采用复合材料的 连续腔室泵 本申请是1995年5月22日提交的同时待审申请08/447122的分案专利申请和部分继续申请,而该专利申请是1994年2月14日提交的申请08/194835的部分继续申请,申请08/194835现在为美国专利US5417281,下面,两者都被引作参考。
本发明涉及对一种连续腔室泵的改进,这种连续腔室泵由一螺旋(helicoidal)转子和一互补的螺旋定子构成,二者配合工作,这种泵也称之为“Moineau泵”。它广泛用于许多工业领域。
连续腔室泵是授予Moineau的题为“齿轮机构”的美国专利US1892217所公开的。当螺旋转子相对于螺旋定子旋转时,二者沿着一密封线互相接合,形成在轴向上连续的腔室。由于Moineau泵所需的密封和滑动接合,定子和转子受到大范围磨损,这就需要经常更换定子和/或转子。市售的以及在现有技术中公开的Moineau泵需拆下很多泵体部件才能更换磨损了的定子和/或转子,这还会导致由于停机时间而造成的损失。在用于井孔(无论是钻井还是采油)时,降低停机次数和延长泵的使用寿命都是理想的目标。
由于Moineau泵的特性,转子中心线需要相对于定子中心线作轨道运动(orbit)或旋转运动(gyrate),或者相反,其它部件因此而受到影响。因此,存在很大地挠曲,要获得部件的长使用寿命必然要考虑这种挠曲。在这种Moineau泵中有许多万向节、挠性轴和用于补偿轨道或旋转形式的运动的机械连接。在这方面US4923376做了许多公开。
迄今,通常的Moineau泵都是采用橡胶或其它弹性材料粘接于钢材作为定子接触面。这类弹性体不仅包括天然橡胶,而且包括合成材料,例如G.R.S、氯丁橡胶、丁基和腈橡胶,还有其它材料,例如软PVC。当然,关键是使弹性体软到足以密封腔室,同时又要硬到足以承受转子与定子之间由于工作接触造成的磨损。在这些例子中,转子通常由钢材制成。由于弹性体在螺旋体的顶部必须模制得较厚才能形成连续的腔室,这样损失了泵的部分效率。这种厚度的不均匀形成压差,在压力增加处形成被泵送流体的旁路。这样,在压力增加处泵的效率就较低。由于厚度不同,所以存在着不同的膨胀特性和流量,这使得泵做更多的功,产生更多的摩擦热。
在高温环境下不优先选用橡胶作为定子接触面,这时因为橡胶的热传导性差。此外,当连续腔室泵的直径、长度和流动特性增加时,要保持橡胶对于钢材的良好和耐久的粘接就更加困难了。而且,众所周知,当被泵送材料由烃类构成(例如油井中生产的石油)时,橡胶就会变质。在美国专利US3912426中讲授了一种解决这些问题的尝试,其中采用多个定子,这些定子与其对应的转子串接,而这些转子是独立的,但被连接在一起。然而,其定子仍然是由橡胶制成。
由于合成纤维具有高强度、高硬度、重量轻等特性,其被用于各种产品,但是尚未成功地用于Moineau泵的设计。
本发明的总的目的是为连续腔室泵提供新的形式的定子、转子和挠性轴,以提高其效率和使用寿命。因此,本发明的首要目的是单一采用复合物或复合物变体,或采用其与弹性体的结合来构造连续腔室的定子和/或转子和/或挠性轴。
另一个目的是提供按照本发明制造的连续腔室泵的使用,它能够用于从井中生产流体,例如在前述同时待审的申请和美国专利US 5417281中所讲授的,以及其它地上的使用情况。
图1是典型的连续腔室泵的剖面图。
图2是沿图1中的2-2线的剖面图。
图3是另一种形式的连续腔室泵的剖面图。
图4是构成一个部件的复合组合挠性轴与转子的立面图。
图5是与挠性轴分开构成的复合转子的立面图。
图6示出形成连续腔室泵的挠性轴和/或转子的一种方法。
图7是挠性轴的一种备选形式的立面图,该挠性轴具有一固定(buildin)挠点。
虽然前面对本发明做了一定的具体表述,但在不背离所公开内容的精神和范围的前提下可以对结构细节和部件的分布作出各种改进。应该理解,本发明不限于在此提出的实施例,该实施例的目的仅仅是为了举例说明,对本发明进行限定的是权利要求书。
图1简要地示出一种典型的连续腔室或Moineau泵。这种泵包括一主壳体10,被泵送的材料从通道12进入该壳体,从泵的出口r4流出。本领域所公知的是,泵本身由螺旋定子20和螺旋转子30构成。转子与挠性轴40连接,挠性轴40又通过适当的密封轴52与旋转动力源50连接。但是应该理解,本发明也适用于其它形式的连续腔室泵,例如在美国专利US5417281和1995年5月22日提交的同时待审的专利申请08/447122中公开的连续腔室泵。这就是说,本发明适用于各种形式的连续腔室泵,本发明涉及的是使用复合材料来构成定子和/或转子和/或挠性轴。复合材料一般包括碳纤维、硼纤维、陶瓷纤维、玻璃纤维、热塑纤维、天然纤维、金属纤维、纤维加强织物、带和合成纤维,它们一般都浸渍以热固树脂。典型的这类热固树脂有醇酸聚酯、通用环氧树脂、通用酚醛和脲醛化合物。
定子
现在参考图2和3所示的横剖面对定子的构成进行最佳描述,图中描述了不同的实施例,其中定子的各部分分别以22、24和26表示,后者是一个将转子30密封在腔室28内的表面。不同实施例可以通过不同的方法形成,包括模制和/或机加工,因此可以提供适用于各种连续腔室泵的应用环境的结构。虽然附图示出采用了外壳10,但应理解,可使用不带外壳10的定子区域构造本发明。
实施例A
在本实施例中,区域22和24由一种复合材料制成,其用作橡胶弹性体制成的螺旋内衬层26的支承结构。转子30包括钢材或复合材料,这在后面将予以描述。
实施例B
在本实施例中,区域22和24由复合材料制成,而螺旋内衬层26由热塑树脂构成。
实施例C
在本实施例中,复合材料构成整个定子,包括区域22、24和26。
实施例D
在本实施例中,区域22和24由既可机加工又可模制的硬化的材料,例如钢材或陶瓷制成,并带有由复合材料制成的粘接内衬层26。
实施例E
支承结构是由复合材料制成的22和24,复合材料中包括具有一定弹性的树脂,内转子接触面26由弹性很小和没有弹性的复合材料制成。本实施例的定子改善了在转子与定子表面之间的密封,因此,不仅降低了泵送过程中产生的热,而且提高了机械效率。由于这种复合材料的热传导系数较高,而且能够吸收泵送过程所产生的摩擦热,所以这种结构允许定子部件一起膨胀和收缩。
实施例F
区域22和24可以由橡胶弹性体制成,内转子接触面26是一种粘接的复合材料。在本实施例中,弹性体与腐蚀性或磨损性的流体产品和固体产品隔开,并避免了转子与定子之间的毁坏性的摩擦。
现在参考图3,一种组合的定子和转子以不同方式形成。在一个实施例中,定子的内表面26可以是一种具有弹性的复合材料,外部支承区域22/24为一种不可压缩(non-compressible)复合材料,转子由钢材或不可压缩复合材料制成。如果转子30由一内芯98和外表面100两部分组成,则可以有各种可能的组合。例如,如果内芯98为一种不可压缩复合材料,外表面100是一种弹性复合材料或橡胶,则包括区域22、24和26在内的定子最好为不可压缩材料的。反之,如果内芯98是弹性复合材料的,而外表面100为非弹性复合材料的,则定子20的元件22、24和26为非弹性不可压缩材料的,或者表面26为一种弹性复合材料,而区域22和24为不可压缩复合材料。
转子和挠性轴
在本发明的与任何定子的实施例配合使用的优选实施例中,转子由一种全复合材料制成。一种备选实施例是,将转子30与挠性轴40制成如图4所示的一单一整体件,或如图6所示的单独的转子,其可以连接于一单独制成的挠性轴。转子和挠性轴可以以若干方法形成,例如采用一种树脂传递模制(resin transfer mold)(RTM)以形成复杂的结构。图6示出一种形成挠性轴和/或转子的方法。金属或复合端部件40和62分别包括模制的或机加工出的外螺纹部分64和66,分别用于将一端连接于转子,将另一端连接于旋转动力源。所述端部件包括第一内肩68和70,用于在轴向上保持复合纤维,以提供抗拉伸和抗剪切强度。与内肩相邻的分别为多边形平面,例如六边形平面72和74。内圆柱部分76和78提供了保持芯轴80的表面。芯轴80可以为任何材料的,例如塑料或金属,并用于组装部件,为形成挠性轴的复合结构提供支承。芯轴80内部和其本身都具有挠性。在组装了部件60、62和80之后,通过相对于浸渍树脂的复合纤维86在一个角度方向上,而相对于纤维88在相反的方向上(一般为45°,如图所示)旋转该组件,或通过围绕芯轴旋转纤维来缠绕浸渍了树脂的复合纤维,直到其高度与凸缘60与62的外径相当。每层增加0.025至0.040英寸(0.64至1.00mm)。所用的树脂占最后的复合物的40%,由于用所示的方法对复合物86和88进行包裹,所以纤维的取向与挠性轴的剪切平面呈一角度。因此,正如所描述的,这种结构允许挠性轴相对于操作连续腔室泵所需的轴向动力源作轨道或偏心运动。
用于连续腔室泵的挠性轴和转子通常是由钢材制成。而复合挠性轴可以采用非各向同性(anti-isotropil)材料。要增大钢质挠性轴的挠性,可减小其壁厚,或者减小直径。这两种方法都降低了金属挠性轴的强度,特别是疲劳强度。使用一种复合纤维,以及一种纤维的排列,以便在壁厚较大的情况下提供最大的强度和在偏心轨道运动中所需的最大挠度。复合材料在疲劳强度方面自然比金属强,而且不会生锈、腐蚀或与石油生产环境中遇到的化学物质反应,这种材料可以在超过600°F(315℃)的环境下使用。总而言之,复合材料的强度、疲劳强度和硬度会等于,在多数情况下会超过特定的金属,包括钛、钢、铝等等。
一个连续腔室泵的例子的构成材料为:
Owens Corning的E型玻璃纤维
壳牌化学公司的DPL环氧树脂
Lindeau公司的Lindride 6K硬化剂
0.075”厚的未固化的橡胶片材附加了Telflon和由Kirkhill Rubber公司提供的润滑剂。定子通过将橡胶条带缠绕在螺旋芯轴上形成。然后将玻璃纤维和附加了硬化剂的树脂(比率为100/88树脂/硬化剂)的复合物缠绕到所述橡胶上。然后在大约300°F(150℃)的炉中固化。该组合物变得基本上不可压缩了。螺旋转子由钢制成。初步测试证明其寿命比一般的弹性橡胶定子的寿命长。
一挠性轴如图6所示,其材料成分如下:
E型玻璃纤维
DPL环氧树脂
Lindride6K硬化剂
机加工金属端部配件
用菲利浦石油公司出售的名称为DRISCOLL的聚稀烃软管80作为芯管,它与端部件60和62连接,并将两端部件隔开。然后将玻璃纤维和环氧树脂以如图所示的±45℃(88和86)方向缠绕到组件上,直到其构成理想的外径。
图7示出挠性轴的另一实施例,其上形成一直径小于D的凹入部从而产生了挠性点94。该挠性点的位置随泵的特性而变化,例如泵的尺寸,被泵送的材料等等。可以由计算机控制,通过在需要挠曲的点或区域改变复合纤维和/或树脂材料的角度方向来形成该挠性点。例如,在细丝以+45°或-45°缠绕到段96上(图7)的过程中,角度方向应该变化为小于45°的角,以在不降低总的直径D的情况下形成一挠性段。
关于复合物的术语“弹性”,通过变化复合纤维和/或树脂的配方实现。例如,将重量百分比为20-40%的壳牌化学公司的HELOXY挠性剂加入到DPL-862环氧树脂中。然后将其与一种硬化剂和TEFLON粉末以一定量混合,硬化剂和TEFLON的用量使其保持为一种可塑(可流动的)混合物,然后将其施加到形成定子和/或转子的纤维中。将所形成的复合材料放入300-400°F(150-200℃)的炉中大约四小时,使其固化。