本发明涉及一种多层聚合物体,它由在另一种聚合物基体中的一种或多种聚合物的光学厚的、薄的和/或极薄的片状或带状薄层构成,这种聚合物体反射光线并可加工成具有银色或金属光泽(即金、铜等)外观,或非常规色泽(即兰色、绿色)外观,甚至闪光外观;本发明还涉及制备这种聚合物体的方法。 加工反射表面的常规方法包括高度抛光金属以形成这种表面。由于使用金属涉及高成本和加工问题,新近许多制造商采用了在其上含有金属涂覆层的塑料表面。因此通常发现在许多工业领域里,金属涂覆的塑料制品被兼作装饰品和实用构件。这种制品作为光亮部件用于消费品中,例如冰箱、洗碟机、清洗器、干燥器和收音机。在汽车制造业中,这类制品还被用作头灯反射镜,仪表前盖、收音机旋钮和汽车内部装璜。
通常,这些金属涂覆塑料制品是通过在制品表面上通过电镀或真空、蒸汽或化学淀积一层金属薄层而形成。此外,这样的涂覆层随时间要经受金属涂层的破裂和剥落,而且金属被腐蚀。如果必须在该金属涂层上另外涂覆保护层以保护之,则又会涉及附加的劳务和材料成本问题。而且由于某些金属淀积工艺还可能带来环境处理问题。
Eisenfeller在美国专利Nos.4,713,143,4,431,711和4,407,871中提出这种生产光亮工件和汽车装饰品的真空金属淀积系统。该系统是在绝缘基体上淀积极微小的岛状铟金属镜面。然后将该金属包封在透明聚合物中。
多层聚合物制品地制备是已知的,制备这些制品的方法和装置也是已知的。例如,可以用共同转让(commonly-assigned)给Schrenk的美国专利Nos.3,773,882和3,884,606中叙述的多层共挤塑装置制备多层制品。这些装置能够同时挤塑具有层厚基本均匀的连续层的各种热塑聚合物材料。通过使用共同转让给Schrenk等人的美国专利No.3,759,647中叙述的装置可使层数倍增。
在美国专利No.4,540,623中Im等人提出一种多层层压制品,该制品在交替连续层中有一层是聚碳酸酯。然而,Im的制品的目的是透明的而不是反射的,并且要显示出能与纯聚碳酸酯聚合物比美的光学性质。
在美国专利No.3,711,176中,Alfrey,Jr.等人提出用薄膜技术制备多层高反射热塑性物体。即Alfrey,Jr.的反射薄膜层依靠光的相长干涉产生反射的电磁光谱的可见光、紫外线、或红外线部分。已发现这些反射薄膜由于膜的装饰反射性而可用于装饰品。
Alfrey.Jr.的膜对厚度变化极为敏感,其特征在于这样的膜显示出不均匀彩色条纹和斑点。而且由这样的膜反射的色彩取决于射到膜上的光的入射角。因此,这样的膜对要求均匀反射的用途是不实用的。而且对需要光反射均匀的热成型制品也是不实用的。因为在热成型期间,层的局部变薄会导致膜的反射性能改变。
而且,Alfrey,Jr.等人的膜和多层膜以及基本上由连续层制得的制品,具有某些为其结构所固有的限制特征。连续层间必须本身相互粘接以保持该膜结合在一起。这就可能需要使用中间粘合剂层,该粘合剂会损害膜的光学性质而且必然要增加膜的总厚度。而且,在各层之间的界面上不允许有气体或其它液体,因为这会导致层剥离。此外,各层用的每种材料都会对膜的总机械性能产生影响。例如,如果所用的聚合物中有一种是脆性的,则脆性材料层将影响整个多层膜的性能。
因此,在本领域仍然需要一种聚合物反射膜、片或体,它可加工成各种部件,并可在加工条件和部分几何条件范围内显示出均匀反射外观或银色闪光外观。还需要一种聚合物反射膜或体,它能保持在一起,即便某些或全部单层不在一起;需要一种聚合物反射全其中层之间的界面上可存在气体或其它流体而不会损害反射体的光学和机械性能;需要一种多层反射体,它具有的机械性能基本上与反射体内至少某些层的机械性能无关。
本发明提供一种不含金属的层状反射聚合物体以及制备这种可加工和/或后成型为各种部件的聚合物体的方法,从而满足了上述的需要。在本发明的一个具有实施例中,这种加工和/或后成型可在不改变其均匀反射外观的情况下完成。该反射体在另一种聚合物基体中包含至少一种聚合物材料构成的许多不连续层,这些聚合物的折光率不同。这些聚合物材料层可为光学厚的、光学薄的(即闪光干涉层)或光学极薄的。光学厚度太厚则不能产生可见的闪光效应(可看见的各种色彩),而极薄层太薄也不会产生这种效应。这种得到的取决于所选择的层厚度的多层层状聚合物体可基本上反射白光并呈显银色的金属外观,或者具有闪光色带。
本发明的另一具体实施例中,光学性质并不重要,这种不连续多层结构提供了许多有利的机械特性。这些性质包括在一个方向上抗拉性能高,而在不连续带状薄层的横截方向上抗拉性能较低,能使聚合物体具有柔韧性和延展性,并能在多层结构中包括重叠的气体阻挡层。
本文中所用的术语“反射的”、“反射性”、“反射”和“反射率”是指在性质上充分产生定向反射以致聚合物体具有金属外观的全反射率(即反射光波能与入射光波能之比)。使用这些术语试图包括半定向反射或温反射,例如刷磨过的金属和白镴的反射。一般说来,反射测量是指进入以镜面反射角为中心、顶角为15°的出射锥形的光线的反射。
本文中使用的特定反射强度是指在产生光的吸收可忽略不计的波长下所发生的反射强度。例如,显现银色的制品基本上反射所有的可见光波长,而为了获得其它金属色泽加入涂料必然要降低反射体在吸收波长下的反射性。不受染料影响的波长的反射强度基本上与非染色样品相同,反射强度指的就是这些未受影响波长下的反射强度。同样,当有光学薄层(即闪光薄层)存在的地方,所说的反射是观测到的峰值反射率。
按照本发明的一个方面,提供一种至少由第一种和第二种不同聚合物材料构成的层状反射聚合物体,该组合物体至少有第一和第二主表面。该组合物体包括多层其中基体为第二种聚合物材料的第一种聚合物材料,这些第一种聚合物层的主要界面排列基本上与聚合物体的主表面平行。
聚合物体中的第一种聚合物层数应足以反射30%入射到聚合物体上的光线。组合物体中第一种聚合物材料的各层和夹在第一种聚合物材料各层之间的第二聚合物材料的那些部分,具有的光学厚度不大于0.09微米(即为光学极薄),在0.09微米和0.045微米之间(即为光学薄),或不小于0.45微米(即为光学厚)。
本发明的最佳实施例中,至少75%的第一聚合物材料各层以及夹在第一聚合物材料各层之间的第二聚合物材料的那些部分,具有的光学厚度至少为0.45微米或更大,或0.09微米或更小,以产生均匀反射的金属光泽体。或者,第一种聚合物材料的各层和夹于其间的第二种聚合物材料的部分应该具有这样的光学厚度以致看不见物体反射的闪光。在本发明的另一实例中,第一种聚合物材料和夹在其中间的第二种聚合物材料的一部分或全部具有的光学厚度为0.09微米至0.45微米,以便得到彩色的和/或银色的闪光外观。
第一种和第二种聚合物材料的折射率之差至少为0.03。为了增加层界面的折射率的差异,从而增加物体的反光性,可在第一种和第二种聚合物的许多主要界面上存在象空气之类的流体。
在本发明的一个优选的实例中,物体可以包括小于一百至数千层第一种聚合物材料,其间又交替存在着第二种聚合物材料部分。我们发现增加聚合物体的层数会增加反射率(即,被反射的入射光百分数)。因而,通过控制层数可以控制制品的反射程度。
本发明的反射物体可以由两种或多种常规透明聚合物树脂构成。本发明实践所用的聚合物可以是刚性的或弹性的,或者具有不同的柔韧性。优选的是可以后成型为各种形状的热塑性树脂。例如,在本发明的一个实例中,第一种聚合物材料可以是聚甲基丙烯酯甲酯而第二种聚合物材料可以是聚苯乙烯。
当将本发明反射物体用于需要气密性的场合时,第一种聚合物材料可以是阻气材料。物体中许多重迭薄层成为气体通道的有效障碍物。例如,可以在多层体中使用象乙烯/乙烯醇共聚物、聚二氯乙烯、聚腈和尼龙之类的适当的阻滞层状材料。
第一种聚合物材料薄层可以是细长的、扁平的带状薄层,它在与物体的主平面平行的第一平面上基本上连续,在与第一平面横截的第二平面上不连续。或者,第一种聚合物材料薄层可以是微型平板状,它沿着与物体一个主平面平行和横截的平面基本不连续。
在本发明的一些实例中,最好将着色剂如染料或颜料混入聚合物体的一个或多个单独内层中或混入物体的聚合物连续基体中。可以选择能够给予聚合物体以金属外观而不是通常的银色外观的着色剂。例如:青铜、黄铜、金色外观。
也可以使用不同的颜色,例如黑色、兰色、红色、黄色、白色等。一般最好在内部薄层内使用颜料着色剂,在物体连续基体内使用染料,以提供不透明的双边镜状反射性。可以结合使用着色剂以提供期望的颜色和光学特性。例如,可以在内层中使用白色颜料着色剂,而在聚合物连续基体内使用彩色颜料,例如兰色、黄色、红色或绿色,以提供独特的反射彩色效果。
此外,尽管在本发明的某些实例中,物体的表面很平滑,具有高度反射的表面,而在某些情况下,却希望使物体表面呈粗糙或擦痕状以模仿经擦光的金属外观。另外,可以使用溶剂来腐蚀多层体的表面,赋予物体以粗糙表面或白镴状外观。而且,也可以将物体模压成各种形式以提供所需的光学效果。
在本发明的另一实例中,反射体的内部薄层可以是在第三种聚合物基体中的两种或多种不同聚合物薄层,从而,提供了由至少第一和第二两种不同聚合物材料构成的层状反射聚合物体,该物体至少有第一和第二主平面。该物体由第三种聚合物材料基体和许多单独薄层构成,每一单独薄层在基体中包含至少三个或多个第一种和第二种聚合物交替薄层。
第一种和第二种聚合物材料的交替薄层其主界面基本上与物体的主表面平行,第一种和第二种聚合物材料的交替薄层的数目足以使照在物体上的入射光的30%反射。在一个优选的实例中,第一种和第二种聚合物材料单独薄层的光学厚度不超过0.09微米(即光学极薄的),在0.09微米到0.45微米之间(即光学薄的),或者,不少于0.45微米(即光学厚的)。第一种和第二种聚合物的折光率之差至少为大约0.03。
在另一种结构中,第一种和第二种聚合物材料的75%的单独薄层具有至少为0.45微米的光学厚度,以产生均匀反射、金属外观的物体。在本发明的另一实例中,一部分或全部第一种和夹在中间的第二种聚合物材料薄层具有0.09微米到0.45微米范围内的光学厚度,以产生彩色和/或银色闪光外观的物体。
而且,可以选择构成各薄层的聚合物,赋予物体以特殊的力学或光学性质。例如,构成连续基体的第三种聚合物材料可以是弹性的,以产生柔韧的反射物体。可以选择聚合物以提供可后成型和/或可热成型的反射物体。并且,可以按前述方法将着色剂如颜料或染料混入一种或多种聚合物材料中。物体的反射性可通过控制物体内聚合物薄层的数目加以控制。物体最好包含不到一百层至数千层第一种和第二种聚合物材料薄层。
另外,在本发明的该实例的一个变体中,第一种和第二种聚合物材料薄层在平行于物体的主平面之一的第一平面上基本上是连续的,而在与第一平面横截的第二平面上是不连续的,以形成拉长的带状单元。在另一变体中,第一种和第二种聚合物材料薄层沿平行和横截于物体的主平面之一的平面基本上是不连续的以形成微形平板状单元。
本发明的反射聚合物体也可以制成双折射起偏器,它可以使很宽的电磁波谱偏振。起偏器由至少第一种和第二种不同聚合物材料制成,物体至少有第一和第二主表面。物体在第二种聚合物材料基体内包含多层第一种聚合物薄层,第一种聚合物材料薄层的主界面与物体主表面基本平行。
第一种聚合物材料薄层的数目足以至少使照在起偏器上的入射光的30%在偏振平面内反射。第一种聚合物材料的单独薄层和夹在第一种聚合物材料单独薄层之间的第二种聚合物材料部分具有不超过0.09微米或至少0.45微米的光学厚度,在起偏器的一个平面上,第一种和第二种聚合物材料的折光率至少相差约0.03。在一个优选的实例中,第一种和第二种聚合物材料的折光率的差异通过选择不同应力光学常数的聚合物,然后单轴拉伸使聚合物材料取向而获得。
不同聚合物材料薄层的这种独特排列在即使不需要反射性时也可提供有用的物体。一种聚合物的不连续薄层在中一聚合物连续基体中的排列能够制得物理性能可以控制的物体,其物理性能与不连续薄层所用的材料基本无关。此外,由于第二种聚合物连续基体围绕着薄层,第一种和第二种聚合物在相应界面的脱层对整个物体不会产生有害影响,物体不会产生毁坏性脱层。
因此,对于本发明的该实例,提供了至少第一种和第二种不同聚合物材料的层状聚合物体,它至少具有第一和第二主表面。物体在第二种聚合物基体内包含许多第一种聚合物材料薄层。此外,第一种聚合物薄层沿平行和/或横截于物体主平面之一的平面基本上是不连续的,以形成微型平板状单元。第一种聚合物材料薄层的主界面可以沿基本平行于物体主表面排列,尽管并不必要。
例如,可以制成这样的聚合物体,使第一种聚合物材料为似橡胶的(或弹性体),而第二种聚合物材料为脆性的。这样得到的聚合物体比起单用第二种聚合物材料制得的聚合物体更具柔韧性。或者,两种聚合物材料都可以是弹性体。如果基体聚合物是弹性体,而第一种聚合物材料不是的话,物体仍具有弹性。当第一种聚合物是不连续微型平板状单元时,物体在所有方向都保持弹性。
本发明还提供一种制造层状反射聚合物体的方法,它包括以下各步:提供热塑化的第一种聚合物材料的第一流体和热塑化的第二种聚合物材料的第二流体;通过将聚合物材料共挤塑的方法将第一种聚合物材料的不连续部分包裹在第二种聚合物材料中,以形成在第二种聚合物材料基体中包含第一种聚合物的许多不连续带状薄层结构的反射聚合物体。第一种聚合物材料的不连续薄层的主界面沿与物体主表面基本平行的方向排列,使照在物体上的至少30%的入照光被反射。物体中第一种聚合物材料单独薄层和夹在第一种聚合物材料薄层之间的第二种聚合物材料部分具有不超过0.09微米的光学厚度,或在0.09~0.45微米之间,或不低于0.45微米,而且第一种和第二种聚合物材料的折光率相互的差异至少为0.03。
带状薄层可以进一步分割成一系列微型平板状薄层,以得到在全部主平面空间内都不连续的薄层。这一将带状薄层分割成微型平板状薄层的步骤可以通过例如使带状薄层经过一个往复式进料板或阀的方法来完成。
在本发明的另一实例中,提供了一种制造层状反射聚合物体的方法,它包括下列各步:提供热塑化的第一种聚合物材料的第一流体和热塑化的第二种聚合物的第二流体。将聚合物材料共挤塑形成第一种和第二种聚合物材料的交替薄层,将第一种和第二种聚合物的材料交替薄层单独各层包裹在第三种聚合物材料中,形成第一种和第二种聚合物材料交替薄层的不连续带状单元,它处于第三种聚合物材料基体中以形成反射聚合物体。第一种和第二种聚合物材料交替薄层的主界面基本上与所述物体的主表面平行使照在该物体上的入射光的至少30%被反射,第一种和第二种聚合物材料单独薄层的光学厚度不超过0.09微米,或在0.09微米与0.45微米之间,或不低于0.45微米,第一种与第二种聚合物材料的折光率相差至少0.03。
带状薄层可以进一步分割成一系列微型平板状薄层,以得到在全部主平面空间内都不连续的薄层。这一将带状薄层分割成微型平板状薄层的步骤可以通过使带状薄层经过一个往复式进料板或阀的方法来完成。
在本发明的另一实例中,提供了一种制造层状反射聚合物体的方法,它包括下列各步:提供热塑化的第一种聚合物材料的第一流体和热塑化的第二种聚合物的第二流体。然后将第一种和第二种聚合物的材料交替嵌条送入流道,在流道中由于流过的聚合物的粘度原因,嵌条成为第一种和第二种聚合物材料不连续交替薄层,将第一种和第二种聚合物材料不连续交替薄层,将第一种和第二种聚合物材交替薄层单独各层包裹在第三种聚合物材料中,形成第一种和第二种聚合物材料交替薄层的不连续带状单元,它处于第三种聚合物材料基体中,形成反射聚合物体。第一种和第二种聚合物材料交替薄层的主界面基本上与所述物体的主表面平行使照在该物体上的入射光的至少30%被反射,第一种和第二种聚合物材料单元薄层的光学厚度不超过0.09微米,或在0.09微米与0.45微米之间,或不低于0.45微米,第一种与第二种聚合物材料的折光率相差至少0.03。
第一种和第二种聚合物材料交替嵌条进入流道的过程是将第一种和第二种聚合物材料通过一个往复阀完成的。控制阀往复频率可以控制交替薄层的尺寸。
因此,本发明的目的在于提供聚合物反射膜或聚合物反射体,即使单独薄层部分或全部未粘附在一起,整个膜或物体仍是一个整体;提供在薄层界面可存在气体或其它流体而对光学和机械性能不产生不利影响的物体;和提供多层反射物体,它的机械性能至少与物体内部分薄层的机械性能基本无关。此外,本发明的一个目的是提供不使用金属而呈现银色或金属外观的制品。上述目的和其它目的以及本发明的优点是显而易见的,详见下文说明、附图及所附权利要求书。
图1是制备本发明聚合物体设备的示意图。
图2是适用于制备本明聚合物体的模头侧面剖视图。
图3是一个实施例的聚合物体由成片模头中出来时的透视图。
图4是适用于本发明另一实施例聚合物体的制备的模头侧面剖视图。
图4A是通道中流动的第一种和第二种聚合物层界面的形变剖视图。
图5是沿图4中5-5线剖切后的往复式送料板的正视图。
图6是适用于本发明又一实施例聚合物体的制备的模头侧面剖视图。
图7A-7C是沿图6中A-A,B-B和C-C线剖切后往复式送料板的正视图。
图8是本发明另一实施例聚合物体由成片模头中出来时的透视图。
本发明提供一种反光性很强的层状多层聚合物体,它由不到一百到数千层至少一种聚合物与另一种聚合物基体构成,各聚合物的折光率互不相同。各聚合物材料层的光学厚度不超过0.09微米,在0.09~0.45微米之间,或不低于0.45微米。其中,光学厚度定义为一层的厚度与构成该层的聚合物折光率的乘积。
从而,优选的本发明层状多层反光聚合物体由多种光学厚的和/或光学薄的和/或光学很薄的层构成。对于光学性质-即反光性和透光性来说,光学薄膜可以被描述为一种厚度小于其应用的光波波长的薄膜。因此,对于欲用于可见光谱带的膜来说,在文献[Vasicek,Optics of Thin Films(1960)pp.100,139]中被描述为厚度D低于约0.5微米或光学厚度ND(其中N是材料的折光率)小于约0.7微米的膜。
薄膜制品是闪光干涉膜,由于相长干涉在电磁波谱的可见光、紫外光或红外光区产生强烈的反射光,它遵从下式
λm=( 2/(m) )(N1D1+N2D2)
其中m是以毫微米为单位的反射光波长,N1和N2是交替的聚合物折射率;D1和D2是以毫微米为单位的相应聚合物层厚度;m是反射级数(m=1,2,3,4,5)。该方程适用于入射光与膜表面垂直的情况。对于其它角度的入射光,应考虑角度的因素将方程进行修正,这是本领域公知的。方程的每一个解都确定一个相对于环境产生强烈反射光的波长。反射的强度是“f比值”的函数,其中
f= (N1D)/((N1D+N2D2))
通过适量选择f比值,人们可以对各种较高级数反射的反射强度进行某种程序的控制。例如,从紫光(波长0.38微米)到红光(波长0.68微米)的第一级可见光反射可通过光学厚度为约0.075-0.25微米的层状物得到。尽管强度较低,也可设计闪光膜来反射较高级数反射的可见光。
可以看出,这样的薄膜聚合物体依赖于决定反射波长的膜(和单独层)的厚度。这样的薄膜对厚度的变化极其敏感,其特征是表现出不均匀的颜色条纹和色斑。从而,对于某些采用光学薄层的本发明实例来说,物体将表现出彩色或银色闪光。通过设计各层的厚度使得各层的光学厚度有一个梯度,便可生产宽带反射、银色闪光的聚合物体。
在本发明的其它实例中,对多层体的设计应使它们不显示使用光学薄层时所显示出的鲜艳的闪光色。单独或相互结构采用太厚或太薄的层来产生闪光,会导致基本上是银色和非闪光的反射。这一银色外观是由于来自厚的和/或非常薄的层的较高级数反射,各层间隙是如此之小使得肉眼看去反射基本上是非闪光的。
本发明的该实例避免采用的光学厚度范围是
λ/4<nd<λ5/4
其中,λ≈0.38微米,n=聚合物的折射率,d=以微米表示的薄层的物理厚度。从而在本发明的该实例的实践中,绝大部分厚层的光学厚度(nd)都大于λ5/4,而绝大部分极薄层的光学厚度都小于λ/4。
按照本发明的该实例所制得的物体表现均匀银色反光的外观。本发明的该实例的多层体的反光特性由下式支配:
R= (kr)/((1+(k-1)r)) ×100
式中,R是反射光(百分数)的量,k是厚膜层的数目,r=[(N1-N2)/(N1+N2)]2。参见Vasicek,著Optics of Thin Films(1960),第69-70页。
该方程表明,反射光的强度R仅仅是r和k的函数,其中r和R如上文定义。作为较为逼近的大概值,R仅仅是两聚合物组分的折光率的差异和层界面的总数目的函数。这一关系与光学薄膜制品的关系形成明显对比,光学薄膜制品的反射性对层厚度和观察角度非常敏感。
从而,本发明该多层聚合物体实例所反射的光波长在很宽的加工范围内与单独层和总体结构厚度无关。反射的均匀性是在设计物体时就已固定的。而且,只要聚合物的绝大部分单独层保持等于或大于约0.45微米或等于或小于0.09微米的光学厚度,沿物体厚度方向的层厚梯度便既不是决定性因素也不能对外观带来好处。这又与本发明的光学薄膜实例形成对照,该膜依层厚梯度可反射宽带或窄带光波。
制备本发明聚合物体的优选的共挤塑方法可以在物体的厚度和单独各层的平面中引入厚度的变化。每一聚合物成分在层厚方面的变化可达300%或更高。但是,只要绝大部分薄层的光学厚度不超过0.09微米或不低于0.45微米,这么大的变化仍可制得有用的反射物体和器件。满足这一条件后,便不会存在由本发明该实例的物体和制品反射所产生的可观察到的干涉色。
说对人眼不存在闪光干涉色是有些主观的。但是,我们发现,物体中大约75%的薄层应当具有大于0.45微米或小于0.09微米的光学厚度才能得到基本上所有波长(白光)的宽带、视觉均匀的反射,这是本发明该实例的特征。我们发现,少数(约25%或更少)光学厚度在0.1~0.45微米的薄层具有足够低强度的干涉反射,以致物体基本上不产生可观察到的闪光色。
随着层数的增加,本发明的反光聚合物体对入射光反射变强(即,透过光变弱),薄层的数目最好能足以生产至少能反射30%入射光的制品,对于照向物体的波长,吸收是可忽略的。约30%以下的反射光不足以被轻易观察到。如果想把本发明反光聚合物体当作镜子,再加上些薄层将使物体的反射增加50%或更高而得到银色、镜状外观。
物体的反射性也与所用的两聚合物的折射率的差异有关。即折射率的差异越大,物体的反射性越强。因此,可以明白,聚合物体的反射性质可通过选择具有不同折射率的聚合物和加上附加层的方法得到控制。
本发明的反射多层聚合物体可包括许多种普通透明热塑性材料的交替薄层。可用于本发明实践的适当的热塑性树脂及其折光率包括(但不局限于):全氟烷氧基树脂(折光率=1.35),聚四氟乙烯(1.35),氟化乙丙共聚物(1.34),硅树脂(1.41),聚偏二氟乙烯(1.42),聚氯三氟乙烯(1.42),环氧树脂(1.45),聚丙烯酸丁酯(1.46),聚(4-甲基戊烯-1)(1.46),聚醋酸乙烯酯(1.47),乙基纤维素(1.47),聚甲醛(1.48),聚甲基丙烯酸异丁酯(1.48),聚丙烯酸甲酯(1.48),聚甲基丙烯酸丙酯(14.8),聚甲基丙烯酸乙酯(1.48),聚醚嵌段酰胺(1.49),聚甲基丙烯酸甲酯(1.49),乙酸纤维素(1.49),丙酸纤维素(1.49);乙酸丁酸纤维素(1.49),硝酸纤维素(1.49);聚乙烯缩丁醛(1.49),聚丙烯(1.49);聚丁烯(1.50),离子型树脂,例如Surlyn(商标)(1.51);低密度聚乙烯(1.51);聚丙烯腈(1.51);聚异丁烯(1.51),热塑性聚酯,例如:Ecdel(商标)(1.52),天然橡胶(1.52),丁苯橡胶(1.52),聚丁二烯(1.52),尼龙(1.53),聚丙烯酰亚胺(1.53),聚乙酸氯乙烯(1.54),聚氯乙烯(1.54),高密度聚乙烯(1.54),甲基丙烯酸甲酯-苯乙烯共聚物(1.54),透明丙烯腈-丁二烯-苯乙烯三元共聚物(1.54),烯丙基二甘醇树脂(1.55),聚二氯乙烯和聚氯乙烯共混物,例如:Saran树脂(商标)(1.55);聚α-甲基苯乙烯(1.56),丁苯乳胶,例如:Dow512-K(商标)(1.56),聚氨酸(1.56);氯丁橡胶(1.56),苯乙烯-丙烯腈共聚物,例如:Tyril树脂(商标)(1.57),苯乙烯-丁二烯共聚物(1.57),聚碳酸酯(1.59),其它热塑性聚酯,例如:聚对苯二甲酸乙二酯和聚对苯二甲酸乙二醇(1.60),聚苯乙烯(1.60),聚酰亚胺(1.61),聚二氯乙烯(1.61),聚二氯苯乙烯(1.62),聚砜(1.63),聚醚砜(1.65)和聚醚亚胺(1.66)。上述折光率在不同的波长可以稍有不同。例如,聚碳酸酯的折光率对光谱的兰区光稍高,对光谱的红区光稍低。
上述树脂的共聚物也是可用的,例如,水解的乙烯乙酸乙烯共聚物,苯乙烯和羟基乙酸乙酯共聚物,苯乙烯和马来酸酐共聚物,苯乙烯-丁二烯嵌段共聚物,苯乙烯和甲基丙烯酸甲酯共聚物,和苯乙烯和丙烯酸共聚物,其它可用的聚合物材料包括聚醚醚酮、聚丁二烯、马来酸酐接枝聚烯烃,例如Admer(Mitsui Chemicals有售)和Plexar(Quantum Chemicals有售),和乙烯与乙酸乙烯的共聚物,例如CXA(杜邦公司有售)后三个聚合物在多层膜的制造中作为将聚合物层粘在一起的粘合层特别有用。
选择聚合物以制成物体的薄层和基体的一个条件是所选的聚合物的折射率之差至少为大约0.03,此外,聚合物应当与加工温度相匹配,以便共挤塑。
本发明的多层体可采用美国专利第3,565,985,3,759,647,3,773,882和3,884,606号中相应多层共挤塑所描述的原理很方便地制得。上述文献作为对比文献并入本文。这样的设备能够提供基本上连续的多层的同时挤出的热塑性材料,其薄层厚度是可控制的。
完成本发明过程的一个实例的装置如图1所示。其中,画有用于本发明多层聚合物体的制备的装置10。装置10包括挤出器11、12和13的相应第一种第二种和可选的第三种热塑化聚合物树脂源的协同组合,可选的第三种聚合物树脂源在希望第一种和第二种聚合物在最终聚合物体中相互粘连时才使用。因而,第三种聚合物“胶水”层可以插入第一种和第二种聚合物之间,详见下文。
挤出器11、12和13分别将热塑化聚合物树脂排入管道14、15和16。共挤塑供料头17与管道14、15和16构成操作组合,并接受来自管道的第一种、第二种和可选的第三种热塑化物料流。机头17上装有挤出孔18,从其中流出嵌于第二种聚合物材料基体中具有带状层的第一种聚合物的聚合物材料复合物流。第一种和第二种聚合物也可以被第三种聚合物“胶水”层粘合在一起。
复合物流从挤出孔18流出后,可以通过机械控制的部件20,它用来将基体复合物流中原来的带状薄层再排列成比原数目更多的带状薄层,见上述美国专利第3,565,985和3,759,647号还可以再串联上另外的操作段以进一步增加物流中薄层的数目。
采用上述专利的控制装置产生的补充的带状薄层的数目取决于装置中薄层分割叶片所分割的带状薄层数。未被分割叶片切割的带状薄层不会增多。这就与所有薄层均为分割叶片切得的基本连续的多层结构形成对照。每一带的界面面积在机构控制控制的横向扩张区增加。就每一薄层控制阶段而言,对于具有适当粘度的聚合物,带状薄层的宽度增加一倍,厚度减到一半。如果带状薄层聚合物比基体聚合物的粘度高,则控制后带状层的形状的变化较小。
随后,多层物流进入成形模头22,模头应做成使物流能在其中保持。这样的挤塑机头在美国专利第3,557,265号中有详述,该公开作为参考文献并入本文。尽管只画出了一个片材或膜成型模头,但本领域技术人员可以明白,任何结构的成型模头都可以用来挤塑膜和片材,以及其它型材。
成型模头的结构是可以变化的,可以制成能减少各带状薄层厚度的结构,机械取向段提供的对带状薄层厚度减小的精确程度、模头的结构以及挤塑后物体承受的机械工作量都是影响最终物体各层厚度的因素。
图2是适用于本发明聚合物体的制造的模头17的剖面示意图。模头17包括模体30,限定有第一入口室32,入口室32通过管道14与第一种聚合物源进行工作联系。模体30还限定了通过管道15与第二种聚合物源工作联系着的第二或中间体聚合物室34。可选的第三室36由模体30限定,并通过管道16与可选的聚合物源处于工作联系中。当希望用粘合层将第一种和第二种聚合物粘在一起时,可将粘合剂聚合物送入第二室34,同时将第二种聚合物通过管通16送入可选的第三室36。远离入口室32的出料室38伸至出料孔通道18处。
第一分割装置40装在入口室32和第二室34之间,第二分割装置装在第二室34和第三室36之间。可选的第三分割装置装在第三室36和出料室38之间。第一分割装置具有许多通道46,这些通道提供入口室32和第二分割装置42内部之间的联系。通道46的横截面可以是圆形、正方形或长方形,其排列也可以是一排排的或交错排列的。
第二分割装置42具有多个通道48,它们提供第二室34和可选的第三分割装置44内部之间的联系。而且通道横截面也可以是圆形、正方形或长方形,其排列也可以是一排排的或交错排列的。可选的第三分割装置44也有多个通道50,它们提供第三室36和出料室38之间的联系。
图2所示的模头工作时,将第一种热塑化聚合物树脂通过管道14送入入口室32。聚合物材料由室32流出,通过通道46排入通道48。第二种热塑化聚合物树脂通过管道15送入中间室34。第二种聚合物流过第一种聚合物材料排料点周围的通道48,并以连续基体的形式将带状的第一种聚合物包裹起来。
当需要中间“胶水”或粘接层时,可通过管道15将粘合剂聚合物送入中间室34,第二种热塑化聚合物通过管道16送入第三室36。在该实例中,第二种聚合物流到第一种聚合物周围并将带状的第一种聚合物包裹,再包上粘合剂聚合物层,再将两者包裹在一个连续的基体中。
通过保持总挤塑速率使在各个室内不产生湍流,由多层第一种聚合物带状薄层与第二种聚合物连续基体构成的复合物流通过模口18成型并排出。在进一步经过可选的部件30的机械控制并如上文所述的进一步增加了薄层数目之后,复合体聚合物流经成型模头22排出,得到图3所示的聚合物体。
如图3所示,聚合物体60包括多层以基本上连续的带状形式镶嵌于第二种聚合物基体64中的第一种聚合物材料62。正如所示,所述带状聚合物在平行于物体主水平表面的第一平面上基本连续,在其横向平面中是不连续的。带状物62的截面形状和尺寸取决于相对流率、控制段的流动类型和成型模头以及聚合物的粘度和弹性和它们的表面张力。
控制段或成型模头中的膨胀流动增加了带的宽度,同时减小了带的厚度。模头和薄层控制段中的速度分布可以影响带的边缘形状。
在本发明的一个优选的实例中,制得了一种能反射至少30%入射光的反射性多层聚合物体。第一种聚合物材料薄层和夹在第一种聚合物材料薄层之间的第二种聚合物材料部分的厚度应控制在使第一种聚合物材料薄层和夹在其间的第二种聚合物材料部分的光学厚度不超过0.09微米,在0.09~0.45微米之间,或不低于0.45微米。第一种和第二种聚合物材料的折光率相互的差异至少为0.03。
在本发明的另一实例中,带状物62本身可以包括第一种和第二种聚合物材料交替的微层结构,单独薄层的光学厚度根据需要不超过0.09微米,在0.09微米~0.45微米之间,或不低于0.45微米。第一种和第二种聚合物材料的折光率相互的差异至少为0.03。在本发明的该实例中,聚合物体将包括多层重迭的带状层,第一种和第二种聚合物材料交替薄层包埋在第三种聚合物基体中。微层流可以采用上述的美国专利第3,565,985号,第3,759,647号,第3,773,882号和第3,884,606号教授的技术产生。
本发明聚合物体的控制的带状形态不论是包含单一聚合物带还是多层带,都导致具有许多有用的各向异性的性质结构。由于在物体挤塑方向众多重迭带是连续的,而在横截方向是不连续的,所以如果选择适当的聚合物,物体的拉伸性能在挤塑方向可以很高,在横截方向可以很低。如果带状物由液晶聚合物(例如可从Celanese公司购得的名称为Vectra的聚合物)组成,在挤塑方向可获得很高的拉伸性能。此外,包埋带状物的基体聚合物避免了毁灭性的分层。
在图4所示的本发明的另一实例中,相同的数码表示相同的元素,具有在截面上为层状的带的聚合物体也可以通过在模体30中的第一分割装置40之前装上一个往复阀或进料板70而制得。在图5中容易看出,往复进料板70包括一系列交替的孔72和开口74。孔72与室32中的第一种聚合物流相联系。开口74与通过管道76与进入中间室34的第二种聚合物流相联系,随着进料板72来回往复运动(用通用的方法,未示出),通道46交替送入第一种和第二种聚合物嵌条。由于聚合物粘度的缘故,在通道46中速度分布为抛物线型,这将使聚合物界面变形为层状结构,见图4A所示。可以用往复进料板70的频率来控制层厚。这些层状带可以象上文所述那样包裹在第二种聚合物的连续基体中。
在图6所示的本发明另一实例中,相同的数码表示相同的元素,可以制成在物体的所有主平面方向第一种聚合物材料为不连续,而微型平板状单元薄层处于第二种聚合物连续基体之中的结构。如图6所示,静态进料板70装在通道48的出口端。往复式进料板73(如图7B所示)装在静态进料板70之后。往复式进料板73包括一系列错列的开口,它们或者与来自孔72的聚合物的包埋管或者与来自进料板70的开口74的聚合物交替地相联。带有数排孔80的静态板78(如图7C示)位于往复式进料板73之后。
将第一种聚合物送入室32,进入通道46,然后用第二种聚合物包裹,通过室15送入中间室34。在通道48的出口端,一排排包裹在第二种聚合物中的第一种聚合物交替处于与第三种聚合物源相联的开口之间,其中第三种聚合物可以与第二种聚合物相同或不同。如图7A-7C所示,静态进料板70包括孔72和垂直开口74的交替排列。孔72与包裹在第二种聚合物之中的第一种聚合物流相联,而开口74通过管道76与第三种聚合物(可以与第二种聚合物相同)源相联。通过往复式进料板73的聚合物的流动产生了被包裹的第一种聚合物与第二种或第三种聚合物的交替嵌条。
这些不连续的嵌条随后流过控制段20,或直接流入成型模头22。在控制段层数进一步增多。第一种聚合物在基体聚合物中变形成为不连续的微型平板状单元。第二种聚合物包裹层起着润滑边界层的作用,使得第一种聚合物在系统中基本上保持柱塞流动。
所得聚合物体示于图8,其中在第二种聚合物基体84中包含有许多第一种聚合物重迭微型平板82的薄层。可以看出,微型平板沿并行于和横截于物体主表面的平面方向都是不连续的。
本发明该实例制得的控制的微型平板状结构有多种用途。对于制得的反光性聚合物体,光线被重迭微型平板的许多界面反射,很象银色鱼的鳞片。
第一种和第二种聚合物之间不完善的粘合不一定会对物体的物理和光学性能产生不利影响。例如,由聚苯乙烯(R.I.1.59)基体包含聚甲基丙烯酸甲酯(R.I.1.49)微型平板构成的聚合物反射体不会毁坏性分层,即使是由两聚合物连续薄层构成也不会。适度的弯曲将产生分层。由于有第二种聚合物连续基体,物体保持整体性。
此外,可以在形成微型平板的聚合物中引入空气或其它气体或液体。当冷却时,气体或液体将分离出来,停留在基体聚合物与微型平板之间,产生极大的折光率差异(R.I.空气=1.00)。如果基体聚合物是弹性体,构成微型平板的聚合物可以是非弹性体,而聚合物体将在所有方向仍具有弹性。用来形成微型平板的聚合物可以是对气体和/或液体阻滞性的聚合物。重迭的微型平板许多薄层对气体产生极好的阻滞,这是由气体透过时弯曲的通道造成的。
微型平板本身可以通过将不同聚合物交替层的微层流送入室32的方法或通过在通道46的入口和出口端装上往复式进料板或阀的方法(见图4和图6所示)成为多层。本发明方法独具特色地提供了将一个组分置于和分散于另一组分基体中的方法。微型平板的置入和尺寸由前文所述的机械装置来控制。
尽管为了说明本发明详述了某些代表性实例,对于本领域技术人员来说显然可以在不背离本发明范围的条件下对本文公开的方法和设备进行多种改变。本发明的范围由所附的权利要求书限定。