其中优选直链状。当烷氧基为直链状时,从供电子性和空间位阻的平衡的观点出发,烷氧基的碳数优选为助熔剂化合物的主链的碳数以下。例如,当助熔剂化合物为下述式(2-1)或(2-2)所示的化合物且供电子性基团为直链状的烷氧基时,该烷氧基的碳数优选为助熔剂化合物的主链的碳数(n1+1或n2+2)以下。
作为烷基氨基,可列举出单烷基氨基、二烷基氨基。作为单烷基氨基,优选碳数为1~10的单烷基氨基、更优选碳数为1~5的单烷基氨基。单烷基氨基的烷基部分可以是直链状也可以是分支状,优选为直链状。
作为二烷基氨基,优选碳数为2~20的二烷基氨基、更优选碳数为2~10的二烷基氨基。二烷基氨基的烷基部分可以是直链状也可以是分支状,优选为直链状。
助熔剂化合物优选为具有2个羧基的化合物(二羧酸)。具有2个羧基的化合物与具有1个羧基的化合物(单羧酸)相比,即使在连接时的高温下也难以挥发,从而能够进一步抑制空隙的发生。另外,当使用具有2个羧基的化合物时,与使用具有3个以上羧基的化合物时相比,能够进一步 抑制保管时/连接操作时等的半导体用粘接剂的粘度上升,从而能够进一步提高半导体装置的连接可靠性。
作为助熔剂化合物,可以优选使用下述式(2-1)或(2-2)所示的化合物。通过下述式(2-1)或(2-2)所示的化合物,能够进一步提高半导体装置的耐回流性和连接可靠性。

式(2-1)中,R1表示供电子性基团、R2表示氢原子或供电子性基团、n1表示0或1以上的整数。另外,多个存在的R1相互可以相同也可以不同,R2多个存在时,R2相互可以相同也可以不同。
式(2-2)中,R1表示供电子性基团、R2表示氢原子或供电子性基团、n2表示1以上的整数。另外,多个存在的R1相互可以相同也可以不同,R2多个存在时,R2相互可以相同也可以不同。
式(2-1)中的n1优选为1以上。当n1为1以上时,与n1为0时相比,即使在连接时的高温下助熔剂化合物也难以挥发,从而能够进一步抑制空隙的发生。另外,式(2-1)中的n1优选为15以下、更优选为11以下、进一步优选为9以下、也可以为7以下或5以下。当n1为15以下时,可得到更加优异的连接可靠性。
式(2-2)中的n2优选为14以下、更优选为10以下、进一步优选为8以下、也可以为6以下或4以下。当n2为10以下时,可得到更加优异的连接可靠性。
另外,作为助熔剂化合物,更优选下述式(3-1)或(3-2)所示的化合物。通过下述式(3-1)或(3-2)所示的化合物,能够进一步提高半导体装置的耐回流性和连接可靠性。

式(3-1)中,R1表示供电子性基团、R2表示氢原子或供电子性基团、m1表示0或1以上的整数。多个存在的R1和R2分别相互可以相同也可以不同。
式(3-2)中,R1表示供电子性基团、R2表示氢原子或供电子性基团、m2表示0或1以上的整数。多个存在的R1和R2分别相互可以相同也可以不同。
式(3-1)中的m1优选为10以下、更优选为8以下、进一步优选为6以下。当m1为10以下时,可获得更加优异的连接可靠性。
式(3-1)中的m2优选为9以下、更优选为7以下、进一步优选为5以下。当m2为9以下时,可得到更加优异的连接可靠性。
当助熔剂化合物为非对称结构时,有熔点降低的倾向,有可能能够进一步提高半导体装置的连接可靠性。当助熔剂化合物为对称结构时,有熔点增高的倾向,即使此时也可充分获得本发明的效果。特别是当熔点为150℃以下、足够低时,即使助熔剂化合物为对称结构,也可得到与非对称结构时同程度的连接可靠性。在此,对称结构是指例如式(3-1)中R1和R2全部为相同的基团的情况。
式(3-1)和式(3-2)中,R2优选为氢原子。这样的化合物为非对称结构的助熔剂化合物,通过这样的化合物,能够进一步提高半导体装置的连接可靠性。
作为助熔剂化合物,例如可以使用选自琥珀酸、戊二酸、己二酸、庚二酸、辛二酸、壬二酸、癸二酸、十一烷二酸和十二烷二酸中的二羧酸的2位取代有2个供电子性基团的化合物。
另外,作为助熔剂化合物,例如可以使用选自戊二酸、己二酸、庚二酸、辛二酸、壬二酸、癸二酸、十一烷二酸和十二烷二酸中的二羧酸的3 位取代有2个供电子性基团的化合物。
上述助熔剂化合物的熔点优选为150℃以下、更优选为140℃以下、进一步优选为130℃以下。这样的助熔剂化合物在环氧树脂与固化剂发生固化反应前易于充分地表现出助熔剂活性。因此,通过含有这样的助熔剂化合物的半导体用粘接剂,能够实现连接可靠性更加优异的半导体装置。另外,助熔剂化合物的熔点优选为25℃以上、更优选为50℃以上。另外,助熔剂化合物优选在室温(25℃)下为固态。
助熔剂化合物的熔点可以使用通常的熔点测定装置进行测定。要求将用于测定熔点的试样粉碎成微粉末并使用微量,由此减小试样内的温度的偏差。作为试样的容器,多使用一端封闭的毛细管,有时也利用测定装置夹在2片显微镜用盖玻片间来作为容器。另外,当使温度急剧上升时,试样与温度计间会产生温度梯度,从而产生测定误差,因此优选在测量熔点时的加温为每分钟1℃以下的上升率下进行测定。
如上所述由于制成微粉末,因此因表面处的漫反射熔融前的试样为不透明的。通常,将试样的外观开始透明化的温度作为熔点的下限点,将熔融完成的温度作为上限点。测定装置存在各种各样的方式,但最传统的装置使用在双套管式温度计上贴付填充了试样的毛细管、在温浴下进行加温的装置。为了在双套管式温度计上贴付毛细管,使用粘性高的液体作为温浴的液体,多使用浓硫酸或硅油,并按照试样达到温度计前端的贮液部附近的方式贴付。另外,作为熔点测定装置,还可以使用金属加热块进行加温,边测定光的透射率边对加温进行调节,然后自动地确定熔点。
需要说明的是,本说明书中,熔点为150℃以下是指熔点的上限点为150℃以下,熔点为25℃以上是指熔点的下限点为25℃以上。
(c)成分的含量以半导体用粘接剂的总量基准计,优选为0.5~10质量%、更优选为0.5~5质量%。
(d)成分:重均分子量为10000以上的高分子成分
本实施方式的半导体用粘接剂根据需要还可以含有重均分子量为10000以上的高分子成分((d)成分)。含有(d)成分的半导体用粘接剂的耐热性和成膜性更加优异。
作为(d)成分,例如从获得优异的耐热性、成膜性和连接可靠性的观 点出发,优选苯氧树脂、聚酰亚胺树脂、聚酰胺树脂、聚碳二亚胺树脂、氰酸酯树脂、丙烯酸树脂、聚酯树脂、聚乙烯树脂、聚醚砜树脂、聚醚酰亚胺树脂、聚乙烯醇缩醛树脂、聚氨酯树脂和丙烯酸橡胶。其中,从耐热性和成膜性优异的观点出发,更优选苯氧树脂、聚酰亚胺树脂、丙烯酸橡胶、丙烯酸树脂、氰酸酯树脂和聚碳二亚胺树脂,此外,从具有通用性、分子量、特性赋予等调节容易(合成时等)等的观点出发,进一步优选苯氧树脂、聚酰亚胺树脂、丙烯酸橡胶和丙烯酸树脂。这些(d)成分可以单独使用或制成2种以上的混合物、共聚物使用。但是,(d)成分中不包括属于(a)成分的环氧树脂。
(d)成分的重均分子量为10000以上、优选为20000以上、更优选为30000以上。通过这样的(d)成分,能够进一步提高半导体用粘接剂的耐热性和成膜性。
另外,(d)成分的重均分子量优选为1000000以下、更优选为500000以下。通过这样的(d)成分,能够获得高耐热性的效果。
其中,上述重均分子量表示使用GPC(凝胶浸透色谱,Gel Permeation Chromatography)测定得到的聚苯乙烯换算的重均分子量。GPC法的测定条件的一个例子如下所示。
装置名:HCL-8320GPC、UV-8320(产品名,TOSOH公司制)或HPLC-8020(产品名,TOSOH公司制)
柱:TSKgel superMultiporeHZ-M×2或2根GMHXL+1根G-2000XL
检测器:RI或UV检测器
柱温度:25~40℃
洗脱液:选择高分子成分溶解的溶剂。例如THF(四氢呋喃)、DMF(N,N-二甲基甲酰胺)、DMA(N,N-二甲基乙酰胺)、NMP(N-甲基吡咯烷酮)、甲苯。其中,当选择具有极性的溶剂时,可以将磷酸的浓度调节为0.05~0.1mol/L(通常为0.06mol/L)、将LiBr的浓度调节为0.5~1.0mol/L(通常为0.63mol/L)。
流速:0.30~1.5mL/分钟
标准物质:聚苯乙烯
半导体用粘接剂含有(d)成分时,(a)成分的含量Ca与(d)成分的 含量Cd之比Ca/Cd(质量比)优选为0.01~5、更优选为0.05~3、进一步优选为0.1~2。通过使比Ca/Cd为0.01以上,能够获得更加良好的固化性和粘接力,通过使比Ca/Cd为5以下,能够获得更加良好的成膜性。
(e)成分:填料
本实施方式的半导体用粘接剂根据需要还可以含有填料((e)成分)。通过(e)成分,能够控制半导体用粘接剂的粘度、半导体用粘接剂的固化物的物性等。具体而言,通过(e)成分,能够谋求例如抑制连接时产生空隙、降低半导体用粘接剂的固化物的吸湿率等。
作为(e)成分,可以使用绝缘性无机填料、晶须、树脂填料等。另外,作为(e)成分,可以将1种单独使用,也可以将2种以上并用。
作为绝缘性无机填料,例如可列举出玻璃、二氧化硅、氧化铝、氧化钛、炭黑、云母和氮化硼。其中,优选二氧化硅、氧化铝、氧化钛和氮化硼,更优选二氧化硅、氧化铝和氮化硼。
作为晶须,例如可列举出硼酸铝、钛酸铝、氧化锌、硅酸钙、硫酸镁和氮化硼。
作为树脂填料,例如可列举出由聚氨酯、聚酰亚胺等树脂构成的填料。
树脂填料与有机成分(环氧树脂和固化剂等)相比热膨胀率小,因此连接可靠性的提高效果优异。另外,通过树脂填料,能够容易地进行半导体用粘接剂的粘度调节。另外,树脂填料与无机填料相比使应力缓和的功能优异,因此通过树脂填料能够进一步抑制回流试验等中的剥离。
无机填料与树脂填料相比热膨胀率小,因此通过无机填料,能够实现粘接剂组合物的低热膨胀率化。另外,无机填料中有很多通用品即进行了粒径控制的填料,因此对于粘度调节是优选的。
树脂填料和无机填料各有有利的效果,因此可以根据用途使用任一种或者为了表现出两者的功能而将两者混合使用。
对(e)成分的形状、粒径和含量没有特别限制。另外,(e)成分还可以是通过表面处理而适当调节了物性的填料。
(e)成分的含量以半导体用粘接剂的总量基准计,优选为10~80质量%、更优选为15~60质量%。
(e)成分优选由绝缘物构成。当(e)成分由导电性物质(例如焊锡、 金、银、铜等)构成时,绝缘可靠性(特别是HAST耐性)有可能会降低。
(其它成分)
本实施方式的半导体用粘接剂中还可以配合抗氧化剂、硅烷偶联剂、钛偶联剂、流平剂、离子捕获剂等添加剂。它们可以将1种单独使用,也可以将2种以上组合使用。可以适当调节它们的配合量,以表现出各添加剂的效果。
本实施方式的半导体用粘接剂可以成形为膜状。使用了本实施方式的半导体用粘接剂的膜状粘接剂的制作方法的一个例子如下所示。
首先,将(a)成分、(b)成分和(c)成分、以及根据需要添加的(d)成分和(e)成分等加入有机溶剂中,通过搅拌混合、混炼等使它们溶解或分散,制备树脂清漆。其后,用刮刀式涂布机、辊涂机、辅料器等将树脂清漆涂布到实施了脱模处理的基材膜上,然后通过加热除去有机溶剂,由此能够在基材膜上形成膜状粘接剂。
膜状粘接剂的厚度没有特别限制,例如相对于半导体芯片和布线电路基板(或多个半导体芯片)各自的连接部的高度之和,优选为0.5~1.5倍、更优选为0.6~1.3倍、进一步优选为0.7~1.2倍。
当膜状粘接剂的厚度为上述连接部的高度之和的0.5倍以上时,能够充分抑制由于粘接剂的未填充而导致的空隙的发生,从而能够进一步提高连接可靠性。另外,当厚度为1.5倍以下时,由于能够充分抑制连接时从芯片连接区域挤出的粘接剂的量,从而能够充分防止粘接剂附着到不需要的部分。当膜状粘接剂的厚度大于1.5倍时,因变得必须将大量的粘接剂从连接部排除而易于发生导通不良。另外,对于窄间距化/多插脚化导致的连接部的弱化(凸块直径的微小化)而言,排除大量树脂对连接部的损伤变大,因此不优选。
由于通常使安装后的连接部的高度为5~100μm,此时,膜状粘接剂的厚度优选为2.5~150μm、更优选为3.5~120μm。
作为用于树脂清漆制备的有机溶剂,优选具有能够将各成分均匀地溶解或分散的特性的有机溶剂,例如可列举出二甲基甲酰胺、二甲基乙酰胺、N-甲基-2-吡咯烷酮、二甲基亚砜、二乙二醇二甲基醚、甲苯、苯、二甲苯、甲乙酮、四氢呋喃、乙基溶纤剂、乙基溶纤剂乙酸酯、丁基溶纤剂、二噁 烷、环己酮和乙酸乙酯。这些有机溶剂可以单独使用也可以将2种以上组合使用。树脂清漆制备时的搅拌混合、混炼例如可以使用搅拌机、研磨机(Raikai mixer)、三辊混炼机、球磨机、珠磨机或homodisper来进行。
作为基材膜,只要是具有能够耐受使有机溶剂挥发时的加热条件的耐热性的基材膜,则没有特别限制,可示例出聚丙烯膜、聚甲基戊烯膜等聚烯烃膜、聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯膜等聚酯膜、聚酰亚胺膜和聚醚酰亚胺膜。基材膜并不限于由这些膜构成的单层膜,也可以是由2种以上材料构成的多层膜。
关于使有机溶剂从涂布于基材膜上的树脂清漆挥发时的干燥条件,优选为使有机溶剂充分挥发的条件,具体而言优选在50~200℃下加热0.1~90分钟。有机溶剂优选除去至相对于膜状粘接剂总量为1.5质量%以下。
另外,本实施方式的半导体用粘接剂还可以在晶片上直接形成。具体而言,例如在将上述树脂清漆直接旋涂到晶片上形成膜后,将有机溶剂除去,由此可以在晶片上直接形成半导体用粘接剂。
以上,对本发明的优选的实施方式进行了说明,但是本发明并不限定于上述实施方式。
实施例
以下,通过实施例对本发明进一步具体地进行说明,但是本发明并不限定于实施例。
以下,通过实施例对本发明进一步具体地进行说明,但是本发明并不限定于实施例。
各实施例和比较例中使用的化合物如下。
(a)环氧树脂
·含三苯酚甲烷骨架的多官能固态环氧树脂(Japan Epoxy Resins株式会社制,商品名“EP1032H60”,以下也称为“EP1032”。)
·双酚F型液态环氧树脂(Japan Epoxy Resins株式会社制,商品名“YL983U”,以下也称为“YL983”。)
·柔软性环氧树脂(Japan Epoxy Resins株式会社制,商品名“YL7175”,以下也称为“YL7175”。)
(b)固化剂
·2,4-二氨基-6-[2’-甲基咪唑基-(1’)]-乙基-均三嗪异氰脲酸加成物(四国化成株式会社制,商品名“2MAOK-PW”,以下也称为“2MAOK”。)
(c)由具有式(1-1)或(1-2)所示基团的化合物构成的助熔剂
·2,2-二甲基戊二酸(Aldrich公司制,熔点为约83℃)
·3,3-二甲基戊二酸(Aldrich公司制,熔点为约100℃)
(c’)其它助熔剂
·戊二酸(东京化成株式会社制,熔点为约98℃)
·琥珀酸(Aldrich公司制,熔点为约188℃)
·己二酸(东京化成株式会社制,熔点为约153℃)
·丙二酸(Aldrich公司制,熔点为约135~137℃)
·1,3,5-戊烷三羧酸(东京化成株式会社制,熔点为约113℃,以下也称为“戊烷三羧酸”。)
(d)分子量为10000以上的高分子成分
·苯氧树脂(东都化成株式会社制,商品名“ZX1356”、Tg:约71℃、Mw:约63000,以下也称为“ZX1356”。)
(e)填料
(e-1)无机填料
·二氧化硅填料(株式会社Admatechs制,商品名“SE2050”,平均粒径为0.5μm,以下也称为“SE2050”。)
·环氧硅烷处理二氧化硅填料(株式会社Admatechs制,商品名“SE2050-SEJ”,平均粒径为0.5μm,以下也称为“SE2050-SEJ”。)
·丙烯酸表面处理纳米二氧化硅填料(株式会社Admatechs制,商品名“YA050C-SM”,平均粒径为约50nm,以下也称为“SM纳米二氧化硅”。)
(e-2)树脂填料
·有机填料(Rohm&Haas Japan株式会社制,商品名“EXL-2655”,芯壳型有机微粒,以下也称为“EXL-2655”。)
高分子成分的重均分子量(Mw)是通过GPC法求出的。GPC法的详细情况如下。
装置名:HPLC-8020(产品名,TOSOH公司制)
柱:2根GMHXL+1根G-2000XL
检测器:RI检测器
柱温度:35℃
流速:1mL/分钟
标准物质:聚苯乙烯
(实施例1)
<膜状半导体用粘接剂的制作>
加入环氧树脂3g(“EP1032”2.4g、“YL983”0.45g、“YL7175”0.15g)、固化剂“2MAOK”0.1g、2,2-二甲基戊二酸0.11g(0.69mmol)、无机填料1.9g(“SE2050”0.38g、“SE2050-SEJ”0.38g、“SM纳米二氧化硅”1.14g)、树脂填料(EXL-2655)0.25g和甲乙酮(固体成分量达到63质量%的量),加入与固体成分等重量的直径为0.8mm的珠粒和直径为2.0mm的珠粒,用珠磨机(Fritsch Japan株式会社,行星型微粉碎机P-7)搅拌30分钟。其后,加入苯氧树脂(ZX1356)1.7g,再次用珠磨机搅拌30分钟后,将搅拌所用的珠粒过滤除去,得到树脂清漆。
将得到的树脂清漆用小型精密涂布装置(廉井精机)涂布到基材膜(帝人DuPont Film株式会社制,商品名“Purex A53”)上,用洁净烘箱(ESPEC制)干燥(70℃/10分钟),得到膜状粘接剂。
<半导体装置的制作>
将制作的膜状粘接剂剪成规定的尺寸(纵8mm×横8mm×厚0.045mm),贴付到玻璃环氧树脂基板(玻璃环氧树脂基材:420μm厚、铜布线:9μm厚)上,将带焊锡凸块的半导体芯片(芯片尺寸:纵7.3mm×横7.3mm×厚0.15mm,凸块高度:铜柱+焊锡计为约40μm、凸块数为328)用flip安装装置“FCB3”(Panasonic制,商品名)安装(安装条件:压接头温度为350℃、压接时间为20秒、压接压力为0.5MPa)。由此,与图4同样地制作将上述玻璃环氧树脂基板和带焊锡凸块的半导体芯片菊链式(daisy-chain)连接而成的半导体装置。
(实施例2~4)
将制作半导体装置时的压接时间分别变更为5秒、3.5秒和2.5秒,除此以外,与实施例1同样地制作实施例2~4的半导体装置。
(实施例5)
将所用材料的组成如下述表1所记载地进行变更,除此以外,与实施例1同样地制作实施例5的半导体装置。
(实施例6~8)
将制作半导体装置时的压接时间分别变更为5秒、3.5秒和2.5秒,除此以外,与实施例5同样地制作实施例6~8的半导体装置。
(比较例1~5)
将所用材料的组成如下述表1所记载地进行变更,除此以外,与实施例1同样地制作比较例1~5的膜状粘接剂。
(比较例6~10)
将制作半导体装置时的压接时间变更为5秒,除此以外,与比较例1~5同样地制作比较例6~10的半导体装置。
(比较例11~15)
将制作半导体装置时的压接时间变更为3.5秒,除此以外,与比较例1~5同样地制作比较例11~15的半导体装置。
(比较例16~20)
将制作半导体装置时的压接时间变更为2.5秒,除此以外,与比较例1~5同样地制作比较例16~20的半导体装置。
以下示出实施例和比较例中得到的膜状粘接剂和半导体装置的评价方法。
(1)膜状粘接剂的评价
(1-1)吸湿前的260℃下的粘接力的测定
将制作的膜状粘接剂剪成规定的尺寸(纵5mm×横5mm×厚0.045mm),在70℃下贴付到硅芯片(纵5mm×横5mm×厚0.725mm、氧化膜包覆)上,用热压接试验机(日立化成Techno-plant株式会社制)压接(压接条件:压接头温度为250℃、压接时间为5秒、压接压力为0.5MPa)到包覆有阻焊膜(太阳油墨制,商品名“AUS308”)的玻璃环氧树脂基板(厚度为0.02mm)上。接着,在洁净烘箱(ESPEC制)中进行后固化(175℃、2小时),得到作为试验样品的半导体装置。
对于上述试验样品,在260℃的加热板上用粘接力测定装置(DAGE公 司制,万能型Bond Tester DAGE4000型),在距基板的工具高度为0.05mm、工具速度为0.05mm/秒的条件下测定粘接力。
(1-2)吸湿后的260℃下的粘接力的测定
将制作的膜状粘接剂剪成规定的尺寸(纵5mm×横5mm×厚0.045mm),在70℃下贴付到硅芯片(纵5mm×横5mm×厚0.725mm、氧化膜包覆)上,用热压接试验机(日立化成Techno-plant株式会社制)压接(压接条件:压接头温度为250℃、压接时间为5秒、压接压力为0.5MPa)到包覆有阻焊膜(太阳油墨制,商品名“AUS308”)的玻璃环氧树脂基板(厚度为0.02mm)上。接着,在洁净烘箱(ESPEC制)中进行后固化(175℃、2小时),得到作为试验样品的半导体装置。
将上述试验样品在85℃、相对湿度为60%的恒温恒湿器(ESPEC制,PR-2KP)内放置48小时,取出后在260℃的加热板上用粘接力测定装置(DAGE公司制,万能型Bond Tester DAGE4000型),在距基板的工具高度为0.05mm、工具速度为0.05mm/秒的条件下测定粘接力。
(1-3)绝缘可靠性试验(HAST试验:Highly Accelerated Storage Test)
将制作的膜状粘接剂(厚度:45μm)无空隙地贴付到叉指型电极评价TEG(日立化成工业株式会社制,布线间距:50μm)上,在洁净烘箱(ESPEC制)中、在175℃下固化2小时。将固化后的样品设置到加速寿命试验装置(HIRAYAMA公司制,商品名“PL-422R8”,条件:施加130℃/85%RH/100小时、5V)上,测定绝缘电阻。将100小时后的绝缘电阻为108Ω以上的情况评价为“A”,将107Ω以上且低于108Ω的情况评价为“B”,将低于107Ω的情况评价为“C”。
(2)半导体装置的评价
(2-1)初始连接性的评价
用万用表(ADVANTEST制,商品名“R6871E”)测定制作的半导体装置的连接电阻值,由此对安装后的初始导通进行评价。将连接电阻值为10.0~13.5Ω的情况评价为连接性良好“A”,将连接电阻值为13.5~20Ω的情况评价为连接性不良“B”,将连接电阻值大于20Ω的情况、连接电阻值低于10Ω的情况和因连接不良而导致的Open(不显示电阻值的)情况全部评价为连接性不良“C”。
(2-2)空隙评价
对于制作的半导体装置,用超声波映像诊断装置(商品名“Insight-300”、Insight制)拍摄外观图像,用扫描仪GT-9300UF(EPSON公司制,商品名)摄入芯片上的粘接材料层(由半导体用粘接剂的固化物形成的层)的图像,用图像处理软件Adobe Photoshop通过色调补正、黑白转化识别空隙部分,通过直方图算出空隙部分所占的比例。将芯片上的粘接材料部分的面积记为100%,将空隙发生率为10%以下的情况评价为“A”,将为10~20%的情况评价为“B”,将空隙发生率多于20%的情况评价为“C”。
(2-3)焊锡润湿性评价
对于制作的半导体装置,观察连接部的截面,将Cu布线的上表面润湿有90%以上焊锡的情况评价为“A”(良好)、将焊锡的润湿小于90%的情况评价为“B”(润湿不足)。
(2-4)耐回流性的评价
将制作的半导体装置用密封材料(日立化成工业株式会社制,商品名“CEL9750ZHF10”)在180℃、6.75MPa、90秒的条件铸模,在洁净烘箱(ESPEC制)中、在175℃下进行5小时的后固化,得到封装。接着,将该封装在JEDEC level 2条件下高温吸湿后,使封装通过IR回流炉(FURUKAWA ELECTRIC制,商品名“SALAMANDER”)3次。对于回流后的封装的连接性,通过与上述初始连接性的评价同样的方法进行评价,作为耐回流性的评价。将没有剥离、连接良好的情况评价为“A”、将发生剥离、连接不良的情况评价为“B”。
(2-5)耐TCT评价(连接可靠性的评价)
将制作的半导体装置用密封材料(日立化成工业株式会社制,商品名“CEL9750ZHF10”)在180℃、6.75MPa、90秒的条件下铸模,在洁净烘箱(ESPEC制)中、在175℃下进行5小时的后固化,得到封装。接着,将该封装与冷热循环试验机(ETAC制,商品名“THERMAL SHOCK CHAMBER NT1200”)连接,通入1mA电流,将25℃2分钟/-55℃15分钟/25℃2分钟/125℃15分钟/25℃2分钟作为1个循环,评价重复1000个循环后的连接电阻的变化。将与初始的电阻值波形相比1000个循环后也没有大变化的情况评价为“A”、将产生1Ω以上的差的情况评价为“B”。
将膜状粘接剂的评价结果记于表1、将半导体装置的评价结果记于表2~5。
表1

表2

表3

表4

表5

通过使用了含有具有式(1-1)或(1-2)所示基团的化合物的半导体用粘接剂的半导体装置的制造方法,短时间的连接成为可能,焊锡润湿性也良好。另外,可靠性也良好。
符号说明
10       半导体芯片
15       布线(连接部)
20       基板(布线电路基板)
30       连接凸块
32       凸块(连接部)
34       贯通电极
40       粘接材料
41       半导体用粘接剂(膜状粘接剂)
50       中介层
60       阻焊膜
90       叉指型电极
100、200、300、400、500、600     半导体装置。

半导体装置及其制造方法.pdf_第1页
第1页 / 共30页
半导体装置及其制造方法.pdf_第2页
第2页 / 共30页
半导体装置及其制造方法.pdf_第3页
第3页 / 共30页
点击查看更多>>
资源描述

《半导体装置及其制造方法.pdf》由会员分享,可在线阅读,更多相关《半导体装置及其制造方法.pdf(30页珍藏版)》请在专利查询网上搜索。

1、10申请公布号CN104137246A43申请公布日20141105CN104137246A21申请号201380010640422申请日20130222201203855020120224JP201211975920120525JPPCT/JP2012/07541420121001JPH01L21/60200601C09J11/06200601C09J163/00200601H01L21/5620060171申请人日立化成株式会社地址日本东京72发明人本田一尊永井朗佐藤慎74专利代理机构永新专利商标代理有限公司72002代理人王灵菇白丽54发明名称半导体装置及其制造方法57摘要本发明涉及一种。

2、半导体装置的制造方法,其为半导体芯片和布线电路基板各自的连接部相互电连接而成的半导体装置或多个半导体芯片各自的连接部相互电连接而成的半导体装置的制造方法,其中,所述制造方法具备将所述连接部的至少一部分用含有具有下述式11或12所示基团的化合物的半导体用粘接剂密封的工序。式中,R1表示供电子性基团、多个存在的R1相互可以相同也可以不同。30优先权数据85PCT国际申请进入国家阶段日2014082286PCT国际申请的申请数据PCT/JP2013/0545412013022287PCT国际申请的公布数据WO2013/125685JA2013082951INTCL权利要求书2页说明书23页附图4页1。

3、9中华人民共和国国家知识产权局12发明专利申请权利要求书2页说明书23页附图4页10申请公布号CN104137246ACN104137246A1/2页21一种半导体装置的制造方法,其为半导体芯片和布线电路基板各自的连接部相互电连接而成的半导体装置或多个半导体芯片各自的连接部相互电连接而成的半导体装置的制造方法,其中,所述制造方法具备将所述连接部的至少一部分用含有具有下述式11或12所示的基团的化合物的半导体用粘接剂密封的工序,式中,R1表示供电子性基团、多个存在的R1相互可以相同也可以不同。2根据权利要求1所述的半导体装置的制造方法,其中,所述化合物为具有2个羧基的化合物。3根据权利要求1或2。

4、所述的半导体装置的制造方法,其中,所述化合物为下述式21或22所示的化合物,式中,R1表示供电子性基团、R2表示氢原子或供电子性基团、N1表示015的整数、N2表示114的整数,多个存在的R1相互可以相同也可以不同,R2多个存在时,R2相互可以相同也可以不同。4根据权利要求13中任一项所述的半导体装置的制造方法,其中,所述化合物为下述式31或32所示的化合物,权利要求书CN104137246A2/2页3式中,R1表示供电子性基团、R2表示氢原子或供电子性基团、M1表示010的整数、M2表示09的整数,多个存在的R1和R2分别相互可以相同也可以不同。5根据权利要求4所述的半导体装置的制造方法,其。

5、中,所述M1为08的整数、M2为07的整数。6根据权利要求15中任一项所述的半导体装置的制造方法,其中,所述化合物的熔点为150以下。7根据权利要求16中任一项所述的半导体装置的制造方法,其中,所述供电子性基团为碳数为110的烷基。8根据权利要求17中任一项所述的半导体装置的制造方法,其中,所述半导体用粘接剂进一步含有重均分子量为10000以上的高分子成分。9根据权利要求18中任一项所述的半导体装置的制造方法,其中,所述半导体用粘接剂的形状为膜状。10一种半导体装置,其是通过权利要求19中任一项所述的制造方法得到的。权利要求书CN104137246A1/23页4半导体装置及其制造方法技术领域0。

6、001本发明涉及使用了半导体用粘接剂的半导体装置的制造方法及通过该制造方法得到的半导体装置。背景技术0002以往,为了将半导体芯片与基板连接,广泛应用了使用金线等金属细线的引线接合方式。另一方面,为了应对对半导体装置的高功能化、高集成化、高速化等的要求,在半导体芯片或基板上形成被称为凸块BUMP的导电性突起而将半导体芯片与基板直接连接的倒装片连接方式FC连接方式逐渐得到推广。0003例如,关于半导体芯片与基板间的连接,在BGA球栅阵列封装,BALLGRIDARRAY、CSP芯片尺寸封装,CHIPSIZEPACKAGE等中盛行使用的COB板上芯片封装,CHIPONBOARD型的连接方式也属于FC。

7、连接方式。另外,关于FC连接方式,在半导体芯片上形成连接部凸块或布线而将半导体芯片间连接的COC叠层芯片封装,CHIPONCHIP型的连接方式也得到广泛应用例如参照专利文献1。0004另外,对于强烈要求进一步小型化、薄型化、高功能化的封装而言,将上述连接方式层叠/多段化而成的芯片堆叠型封装CHIPSTACKPACKAGE、POP堆栈式封装,PACKAGEONPACKAGE、TSV硅通孔技术,THROUGHSILICONVIA等也开始得到广泛普及。这样的层叠/多段化技术由于将半导体芯片等三维地配置,因此与二维地配置的方法相比更能够使封装变小。另外,对于提高半导体的性能、减小噪声、削减安装面积、节。

8、省电量也是有效的,因此作为新一代的半导体布线技术备受注目。0005另外,作为上述连接部凸块或布线中使用的主要金属,有焊锡、锡、金、银、铜、镍等,还可以使用含有其中多种金属的导电材料。连接部中使用的金属由于表面氧化而生成氧化膜或在表面附着有氧化物等杂质,因此连接部的连接面上有时会产生杂质。当这样的杂质残留时,半导体芯片与基板间或2个半导体芯片间的连接性/绝缘可靠性降低,有使采用上述连接方式的益处受损的担忧。0006另外,作为抑制这些杂质产生的方法,有通过作为OSP有机保焊膜,ORGANICSOLDERBILITYPRESERVATIVES处理等已知的将连接部用防氧化膜包覆的方法,但该防氧化膜有时。

9、会成为连接工艺中的焊锡润湿性降低、连接性降低等的原因。0007因此,作为除去上述氧化膜或杂质的方法,提出了使半导体材料中含有助熔剂的方法例如参照专利文献25。0008现有技术文献0009专利文献0010专利文献1日本特开2008294382号公报0011专利文献2日本特开2001223227号公报0012专利文献3日本特开2002283098号公报0013专利文献4日本特开2005272547号公报说明书CN104137246A2/23页50014专利文献5日本特开2006169407号公报发明内容0015发明欲解决的课题0016通常,从充分确保连接性和/或绝缘可靠性的观点出发,连接部之间的连。

10、接使用金属接合。半导体材料不具有充分的助熔剂活性金属表面的氧化膜或杂质的除去效果时,有可能无法除去金属表面的氧化膜或杂质,无法形成良好的金属金属接合,从而无法确保导通。0017另外,上述半导体装置的制造工艺中,要求连接时间接合时间,BONDINGTIME缩短。连接时间接合时间的缩短成为可能时,能够使生产率提高。但是,通常若缩短连接时间,则有可能会降低连接可靠性。0018本发明的目的在于提供能够在更短时间内更大量地制造可靠性优异的半导体装置的半导体装置的制造方法以及半导体装置。0019用于解决课题的手段0020本发明的一个方式涉及一种半导体装置的制造方法,其为半导体芯片和布线电路基板各自的连接部。

11、相互电连接而成的半导体装置或多个半导体芯片各自的连接部相互电连接而成的半导体装置的制造方法,其中,所述制造方法具备将上述连接部的至少一部分用含有具有下述式11或12所示基团的化合物的半导体用粘接剂密封的工序。00210022式中,R1表示供电子性基团、多个存在的R1相互可以相同也可以不同。0023本方式中,通过使用含有具有式11或12所示基团的化合物的半导体用粘接剂将连接部密封,能够在短时间内制造高可靠性的半导体装置。0024具有式11或12所示基团的化合物优选为具有2个羧基的化合物。具有2个羧基的化合物与具有1个羧基的化合物相比,即使在连接时的高温下也不易挥发,能够进一步抑制空隙的产生。另外。

12、,当使用具有2个羧基的化合物时,与使用了具有3个以上羧基的化合物时相比,能够进一步抑制保管时/连接操作时等的半导体用粘接剂的粘度上升,从而能够进一步提高半导体装置的连接可靠性。0025具有式11或12所示基团的化合物优选为下述式21或22所示的化合物。0026说明书CN104137246A3/23页60027式中,R1表示供电子性基团、R2表示氢原子或供电子性基团、N1表示015的整数、N2表示114的整数,多个存在的R1相互可以相同也可以不同,R2多个存在时,R2相互可以相同也可以不同。0028具有式11或12所示基团的化合物更优选为下述式31或32所示的化合物。00290030式中,R1表。

13、示供电子性基团、R2表示氢原子或供电子性基团、M1表示010的整数、M2表示09的整数,多个存在的R1和R2分别相互可以相同也可以不同。0031式31中的M1优选为08的整数、式32中的M2优选为07的整数。0032具有式11或12所示基团的化合物的熔点优选为150以下。这样的化合物由于能够在更短时间内熔融而表现出助熔剂活性,因此能够在更短时间内制造连接可靠性优异的半导体装置。0033上述供电子性基团优选为碳数为110的烷基。供电子性基团为碳数为110的烷基时,发明的效果进一步变得显著。0034上述半导体用粘接剂还可以进一步含有重均分子量为10000以上的高分子成分。通过该高分子成分,半导体用。

14、粘接剂的成膜性提高,因此能够谋求密封工序中的操作性的提高。另外,通过高分子成分,还能够赋予半导体用粘接剂的固化物以耐热性。此外,在含有高分子成分的半导体用粘接剂中,由具有上述式11或12所示基团的化合物带来的本发明的效果进一步变得显著。0035上述半导体用粘接剂的形状优选为膜状。由此,密封工序中的操作性提高。当为膜状时,可以贴付到晶片上、一起地进行芯片切割,由于能够通过供给有底填料的单片化芯片得到简化的工序大量地进行生产,因此生产率也提高。0036本发明的另一方式涉及通过上述制造方法得到的半导体装置。本发明的半导体装说明书CN104137246A4/23页7置具有优异的连接可靠性。0037发明。

15、效果0038通过本发明,提供能够在更短时间内更大量地制造可靠性优异的半导体装置的半导体装置的制造方法和通过该制造方法得到的半导体装置。附图说明0039图1为表示本发明的半导体装置的一个实施方式的示意截面图。0040图2为表示本发明的半导体装置的另一实施方式的示意截面图。0041图3为表示本发明的半导体装置的另一实施方式的示意截面图。0042图4为示意地表示本发明的半导体装置的制造方法的一个实施方式的工序截面图。具体实施方式0043以下,根据情况边参照附图边对本发明的优选实施方式详细地进行说明。需要说明的是,附图中,相同或相当部分使用相同符号并省略重复说明。另外,关于上下左右等位置关系,只要没有。

16、特别说明,则是基于附图所示的位置关系。此外,附图的尺寸比率并不限于图示的比率。0044本发明的一个方式为半导体装置的制造方法,其为半导体芯片和布线电路基板各自的连接部相互电连接而成的半导体装置、或多个半导体芯片各自的连接部相互电连接而成的半导体装置的制造方法,其中,所述制造方法具备将连接部的至少一部分用含有具有式11或12所示基团的化合物的半导体用粘接剂密封的工序。00450046以下,用图1和2对本实施方式的半导体装置进行说明。图1为表示本发明的半导体装置的一个实施方式的示意截面图。如图1A所示,半导体装置100具有相互对置的半导体芯片10和基板电路布线基板20、分别配置在半导体芯片10和基。

17、板20的相互对置的面上的布线15、将半导体芯片10和基板20的布线15相互连接的连接凸块30、和无间隙地填充在半导体芯片10和基板20间的空隙的粘接材料40。半导体芯片10和基板20通过布线15和连接凸块30形成倒装片连接。布线15和连接凸块30被粘接材料40密封而与外部环境遮断。粘接材料40为后述的半导体用粘接剂的固化物。0047如图1B所示,半导体装置200具有相互对置的半导体芯片10和基板20、分别配置在半导体芯片10和基板20的相互对置的面上的凸块32、和无间隙地填充在半导体芯片10和基板20间的空隙的粘接材料40。半导体芯片10和基板20通过对置的凸块32相互连接而形成倒装片连接。凸。

18、块32被粘接材料40密封而与外部环境遮断。0048图2为表示本发明的半导体装置的另一实施方式的示意截面图。如图2A所示,半导体装置300除了2个半导体芯片10通过布线15和连接凸块30形成倒装片连接这点以外,与半导体装置100是同样的。如图2B所示,半导体装置400除了2个半导体芯片10通过凸块32形成倒装片连接这点以外,与半导体装置200是同样的。0049作为半导体芯片10,没有特别限定,可以使用硅、锗等由相同种类的元素构成的元素半导体、砷化镓、铟磷等化合物半导体。说明书CN104137246A5/23页80050作为基板20,只要是电路基板则没有特别限制,可以使用在以玻璃环氧树脂、聚酰亚胺。

19、、聚酯、陶瓷、环氧树脂、双马来酰亚胺三嗪等为主成分的绝缘基板的表面上具有将金属膜的不需要部位蚀刻除去而形成的布线布线图案15的电路基板、在上述绝缘基板的表面上通过金属镀等形成有布线15的电路基板、在上述绝缘基板的表面上印刷导电性物质而形成有布线15的电路基板。0051布线15、凸块32等连接部可以含有金、银、铜、焊锡主成分例如为锡银、锡铅、锡铋、锡铜、锡银铜、镍、锡、铅等作为主成分,也可以含有多种金属。0052上述金属中,从制成连接部的导电性/导热性优异的封装的观点出发,优选金、银和铜,更优选银和铜。从制成成本降低的封装的观点出发,基于价格低廉而优选银、铜和焊锡,更优选铜和焊锡,进一步优选焊锡。

20、。当在室温下在金属的表面形成氧化膜时,生产率有可能会降低、成本有可能会增加,因此从抑制氧化膜形成的观点出发,优选金、银、铜和焊锡,更优选金、银、焊锡,进一步优选金、银。0053以金、银、铜、焊锡主成分例如为锡银、锡铅、锡铋、锡铜、锡、镍等为主成分的金属层例如可以通过电镀形成在上述布线15和凸块32的表面上。该金属层可以仅由单一成分构成也可以由多种成分构成。另外,上述金属层还可以是单层或多个金属层层叠而成的结构。0054另外,本实施方式的半导体装置可以多层层叠有如半导体装置100400所示的结构封装。此时,半导体装置100400可以通过含有金、银、铜、焊锡主成分例如为锡银、锡铅、锡铋、锡铜、锡银。

21、铜、锡、镍等的凸块或布线相互电连接。0055作为将半导体装置多层层叠的方法,如图3所示,可列举出例如TSVTHROUGHSILICONVIA技术。图3为表示本发明的半导体装置的另一实施方式的示意截面图,其为使用TSV技术得到的半导体装置。在图3所示的半导体装置500中,形成在中介层50上的布线15介由连接凸块30与半导体芯片10的布线15连接,由此,半导体芯片10与中介层50形成倒装片连接。粘接材料40无间隙地填充在半导体芯片10与中介层50之间的空隙。在与上述半导体芯片10的中介层50相反一侧的表面上,半导体芯片10介由布线15、连接凸块30和粘接材料40重复层叠。半导体芯片10的表背面的图。

22、案面的布线15通过填充在贯通半导体芯片10内部的孔内的贯通电极34相互连接。其中,作为贯通电极34的材质,可以使用铜、铝等。0056通过这样的TSV技术,从通常未被使用的半导体芯片的背面也能够获得信号。此外,由于在半导体芯片10内垂直地通过贯通电极34,因此使对置的半导体芯片10间、半导体芯片10与中介层50间的距离缩短,柔软的连接成为可能。本实施方式的半导体用粘接剂在这样的TSV技术中,可以作为对置的半导体芯片10间、半导体芯片10与中介层50间的半导体用粘接剂应用。0057另外,通过区域凸块芯片AREABUMPCHIP技术等自由度高的凸块形成方法,还能够不介由中介层而直接将半导体芯片直接安。

23、装到主板上。本实施方式的半导体用粘接剂也可应用于将这样的半导体芯片直接安装到主板上的情况。其中,本实施方式的半导体用粘接剂也可应用于将2个布线电路基板层叠时将基板间的空隙密封。00580059本实施方式中,例如可以如下地制造半导体装置。首先,准备形成了电路的基板说明书CN104137246A6/23页9电路基板。接着,将半导体用粘接剂按照半导体用粘接剂层将布线和连接凸块包埋的方式供给到电路基板上,得到电路部件。在电路基板上形成半导体用粘接剂层后,在将半导体芯片的焊锡凸块与基板的铜布线用倒装片焊接器等连接装置对准位置后,在焊锡凸块的熔点以上的温度下边加热边按压半导体芯片和基板当连接部使用焊锡时,。

24、优选对焊锡部分施加240以上的温度,从而将半导体芯片与基板连接,同时利用半导体用粘接剂层的固化物将连接部密封。上述半导体用粘接剂层含有具有下述式11或12所示基团的化合物。00600061式中,R1表示供电子性基团、多个存在的R1相互可以相同也可以不同。0062以下用图4对本实施方式的半导体装置的制造方法更具体地进行说明。图4为示意地表示本发明的半导体装置的制造方法的一个实施方式的工序截面图。0063首先,如图4A所示,在具有布线15的基板20上,在形成连接凸块30的位置形成具有开口的阻焊膜60。该阻焊膜60并不是必须设置的。但是,通过在基板20上设置阻焊膜,能够抑制布线15间发生桥接,提高连。

25、接可靠性/绝缘可靠性。阻焊膜60例如可以使用市售的封装用阻焊膜用油墨形成。作为市售的封装用阻焊膜用油墨,具体而言,可列举出SR系列日立化成工业株式会社制,商品名和PSR4000AUS系列太阳油墨制造株式会社制,商品名。0064接着,如图4A所示,在阻焊膜60的开口处形成连接凸块30。并且,如图4B所示,在形成有连接凸块30和阻焊膜60的基板20上贴付膜状的半导体用粘接剂以下根据情况称为“膜状粘接剂”41。膜状粘接剂41的贴付可以通过加热加压、辊层压、真空层压等来进行。膜状粘接剂41的供给面积、厚度可根据半导体芯片10和基板20的尺寸、连接凸块30的高度来适当设定。0065如上所述将膜状粘接剂4。

26、1贴付到基板20上后,将半导体芯片10的布线15与连接凸块30用倒装片焊接器等连接装置对准位置。接着,将半导体芯片10与基板20在连接凸块30的熔点以上的温度下边加热边压接,如图4C所示,将半导体芯片10与基板20连接,同时用膜状粘接剂41的固化物即粘接材料40将半导体芯片10与基板20间的空隙密封填充。如此,得到半导体装置600。0066本实施方式的半导体装置的制造方法中,在对准位置后可以进行临时固定介有半导体用粘接剂的状态并在回流炉中进行加热处理,由此使连接凸块30熔融,将半导体芯片10与基板20连接。临时固定的阶段中,由于形成金属接合并不是必须的,因此与上述的边加热边压接的方法相比,可以。

27、低荷重、短时间、低温度地进行压接,生产率提高,同时能说明书CN104137246A7/23页10够抑制连接部的劣化。0067另外,将半导体芯片10与基板20连接后,在烘箱等中进行加热处理工序固化工序,可以进一步提高连接可靠性/绝缘可靠性。加热温度优选为膜状粘接剂的固化进行的温度、更优选为膜状粘接剂完全固化的温度。加热温度、加热时间可以适当设定。0068固化工序中,将连接体加热以促进半导体用粘接剂的固化。关于固化工序中的加热温度、加热时间、固化工序后的半导体用粘接剂的固化反应率,只要作为固化物的粘接材料发挥满足半导体装置的可靠性的物性,则没有特别限制。0069按照使半导体用粘接剂的固化反应进行的。

28、方式适当设定固化工序中的加热温度和加热时间,优选按照使半导体用粘接剂完全固化的方式进行设定。加热温度从减少翘曲的观点出发,优选为尽可能低的温度。加热温度优选为100200、更优选为110190、进一步优选为120180。加热时间优选为0110小时、更优选为018小时、进一步优选为015小时。固化工序时优选尽可能使半导体用粘接剂的未反应部分反应,优选固化工序后的固化反应率为95以上。固化工序中的加热可以使用烘箱等加热装置进行。0070本实施方式的半导体装置的制造方法中,可以在将膜状粘接剂41贴付到半导体芯片10上后与基板20连接。另外,在将半导体芯片10与基板20通过布线15和连接凸块30连接后。

29、,可以在半导体芯片10与基板20间的空隙填充糊状的半导体用粘接剂并使其固化。0071从生产率提高的观点出发,在将半导体用粘接剂供给至多个半导体芯片10连接而成的半导体晶片后,进行芯片切割使其单片化,由此可以得到在半导体芯片10上供给有半导体用粘接剂的结构体。另外,半导体用粘接剂为糊状时,并不是进行特别限制,可以通过旋涂法等涂布方法将半导体芯片10上的布线、凸块填埋、并使厚度均匀化。此时,由于树脂的供给量变得恒定,因此生产率提高,同时能够抑制因填埋不足而导致的空隙的发生和芯片切割性的降低。另一方面,当半导体用粘接剂为膜状时,并不是进行特别限制,可以通过加热加压、辊层压和真空层压等贴付方式按照将半。

30、导体芯片10上的布线、凸块填埋的方式供给膜状的半导体用粘接剂。此时,由于树脂的供给量变得恒定,因此生产率提高,能够抑制因填埋不足导致的空隙的发生和芯片切割性的降低。0072另外,与旋涂糊状的半导体用粘接剂的方法相比,通过将膜状的半导体用粘接剂层压的方法,供给后的半导体用粘接剂的平坦性有变得良好的倾向。因此,作为半导体用粘接剂的形态,优选为膜状。另外,膜状粘接剂在多种工艺中的适用性、操作性等也优异。0073另外,通过将膜状粘接剂层压来供给半导体用粘接剂的方法中,有易于进一步确保半导体装置的连接性的倾向。关于其理由,并不是很清楚,但本发明者们考虑如下。即,本实施方式的助熔剂有熔点低的倾向,因此有易。

31、于表现出助熔剂活性的倾向。因此考虑,例如,即使基板20的连接凸块30被氧化膜覆盖,在将膜状粘接剂层压到基板20上时的加热下也表现出助熔剂活性,连接凸块30的表面的氧化膜的至少一部分被还原除去。通过该还原除去,在供给了膜状粘接剂时连接凸块30的至少一部分露出,考虑其有助于连接性的提高。0074关于连接荷重,在考虑连接凸块30的数量和/或高度的不均、加压产生的连接凸块30、或接续连接部的凸块的布线的变形量后进行设定。关于连接温度,优选连接部的温度说明书CN104137246A108/23页11在连接凸块30的熔点以上,可以是各连接部凸块或布线的金属接合形成的温度。连接凸块30为焊锡凸块时,优选为约。

32、240以上。另外,连接温度可以为500以下、也可以为400以下。0075连接时的连接时间根据连接部的构成金属的不同而不同,但从生产率提高的观点出发,优选越为短时间越好。连接凸块30为焊锡凸块时,连接时间优选为20秒以下、更优选为10秒以下、进一步优选为5秒以下、更进一步优选为4秒以下、特别优选为3秒以下。为铜铜或铜金的金属连接时,连接时间优选为60秒以下。0076在上述各种封装结构的倒装片连接部中,本实施方式的半导体用粘接剂也显示优异的耐回流性和连接可靠性。0077以上,对本发明的优选的实施方式进行了说明,但本发明并不限定于上述实施方式。0078以下,对本发明中使用的半导体用粘接剂的一个方式进。

33、行说明。00790080本实施方式的半导体用粘接剂含有具有下述式11或12所示基团的化合物以下根据情况称为“C成分”。此外,从粘接性的观点出发,优选含有热固化成分。热固化成分没有特别限制,从耐热性和粘接性的观点出发,优选含有环氧树脂以下根据情况称为“A成分”、固化剂以下根据情况称为“B成分”。00810082式11和12中,R1表示供电子性基团、多个存在的R1相互可以相同也可以不同。0083根据本实施方式的半导体用粘接剂,通过含有具有式11或12所示基团的化合物,即使在进行金属接合的倒装片连接方式中作为半导体用粘接剂使用并缩短连接时间的情况下,也能够制作耐回流性和连接可靠性优异的半导体装置。关。

34、于其理由,本发明者们考虑如下。0084通常,当使用半导体用粘接剂进行倒装片连接时,边加热边进行连接,此时,半导体用粘接剂也被加热,在加热到助熔剂的熔点时表现出助熔剂活性。但是,由于难以使半导体用粘接剂的温度快速上升,因此难以在短时间内表现出助熔剂活性。但是,本发明的具有式1所示基团的化合物与通常的助熔剂相比熔点更低而有表现出助熔剂活性的温度也低的倾向。因此,能够在短时间内熔融而表现出助熔剂活性,因此短时间内的连接成为可能。0085另外考虑,与目前为止的具有直链骨架的助熔剂不同,具有上述式11或12说明书CN104137246A119/23页12所示基团的化合物在从羧基起的2位的位置上具有2个供。

35、电子性基团、或在3位的位置上具有2个供电子性基团,因此熔点变低。考虑由此,短时间内的连接成为可能。0086此外,通过含有具有式11或12所示基团的化合物,不仅表现出助熔剂活性而能够进行短时间连接,而且能够抑制连接后在高温下吸湿后的粘接力的降低,从而还能够谋求耐回流性的提高。以往,使用羧酸作为助熔剂,但本发明者们考虑以往的助熔剂由于以下的理由而发生粘接力的降低。0087通常,环氧树脂与固化剂反应、固化反应进展,此时,作为助熔剂的羧酸被纳入到该固化反应中。即,有可能通过环氧树脂的环氧基与助熔剂的羧基反应而形成酯键。该酯键易于发生因吸湿等引起的水解等,该酯键的分解考虑是吸湿后粘接力降低的一个原因。0。

36、088与此相对,本实施方式的半导体用粘接剂含有具有式11或12所示基团、即在附近具有2个具备供电子性的羧基的化合物。因此考虑,本实施方式的半导体用粘接剂通过羧基而充分得到助熔剂活性,同时即使在形成了上述酯键的情况下,通过2个供电子性基团而酯键部的电子密度提高、酯键的分解得到抑制。0089另外考虑,本实施方式中,由于在羧基的附近存在2个取代基供电子性基团,因此由于空间位阻,羧基与环氧基的反应被抑制而变得难以生成酯键。0090由于这些理由,本实施方式的半导体用粘接剂难以发生因吸湿等引起的组成变化,从而维持优异的粘接力。另外,上述作用还可以描述为,环氧树脂与固化剂的固化反应不易被助熔剂抑制,通过该作。

37、用,还可期待环氧树脂与固化剂的固化反应充分进行而产生连接可靠性提高的效果。0091本实施方式的半导体用粘接剂根据需要还可以含有重均分子量为10000以上的高分子成分以下根据情况称为“D成分”。另外,本实施方式的半导体用粘接剂根据需要还可以含有填料以下根据情况称为“E成分”。0092以下,对构成本实施方式的半导体用粘接剂的各成分进行说明。0093A成分环氧树脂0094作为环氧树脂,只要是在分子内具有2个以上环氧基的环氧树脂,则可以没有特别限制地使用。作为A成分,例如可以使用双酚A型环氧树脂、双酚F型环氧树脂、萘型环氧树脂、酚醛清漆型环氧树脂、甲酚酚醛清漆型环氧树脂、苯酚芳烷基型环氧树脂、联苯基型。

38、环氧树脂、三苯基甲烷型环氧树脂、双环戊二烯型环氧树脂和各种多官能环氧树脂。它们可以单独使用也可以制成2种以上的混合物使用。0095关于A成分,从抑制高温下连接时发生分解产生挥发成分的观点出发,当连接时的温度为250时,优选使用250下的热重量减少量率为5以下的环氧树脂;当连接时的温度为300时,优选使用300下的热重量减少量率为5以下的环氧树脂。0096A成分的含量以半导体用粘接剂的总量基准计为例如575质量、优选为1050质量、更优选为1535质量。0097B成分固化剂0098作为B成分,例如可列举出酚醛树脂系固化剂、酸酐系固化剂、胺系固化剂、咪唑系固化剂和膦系固化剂。当B成分含有酚性羟基、。

39、酸酐、胺类或咪唑类时,显示出抑制连接部处产生氧化膜的助熔剂活性,从而能够提高连接可靠性/绝缘可靠性。以下,对各固化剂进行说明。说明书CN104137246A1210/23页130099I酚醛树脂系固化剂0100作为酚醛树脂系固化剂,只要是分子内具有2个以上酚性羟基的酚醛树脂系固化剂,则没有特别限制,例如可以使用酚醛清漆树脂、甲酚酚醛清漆树脂、苯酚芳烷基树脂、甲酚萘酚甲醛缩聚物、三苯基甲烷型多官能酚醛树脂和各种多官能酚醛树脂。它们可以单独使用也可以制成2种以上的混合物使用。0101酚醛树脂系固化剂与上述A成分的当量比酚性羟基/环氧基、摩尔比从良好的固化性、粘接性和保存稳定性的观点出发,优选为03。

40、15、更优选为0410、进一步优选为0510。当当量比为03以上时,有固化性提高、粘接力提高的倾向,当当量比为15以下时,有未反应的酚性羟基不会过剩地残留、吸水率被抑制得较低且绝缘可靠性提高的倾向。0102II酸酐系固化剂0103作为酸酐系固化剂,例如可以使用甲基环己烷四羧酸二酐、偏苯三酸酐、均苯四甲酸酐、二苯甲酮四羧酸二酐和乙二醇双偏苯三酸酐。它们可以单独使用也可以制成2种以上的混合物使用。0104关于酸酐系固化剂与上述A成分的当量比酸酐基/环氧基、摩尔比,从良好的固化性、粘接性和保存稳定性的观点出发,优选为0315、更优选为0410、进一步优选为0510。当当量比为03以上时,有固化性提高。

41、、粘接力提高的倾向,当当量比为15以下时,有未反应的酸酐不会过剩地残留、吸水率被抑制得较低且绝缘可靠性提高的倾向。0105III胺系固化剂0106作为胺系固化剂,可以使用例如双氰胺。0107关于胺系固化剂与上述A成分的当量比胺/环氧基、摩尔比,从良好的固化性、粘接性和保存稳定性的观点出发,优选为0315、更优选为0410、进一步优选为0510。当当量比为03以上时,有固化性提高、粘接力提高的倾向,当当量比为15以下时,有未反应的胺不会过剩地残留、绝缘可靠性提高的倾向。0108IV咪唑系固化剂0109作为咪唑系固化剂,例如可列举出2苯基咪唑、2苯基4甲基咪唑、1苄基2甲基咪唑、1苄基2苯基咪唑、。

42、1氰基乙基2十一烷基咪唑、1氰基2苯基咪唑、1氰基乙基2十一烷基咪唑偏苯三酸、1氰基乙基2苯基咪唑鎓偏苯三酸、2,4二氨基62甲基咪唑基1乙基均三嗪、2,4二氨基62十一烷基咪唑基1乙基均三嗪、2,4二氨基62乙基4甲基咪唑基1乙基均三嗪、2,4二氨基62甲基咪唑基1乙基均三嗪异氰脲酸加成物、2苯基咪唑异氰脲酸加成物、2苯基4,5二羟基甲基咪唑、2苯基4甲基5羟基甲基咪唑、以及环氧树脂与咪唑类的加成物。其中,从优异的固化性、保存稳定性和连接可靠性的观点出发,优选1氰基乙基2十一烷基咪唑、1氰基2苯基咪唑、1氰基乙基2十一烷基咪唑偏苯三酸、1氰基乙基2苯基咪唑鎓偏苯三酸、2,4二氨基62甲基咪唑。

43、基1乙基均三嗪、2,4二氨基62乙基4甲基咪唑基1乙基均三嗪、2,4二氨基62甲基咪唑基1乙基均三嗪异氰脲酸加成物、2苯基咪唑异氰脲酸加成物、2苯基4,5二羟基甲基咪唑和2苯基4甲基5羟基甲基咪唑。说明书CN104137246A1311/23页14它们可以单独使用也可以将2种以上并用。另外,还可以将它们制成经微胶囊化的潜在性固化剂。0110咪唑系固化剂的含量相对于A成分100质量份,优选为0120质量份、更优选为0110质量份。当咪唑系固化剂的含量为01质量份以上时,有固化性提高的倾向;当咪唑系固化剂的含量为20质量份以下时,有在金属接合形成前半导体用粘接剂不会固化而不易发生连接不良的倾向。0。

44、111V膦系固化剂0112作为膦系固化剂,例如可列举出三苯基膦、四苯基鏻四苯基硼酸酯、四苯基鏻四4甲基苯基硼酸酯和四苯基鏻4氟代苯基硼酸酯。0113膦系固化剂的含量相对于A成分100质量份,优选为0110质量份、更优选为015质量份。当膦系固化剂的含量为01质量份以上时,有固化性提高的倾向;当膦系固化剂的含量为10质量份以下时,有在金属接合形成前半导体用粘接剂不会固化而不易发生连接不良的倾向。0114酚醛树脂系固化剂、酸酐系固化剂和胺系固化剂可以分别1种单独使用也可以制成2种以上的混合物使用。咪唑系固化剂和膦系固化剂可以分别单独使用,也可以与酚醛树脂系固化剂、酸酐系固化剂或胺系固化剂一起使用。。

45、0115从保存稳定性进一步提高、吸湿所导致的分解、劣化变得不易发生的观点出发,B成分优选为选自由酚醛树脂系固化剂、胺系固化剂、咪唑系固化剂和膦系固化剂组成的组的固化剂。另外,从调节固化速度的容易性的观点、和能够通过速固化性实现以生产率提高为目的的短时间连接的观点出发,B成分优选选自由酚醛树脂系固化剂、胺系固化剂和咪唑系固化剂组成的组的固化剂。0116半导体用粘接剂含有酚醛树脂系固化剂、酸酐系固化剂或胺系固化剂作为B成分时,显示出将氧化膜除去的助熔剂活性,从而能够进一步提高连接可靠性。0117作为实现空隙抑制与连接性的兼顾的因素,可列举出固化剂的挥发性低不易发泡、凝胶化时间和/或粘度适当、调节容。

46、易。另外,作为实现可靠性特别是耐回流性的因素,可列举出低吸湿性不易吸湿。从这些观点出发,作为固化剂,优选为酚醛树脂系固化剂、胺系固化剂、咪唑系固化剂和膦系固化剂、更优选为酚醛树脂系固化剂、胺系固化剂和咪唑系固化剂。0118C成分具有式11或12所示基团的化合物0119C成分为具有式11或12所示基团的化合物以下根据情况称为“助熔剂化合物”。C成分为具有助熔剂活性的化合物,在本实施方式的半导体用粘接剂中,作为助熔剂发挥作用。作为C成分,可以将助熔剂化合物中的1种单独使用,也可以将助熔剂化合物中的2种以上并用。0120说明书CN104137246A1412/23页150121式11和12中,R1表。

47、示供电子性基团、多个存在的R1相互可以相同也可以不同。0122作为供电子性基团,例如可列举出烷基、羟基、氨基、烷氧基和烷基氨基。作为供电子性基团,优选不易与其它成分例如A成分的环氧树脂发生反应的基团,具体而言,优选烷基、羟基或烷氧基,更优选烷基。0123供电子性基团的供电子性强时,有易于获得抑制上述酯键的分解的效果的倾向。另外,供电子性基团的空间位阻大时,变得易于获得抑制上述羧基与环氧树脂的反应的效果。供电子性基团优选平衡良好地具有供电子性和空间位阻。0124作为烷基,优选碳数为110的烷基、更优选碳数为15的烷基。烷基的碳数越多,有供电子性和空间位阻变得越大的倾向。碳数在上述范围内的烷基由于。

48、供电子性和空间位阻的平衡优异,因此通过该烷基,本发明的效果进一步变得显著。0125另外,烷基可以是直链状也可以是分支状,其中优选直链状。烷基为直链状时,从供电子性和空间位阻的平衡的观点出发,烷基的碳数优选为助熔剂化合物的主链的碳数以下。例如,当助熔剂化合物为下述式21或22所示的化合物且供电子性基团为直链状的烷基时,该烷基的碳数优选为助熔剂化合物的主链的碳数N11或N22以下。0126作为烷氧基,优选碳数为110的烷氧基、更优选碳数为15的烷氧基。烷氧基的碳数越多,有供电子性和空间位阻变得越大的倾向。碳数在上述范围内的烷氧基由于供电子性和空间位阻的平衡优异,因此通过该烷氧基,本发明的效果进一步。

49、变得显著。0127另外,烷氧基的烷基部分可以是直链状也可以是分支状,其中优选直链状。当烷氧基为直链状时,从供电子性和空间位阻的平衡的观点出发,烷氧基的碳数优选为助熔剂化合物的主链的碳数以下。例如,当助熔剂化合物为下述式21或22所示的化合物且供电子性基团为直链状的烷氧基时,该烷氧基的碳数优选为助熔剂化合物的主链的碳数N11或N22以下。0128作为烷基氨基,可列举出单烷基氨基、二烷基氨基。作为单烷基氨基,优选碳数为110的单烷基氨基、更优选碳数为15的单烷基氨基。单烷基氨基的烷基部分可以是直链状也可以是分支状,优选为直链状。0129作为二烷基氨基,优选碳数为220的二烷基氨基、更优选碳数为210的二烷基氨基。二烷基氨基的烷基部分可以是直链状也可以是分支状,优选为直链状。0130助熔剂化合物优选为具有2个羧基的化合物二羧酸。具有2个羧基的化合物与具有1个羧基的化合物单羧酸相比,即使在连接时的高温下也难以挥发,从而能够进一步抑制空隙的发生。另外,当使用具有2个羧基的化合物时,与使用具有3个以上羧基的说明书CN104137246A1513/23页16化合物时相比,能够进一步抑制保管时/连接操作时等的半导体用粘接剂。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 电学 > 基本电气元件


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1