用于光伏电池的新本征吸收体层.pdf

上传人:Y94****206 文档编号:4329452 上传时间:2018-09-13 格式:PDF 页数:13 大小:751.78KB
返回 下载 相关 举报
摘要
申请专利号:

CN201080052328.8

申请日:

2010.11.11

公开号:

CN102844892A

公开日:

2012.12.26

当前法律状态:

撤回

有效性:

无权

法律详情:

发明专利申请公布后的视为撤回IPC(主分类):H01L 31/20申请公布日:20121226|||著录事项变更IPC(主分类):H01L 31/20变更事项:申请人变更前:欧瑞康太阳能股份公司(特吕巴赫)变更后:东电电子太阳能股份公司变更事项:地址变更前:瑞士特吕巴赫变更后:瑞士特吕巴赫|||实质审查的生效IPC(主分类):H01L 31/20申请日:20101111|||公开

IPC分类号:

H01L31/20; H01L31/0392; H01L31/075(2012.01)I; C23C16/24; H01L21/02

主分类号:

H01L31/20

申请人:

欧瑞康太阳能股份公司(特吕巴赫)

发明人:

S-N.巴克赫-阿南加; S.贝纳格利

地址:

瑞士特吕巴赫

优先权:

2009.11.18 US 61/262,179; 2009.12.04 US 61/266,739

专利代理机构:

中国专利代理(香港)有限公司 72001

代理人:

刘春元;卢江

PDF下载: PDF下载
内容摘要

为了通过PECVD沉积,在基础结构上,于太阳能电池的p-i-n配置内制造出非晶氢化硅的本征吸收体层,因此改进生产量同时维持吸收体层的质量,已提出了特定的加工状况,其中在用来沉积所提出的吸收体层的反应器中,建立1毫巴至1.8毫巴间的压力及硅烷流与氢流,其中硅烷对氢的稀释为1:4高至1:10,及以每1.4平方米待涂覆的基础结构表面在600瓦至1200瓦间的产生器功率产生RF等离子体。

权利要求书

1.一种在太阳能电池的p-i-n配置中制造非晶氢化硅的本征吸收体层的方法,其通过在反应器中在用于所述层的基础结构上PECVD沉积所述层来进行,所述沉积包括:-在所述反应器中建立1毫巴至1.8毫巴间的压力;-建立硅烷流与氢流,其中硅烷对氢的稀释为1:4高至1:10;-以每1.4平方米待涂覆的基础结构表面在600瓦至1200瓦间的产生器功率产生RF等离子体。2.如权利要求1的方法,包括在200℃的温度处执行所述沉积。3.如权利要求1或2中的一项的方法,所述沉积是在生长速率4.4埃/秒至6.6埃/秒下执行的。4.如权利要求1-3中的一项的方法,包括建立以下之一:-所述压力:1毫巴;及-所述硅烷流:每1.4平方米的基础结构表面450 sccm;-所述氢流:每1.4平方米的基础结构表面2000 sccm;-所述功率:每1.4平方米的基础结构表面600瓦;或及优选为-所述压力:1.8毫巴;及-所述硅烷流:每1.4平方米的基础结构表面450 sccm;-所述氢流:每1.4平方米的基础结构表面2000 sccm;-所述功率:每1.4平方米的基础结构表面1200瓦。5.如权利要求1-4中的一项的方法,其中有效的是:-所述基础结构的表面为所述p-i-n电池的p层的表面,及在所述p层的所述表面与所述吸收体层间提供缓冲层;或-所述基础结构的表面为所述p-i-n电池的n层的表面,及在所述吸收体层与待沉积在所述吸收体层上的随后层间提供缓冲层;通过利用下列不同的设定以与所述吸收体层的沉积相同的沉积工艺执行非晶氢化硅的所述缓冲层的沉积:-所述压力:已建立用来沉积所述吸收体层的所述压力的1/2至1/3;-硅烷流:已建立用来沉积所述吸收体层的所述硅烷流的1/2至1/4;-氢流:已建立用来沉积所述吸收体层的所述氢流的2-2.5倍;-功率:已施加用来沉积所述吸收体层的所述功率的1/2至1/3。6.如权利要求5的方法,进一步包括将CH4气体加入至所述反应器空间,用来沉积所述缓冲层。7.如权利要求6的方法,包括在所述硅烷流的2/3的流下加入所述CH4。8.如权利要求1-7中的一项的方法,其中所述吸收体层沉积为具有在l00纳米至600纳米间的厚度,优选地在150纳米至300纳米间的厚度。9.如权利要求5-8中的一项的方法,其中所述缓冲层沉积为具有在5纳米至15纳米间的厚度,优选地在7纳米至11纳米间的厚度。10.如权利要求5-9中的一项的方法,包括将用于所述缓冲层的沉积速率对用于所述吸收体层的沉积速率的比率选择为在1:7至1:5间。11.一种在p-i-n太阳能电池中的非晶氢化硅的本征吸收体层与这样的p-i-n电池的p层间制造非晶氢化硅的缓冲层的方法,其通过在反应器中在基础结构上PECVD沉积所述缓冲层来进行,所述沉积包括:-在所述反应器中建立压力,该压力在0.3毫巴至0.9毫巴间;-在所述反应器中建立硅烷流,其是每1.4平方米待涂覆的基础结构表面在180 sccm至225 sccm间;-在所述反应器中建立氢流,其是每1.4平方米待涂覆的基础结构表面在4000 sccm至5000 sccm间;-以产生器功率产生RF等离子体,该功率是每1.4平方米待涂覆的基础结构表面在200瓦至600瓦间。12.如权利要求11的方法,包括将CH4气体加入至所述反应器空间,用于沉积所述缓冲层。13.如权利要求12的方法,包括在所述硅烷流的2/3的流下加入所述CH4。

说明书

用于光伏电池的新本征吸收体层

 技术领域

本发明涉及一种新颖的本征吸收体层(i-层),其在高达6.6埃/秒的提高的沉积速率下沉积;以及包含所述i-层的光伏电池及模块。本发明进一步涉及布置在太阳能电池的p-i-n配置的p与i层间的缓冲层。那些本征吸收体层可使用作为用于单、双及三结非晶硅太阳能电池/模块的吸收体及作为用于非晶/微晶堆叠(micromorph)太阳能电池/模块(=非晶与微晶电池的堆叠组合)的顶部电池。

发明背景

现有技术图3示出一基本、简单的光伏电池40,其包含透明基板41,例如为玻璃,在其上沉积有一层透明导电氧化物(TCO) 42。该层亦称为正面接触,并且作为用于光伏元件的第一电极。基板41与正面接触42的组合也被称作盖板(superstrate)。下一层43作为有源光伏层,并展示形成p-i-n结的三“子层”。所述层43包含氢化微晶硅,纳米晶体硅或非晶硅或其组合。子层44(邻近TCO正面接触42)是正掺杂的,该邻近子层45是本征的,及该最后子层46是负掺杂的。在替代实施例中,如所述的该层序列p-i-n可以反转为n-i-p,那么,层44被识别为n层,层45再度为本征的,层46为p层。

最后,该电池包括后面接触层47(也称为背向接触),其可由氧化锌、氧化锡或ITO制成;及反射层48。可替代地,可实现金属背向接触,其可结合背反射器48与背向接触47的物理性质。为了阐明的目的,箭头指示出入射光。太阳能电池(也称为光伏电池)是将电磁能量(诸如光或太阳辐射)直接转换成电力的半导体装置。用于这样的电池的光吸收层的半导体以如下表征:在其价电子带与其导电子带间的能量带隙("禁带中央材料")。自由电子通常无法存在或保持在这些带隙中。

当光由所述半导体材料吸收时,在低能量状态(价带)下的电子可被激发并且跳过该带隙至在导带中的未被占据的较高能量状态。被激发至较高能量状态的电子遗留下未被占据的低能量位置(其称为空穴)。这些空穴可在半导体基质中逐原子转移,并且因此作为在价带中的电荷载流子(如在导带中的自由电子般),且因此有助于电导率。在半导体中被吸收的大部分光子产生这样的电子空穴对。这些电子空穴对产生光电流,并且在内建场存在下,产生太阳能电池的光电压。

由光所产生的电子空穴对最终将复合并且转换成热或光子,除非防止如此进行。为了防止复合,通过掺杂或界面连接不同材料来产生空间电荷层从而在半导体中产生局部电场。该空间电荷层分隔开空穴及电子以用作电荷载流子。一旦被分隔开,这些收集的空穴及电子电荷载流子产生空间电荷,其在该结两端产生电压(其为光电压)。如果让这些分隔开的空穴及电荷载流子流过外部负载时,它们将构成光电流。技术上,此通过建立与a. m. p-i-n结构的i-层相邻的薄p-及n-掺杂的半导体层实现。该i-层或本征层展示对光的吸收体行为及a.m.电子空穴对的产生。

实践上,该半导体必需设计成具有小的带隙,以便甚至来自较低能量辐射的光子可激发电子跳过该带隙;但是,在如此进行时,存在至少二种必需妥协的负效应。

首先,小的带隙导致低光电压装置,因此低功率输出发生。其次,来自较高的能量辐射的光子将产生许多具有许多过量的能量的热载流子,该过量的能量在这些热载流子直接热化到达导带边缘后作为热被损失。

另一方面,如果该半导体设计成具有较大的带隙以增加光电压并减少由热载流子的热化所造成的能量损失时,则来自较低能量辐射的光子将不被吸收。因此,在设计常规的单结太阳能电池时,需要平衡这些考虑并尝试设计出具有最理想的带隙的半导体,实现:在该平衡中,必须有来自大及小能量光子二者的显著能量损失。

诸如具有带隙1.1电子伏特的硅的材料相对不贵并且视为用于常规的单结太阳能电池的好的太阳能量转换半导体。

太阳能电池的转换效率由电池电流、电压及填充因子(fill factor)确定。电池吸收光的能力或本征吸收体层的吸收系数确定可实现的最大密度电流。选择可吸收尽可能多的入射光的吸收体材料非常重要。仅有具有能量高于吸收体层的带隙的光子可被吸收。从电池引出电荷载流子的能量确定电池的电压。填充因子为质量因子,其也指示出在太阳能电池中复合的载流子的分数。填充因子愈高,吸收体层的质量愈高。如果在吸收体层中有较少缺陷时,将有较少复合中心,因此将有较少由于复合导致的损失。

在晶体硅中,具有配位数4的硅原子的四面体结构在大范围上继续。在非晶硅中,原子形成连续的随机网状物;因此,无长范围次序存在。此材料具有无序性质;并非全部原子都具有配位数4。其显露出,某些缺陷(称为悬空键)作为复合中心并产生自Si-H的弱或断键。这些悬空键是异常电行为的原由。为了克服无序,该材料可通过氢钝化。氢化的非晶硅(a-Si:H)具有低量的此缺陷,但是不幸的是(a-Si:H)与Staebler-Wronsky效应或光致退化(LID)相关联。

已经示出以氢稀释已知的前驱物气体硅烷对a-Si:H层的质量具有有益的效应。其改善结构的次序,此再次对以a-Si:H为基础的光电子材料的稳定性有益。

对通过PECVD沉积的层来说,已经示出氢稀释降低全部已知的沉积技术(诸如RF、DC、VHF)的生长速率。对具有好的稳定性的膜,已经实现4埃/秒的生长速率。但是,在2埃/秒的可比较的较低生长速率下已经沉积出具有最好的稳定性的膜。

技术现状的沉积工艺产生以工艺气体稀释比率为1(硅烷:氢=1:1)沉积的本征层。好的效率结果已以3.6埃/秒的沉积速率实现。可通过增加在沉积期间的RF功率实现甚至较高的沉积速率,但是层的质量及均匀性降低。基于薄膜a-Si:H的太阳能电池的共同优点为它们可以低成本制造,但是沉积速率为较低。

因此,具有高质量本征吸收体层(具有少数缺陷)及合适的带隙为一项挑战。为了降低太阳能电池的成本,沉积系统的高生产量为关键因子,因为吸收体层占据任何p-i-n太阳能电池结构的主要部分。因此,吸收体层的沉积速率非常重要。

对薄膜太阳能电池来说,重要的是实现高生产量及尽可能多的高质量材料二者。其帮助降低生产成本及提供相对高的效率。已知的技术面临生产量及稳定性的问题。装置稳定性可通过增加在i-层中的氢稀释改善,但随后,生产量降低。如果将焦点放在生产量上时,i-层在大表面(1.4平方米或更大)上的均匀性受影响,因为当功率增加用以获得高速率时,此最后参数恶化。

本发明的一个目标为改进所提出的吸收体层的生产量且同时维持其质量。

通常来说,此通过以如下的方式将压力、功率及气流结合至新的加工状况而解决:使得能克服在增加的沉积速率下的均匀性及稳定性问题。

此通过在太阳能电池的p-i-n配置中制造非晶氢化硅的本征吸收体层的方法来实现,其通过在反应器中在用于所述层的基础结构上PECVD沉积所述层而进行,所述沉积包括:

?在所述反应器中建立1毫巴至1.8毫巴间的压力;

?建立硅烷流与氢流,其中硅烷对氢的稀释为1:4高至1:10;

?以每1.4平方米待涂覆的基础结构表面在600瓦至1200瓦间的产生器功率产生RF等离子体。

在根据本发明的方法的一个实施例中,所提出的沉积是在200℃的温度处执行的。

在根据本发明的方法的一个实施例中,在生长速率4.4埃/秒至6.6埃/秒下执行沉积。

在根据本发明的方法的一个实施例中,有建立以下之一:

?压力:1毫巴;及

?硅烷流:每1.4平方米基础结构表面450 sccm;

?氢流:每1.4平方米基础结构表面2000 sccm;

?功率:每1.4平方米基础结构表面600瓦;

或,优选为

?压力:1.8毫巴;及

?硅烷流:每1.4平方米基础结构表面450 sccm;

?氢流:每1.4平方米基础结构表面2000 sccm;

?功率:每1.4平方米基础结构表面1200瓦。

本发明的进一步目标为改善本征吸收体层的稳定性。已知的现象为来自p-层的硼可扩散进入相邻的i-层中,此对其光吸收性质有害。

在本发明的进一步实施例中,为了额外地解决此目标,其中下列有效:

该基础结构的表面为p-i-n电池的p层的表面,及在所述p层的所提出的表面与所述吸收体层间提供缓冲层;或

该基础结构的表面为该p-i-n电池的n层的表面,及在所提出的吸收体层与待沉积在所述吸收体层上的随后层间提供缓冲层;

通过利用下列不同的设定以与该吸收体层的沉积相同的沉积工艺执行非晶氢化硅的缓冲层的沉积:

?所提出的压力:已建立用来沉积该吸收体层的压力的1/2至1/3;

?所提出的硅烷流:已建立用来沉积该吸收体层的硅烷流的1/2至1/4;

?所提出的氢流:已建立用来沉积该吸收体层的氢流的2-2.5倍;

?所提出的功率:已施加用来沉积该吸收体层的功率的1/2至1/3。

在最后所提出的实施例中,进一步优选为将CH4气体加入至该反应器空间来沉积所述缓冲层。

在进一步实施例中,所提出的加入CH4是在硅烷流的2/3的流下执行的。

在本发明的进一步实施例中,该吸收体层沉积为具有在l00纳米至600纳米间的厚度,优选地在150纳米至300纳米间的厚度。

仍然在具有缓冲层的进一步实施例中,该缓冲层沉积为具有在5纳米至15纳米间的厚度,优选地在7纳米至11纳米间的厚度。

在具有所沉积的缓冲层的本发明的进一步实施例中,用于缓冲层的沉积速率对用于吸收体层的沉积速率的比率被选择为在1:7至1:5间。

本发明的目标也为改善该本征吸收体层的稳定性。已知的现象为来自p层的硼可扩散进入相邻的i-层中,此对其光吸收性质有害。

此目标通过这样的方法解决:在p-i-n太阳能电池中的非晶氢化硅的本征吸收体层与这样的p-i-n电池的p层间制造非晶氢化硅的缓冲层的方法,其通过在反应器中在基础结构上PECVD沉积所述缓冲层来进行,所述沉积包括:

?在该反应器中建立压力,其为在0.3毫巴至0.9毫巴间;

?在该反应器中建立硅烷流,其为每1.4平方米待涂覆的基础结构表面在180 sccm至225 sccm间;

?在该反应器中建立氢流,其为每1.4平方米待涂覆的基础结构表面在4000 sccm至5000 sccm间;

?以产生器功率产生RF等离子体,该功率为每1.4平方米待涂覆的基础结构表面在200瓦至600瓦间。

在仅提出的方法的实施例中,将CH4气体加入至该反应器空间来沉积所述缓冲层。

在进一步实施例中,此加入CH4气体是在硅烷流的2/3的流下执行的。

附图的简要说明

图1a:该新a-Si:H吸收体层的均匀性及沉积速率,通过椭圆光度法测量。

图1b:该新缓冲层的均匀性及沉积速率,通过椭圆光度法测量。

图2:在基线模块与具有根据本发明的i层的模块间的比较。二模块都具有背反射器及相同的i层厚度(wbr)。

发明概要

本发明的用来制造半导体薄膜太阳能电池中的非晶层的方法包括在1毫巴至1.8毫巴间的整体压力水平下,每基板尺寸的RF功率对硅烷流量对氢流量的特定关系,其中该压力水平对特定的RF功率水平范围保持不变,同时可靠地实现高生产量、好的均匀性及层稳定性。

为了较好的电池性能,可引进缓冲层,其与包含具有低碳含量的a-Si:H的p-层44相邻(参照图3)。由于其功能性,其可视为i层45的相关部分。这样的缓冲层应该慢慢地生长(以低沉积速率),以防止硼(来自相邻的p层44)污染i层。除了阻挡杂质的功能外,如果该组分经适当地选择,该缓冲层可提高p层的Voc。不同研究已示出经适当选择的缓冲层可提高PV电池的初始性能。

发明的详细描述

所公开的发明旨在解决生产量问题而没有影响均匀性。在模块/电池性能中可忽略的损失(与标准技术现状工艺比较)为可接受的,同时退化系数仍然相同。

所公开的发明进一步旨在改进薄膜硅光伏电池的性能。

本发明涉及一种包含以工艺气体(硅烷:氢为1:4高至1:10)的稀释物制备的本征非晶硅吸收体层的光伏电池或模块。该本征层(i层)已经通过PECVD,在200℃沉积温度处,在坚硬的平坦基板(玻璃)上,以高达6.6埃/秒的生长速率,以好的稳定性及好的均匀性制造(图1)。因此,图1a示出新a-Si:H吸收体层的均匀性及沉积速率,其通过椭圆光度法在13×15点光栅中测量。于此,下列占优势:

最小:(纳米)                      310.88

最大:(纳米)                      367.89

平均:                                 350.15

均匀性:(%)                         8.40

t:(秒)                                  500.00

沉积速率:(埃/秒)              6.6

标准偏差(%):                    2.42

本发明有助于以生产方面的高生产量、高效率及因此低生产成本制造太阳能电池或模块。对1.4平方米的模块尺寸来说,在TCO ZnO正面接触上制造具有输出功率122瓦的模块(图2)。

图2示出在基线模块与具有根据本发明的i层的模块间的比较。二模块都具有背反射器及相同的i层厚度(wbr)。

对新i层来说,于此,下列占优势:

?功率:                     122瓦

?App. Eff.:               9.4%

?有效面积Eff.:        9.1%

?Voc:                       143.7伏特

?Voc/电池:              910.5毫伏特

?Isc:                        1.233安培

?Jsc:                        14.62毫安/平方厘米

?FF:                         68.3%

?Rs:                         15.44欧姆

?Rp:                        3721欧姆。

对基线来说,于此,下列占优势:

?功率:                     124瓦

?App. Eff.:               9.58%

?有效面积Eff.:        9.28%

?Voc:                       141伏特

?Voc/电池:              887毫伏特

?Isc:                        1.278安培

?Jsc:                        15.17毫安/平方厘米

?FF:                         68.9%

?Rs:                         14.68欧姆

?Rp:                        4431欧姆。

此结果为与技术现状模块相同的水平。已经观察到经制备具有根据本发明的新i层的电池具有与在技术现状中相同的退化系数。(取决于i层厚度及吸收体层的氢稀释,20-25%的效率退化)。

已经发现该带隙较宽。从外部量子效率测量来看,此新i层的带隙已发现为1.69电子伏特(与在技术现状中,于基线程式上所使用的i层的1.66电子伏特比较)。这可从电池/模块的Voc及Jsc看出并且使得该新i层合适于用于单、双及三结非晶硅太阳能电池/模块中,并且作为非晶/微晶堆叠太阳能电池/模块的顶部电池。该制造工艺较快因此较便宜,然而模块性能损失仅2瓦。

在下列表中所给出的RF功率代表RF产生器的输出功率。在等离子体中的实际功率取决于在产生器与等离子体工艺腔间的电缆长度。因此,必需对不同电缆长度施加校正因子。对标准PECVD沉积系统,如Kai 1-1200(可从Oerlikon Solar购得)来说,每个反应器的i层的沉积条件为:

多种研究已示出正常高的RF功率水平将导致增加的沉积速率及改进的层密度。改进的密度对稳定性有益,换句话说,预计有较小的退化。另一方面,所沉积的层的均匀性将降低。但是,全部三个准则都重要:高生产量、好的均匀性及层稳定性。

本发明人的努力示出并不需要为了其它二个目标而牺牲其中的一个目标。从上述表中可认识到,对1.4平方米待涂覆的基板来说,450 sccm的硅烷流及2000 sccm的氢流足以产生持续高均匀(8.8%或更好)层,然而RF功率可从600增加至1200瓦并可维持在4.4至6.6埃/秒间的相应沉积速率。换句话说,在此特定的工艺窗口中,甚至加倍的RF功率水平也不会导致层均匀性降低。如第三列示出,进一步增加氢及硅烷流(在提高的整体压力下)将不会自动地造成沉积速率及/或均匀性增加。

上述精确值应该不限制本发明的范围。在1至1.8毫巴间的整体压力水平下,每基板尺寸的RF功率:硅烷流量:氢流量的关系可转移至其它基板尺寸,而具有可比较的结果。RF功率可如上所述般相应地改变。

关于Voc的电池效率的进一步优化已经由新缓冲层组分实现。此缓冲层布置在p层44与i层45间(缓冲层未在图3中示出)。新缓冲层相应提高p-i-n层堆叠或太阳能电池/模块的p/i界面而没有对生产量有负面冲击。此缓冲层已经以比现有技术程式少30%的沉积速率沉积。该缓冲层已经以20倍的氢稀释(硅烷:氢=1:20)沉积。为了提高电池/模块的Voc,将CH4加入至缓冲层的工艺气体流,高达SiH4+CH4流的39%。

某些研究已示出在i-层中的CH4提高初始测量的电池性能,但是降低层质量(如因此稍后观察到提高的LID)。

由于根据本发明的进一步实施例的该缓冲层,可实现提高的初始效率。在LID中未观察到负影响。根据i层厚度,观察到20-25%退化。

在实验实施例中,该缓冲层厚度被选择为9纳米。在该电池/模块程式中,用于此新缓冲层的沉积时间因此为100秒。但是,就生产量而言,这是无害的(与现有技术程式比较),因为如上所述增加的a-Si:H沉积速率补偿此效应。

每个反应器用于缓冲层的沉积条件为:

 新缓冲层RF功率(瓦)299压力(毫巴)0.5SiH4(sccm)208H2(sccm)4160CH4(sccm)134沉积速率(埃/秒)0.92均匀性(%)15.14

沉积根据本发明的实施例的该缓冲层。

上述精确值不应该限制本发明的范围。在基本上0.5毫巴的整体压力水平下,每基板尺寸的RF功率:硅烷流量:氢流量:甲烷流量的关系可转移至其它基板尺寸而具有可比较的结果。该缓冲层的厚度可变化+/-2纳米。

进一步数据显示在图1b)中。此图示出新缓冲层的均匀性及沉积速率,其通过椭圆光度法在1100×1300基板上于13×11点光栅中测量。于此,下列占优势:

最小:(纳米)                    58.56

最大:(纳米)                    79.46

平均:                              75.23

均匀性:(%)                     15.14

USEC:(%)                  27.78

t:(秒)                               800.00

沉积速率:(埃/秒)           0.94

标准偏差(%):                 3.95

如先前所提及,可创造地结合该新缓冲层以实现整体改进的本征吸收体层系统。此缓冲层系统包含低速率沉积的具有微量碳的a-Si:H缓冲层加上高速率沉积的a-Si:H体吸收体层。该体吸收体(i-)层被选择为在100纳米至600纳米间,优选地在150-300纳米间。该缓冲层被沉积至厚度在5纳米至15纳米间,优选地为7纳米至11纳米。已经发现沉积速率比率(低速率工艺沉积速率:高速率工艺沉积速率)被有利地选择为基本上在1:7至1:5间。所述用于缓冲层的气体流量比率可有利地与对上述体i-层所描述的比率结合。

对于在体吸收体(i-)层a-Si:H之后的a-Si:H缓冲层系统实现本发明的实施例,其中下列比率应该有效:

比率新缓冲层体(i-)吸收体RF功率12-3压力12-3SiH412-2.5H22-2.51CH410沉积速率15-7

用于光伏电池的新本征吸收体层.pdf_第1页
第1页 / 共13页
用于光伏电池的新本征吸收体层.pdf_第2页
第2页 / 共13页
用于光伏电池的新本征吸收体层.pdf_第3页
第3页 / 共13页
点击查看更多>>
资源描述

《用于光伏电池的新本征吸收体层.pdf》由会员分享,可在线阅读,更多相关《用于光伏电池的新本征吸收体层.pdf(13页珍藏版)》请在专利查询网上搜索。

1、(10)申请公布号 CN 102844892 A (43)申请公布日 2012.12.26 C N 1 0 2 8 4 4 8 9 2 A *CN102844892A* (21)申请号 201080052328.8 (22)申请日 2010.11.11 61/262,179 2009.11.18 US 61/266,739 2009.12.04 US H01L 31/20(2006.01) H01L 31/0392(2006.01) H01L 31/075(2012.01) C23C 16/24(2006.01) H01L 21/02(2006.01) (71)申请人欧瑞康太阳能股份公司(特吕。

2、巴赫) 地址瑞士特吕巴赫 (72)发明人 S-N.巴克赫-阿南加 S.贝纳格利 (74)专利代理机构中国专利代理(香港)有限公 司 72001 代理人刘春元 卢江 (54) 发明名称 用于光伏电池的新本征吸收体层 (57) 摘要 为了通过PECVD沉积,在基础结构上,于太阳 能电池的p-i-n配置内制造出非晶氢化硅的本征 吸收体层,因此改进生产量同时维持吸收体层的 质量,已提出了特定的加工状况,其中在用来沉积 所提出的吸收体层的反应器中,建立1毫巴至1.8 毫巴间的压力及硅烷流与氢流,其中硅烷对氢的 稀释为1:4高至1:10,及以每1.4平方米待涂覆 的基础结构表面在600瓦至1200瓦间的产。

3、生器功 率产生RF等离子体。 (30)优先权数据 (85)PCT申请进入国家阶段日 2012.05.18 (86)PCT申请的申请数据 PCT/EP2010/067311 2010.11.11 (87)PCT申请的公布数据 WO2011/061113 EN 2011.05.26 (51)Int.Cl. 权利要求书2页 说明书7页 附图3页 (19)中华人民共和国国家知识产权局 (12)发明专利申请 权利要求书 2 页 说明书 7 页 附图 3 页 1/2页 2 1.一种在太阳能电池的 p-i-n配置中制造非晶氢化硅的本征吸收体层的方法, 其通过 在反应器中在用于所述层的基础结构上 PECVD沉。

4、积所述层来进行, 所述沉积包括 : -在所述反应器中建立 1毫巴至 1.8毫巴间的压力 ; -建立硅烷流与氢流, 其中硅烷对氢的稀释为 1: 4高至 1: 10; -以 每 1.4平 方 米 待 涂 覆 的 基 础 结 构 表 面 在 600瓦 至 1200瓦 间 的 产 生 器 功 率 产 生 RF 等离子体。 2.如权利要求 1的方法, 包括在 200的温度处执行所述沉积。 3.如 权 利 要 求 1或 2中 的 一 项 的 方 法, 所 述 沉 积 是 在 生 长 速 率 4.4埃 /秒 至 6.6埃 / 秒下执行的。 4.如权利要求 1-3中的一项的方法, 包括建立以下之一 : -所述。

5、压力 : 1毫巴 ;及 -所述硅烷流 :每 1.4平方米的基础结构表面 450 sccm; -所述氢流 :每 1.4平方米的基础结构表面 2000 sccm; -所述功率 :每 1.4平方米的基础结构表面 600瓦 ; 或及优选为 -所述压力 : 1.8毫巴 ;及 -所述硅烷流 :每 1.4平方米的基础结构表面 450 sccm; -所述氢流 :每 1.4平方米的基础结构表面 2000 sccm; -所述功率 :每 1.4平方米的基础结构表面 1200瓦。 5.如权利要求 1-4中的一项的方法, 其中有效的是 : -所述基础结构的表面为所述 p-i-n电池的 p层的表面, 及在所述 p层的所述。

6、表面与所 述吸收体层间提供缓冲层 ; 或 -所述基础结构的表面为所述 p-i-n电池的 n层的表面, 及在所述吸收体层与待沉积在 所述吸收体层上的随后层间提供缓冲层 ; 通 过 利 用 下 列 不 同 的 设 定 以 与 所 述 吸 收 体 层 的 沉 积 相 同 的 沉 积 工 艺 执 行 非 晶 氢 化 硅 的所述缓冲层的沉积 : -所述压力 :已建立用来沉积所述吸收体层的所述压力的 1/2至 1/3; -硅烷流 :已建立用来沉积所述吸收体层的所述硅烷流的 1/2至 1/4; -氢流 :已建立用来沉积所述吸收体层的所述氢流的 2-2.5倍 ; -功率 :已施加用来沉积所述吸收体层的所述功率。

7、的 1/2至 1/3。 6.如权利 要求 5的方法, 进一步包括将 CH 4 气体加入至所述反应器空间, 用来沉积所述 缓冲层。 7.如权利要求 6的方法, 包括在所述硅烷流的 2/3的流下加入所述 CH 4 。 8.如 权 利 要 求 1-7中 的 一 项 的 方 法, 其 中 所 述 吸 收 体 层 沉 积 为 具 有 在 l00纳 米 至 600 纳米间的厚度, 优选地在 150纳米至 300纳米间的厚度。 9.如权利要求 5-8中的一项的方法, 其中所述缓冲层沉积为具有在 5纳米至 15纳米间 的厚度, 优选地在 7纳米至 11纳米间的厚度。 10.如 权 利 要 求 5-9中 的 一。

8、 项 的 方 法, 包 括 将 用 于 所 述 缓 冲 层 的 沉 积 速 率 对 用 于 所 述 权 利 要 求 书CN 102844892 A 2/2页 3 吸收体层的沉积速率的比率选择为在 1: 7至 1: 5间。 11.一种在 p-i-n太阳能电池中的非晶氢化硅的本征吸收体层与这样的 p-i-n电池的 p层 间 制 造 非 晶 氢 化 硅 的 缓 冲 层 的 方 法, 其 通 过 在 反 应 器 中 在 基 础 结 构 上 PECVD沉 积 所 述 缓冲层来进行, 所述沉积包括 : -在所述反应器中建立压力, 该压力在 0.3毫巴至 0.9毫巴间 ; -在 所 述 反 应 器 中 建 。

9、立 硅 烷 流, 其 是 每 1.4平 方 米 待 涂 覆 的 基 础 结 构 表 面 在 180 sccm 至 225 sccm间 ; -在所述反应器中建立氢流, 其是每 1.4平方米待涂覆的基础结构表面在 4000 sccm至 5000 sccm间 ; -以 产 生 器 功 率 产 生 RF等 离 子 体, 该 功 率 是 每 1.4平 方 米 待 涂 覆 的 基 础 结 构 表 面 在 200瓦至 600瓦间。 12.如权利要求 11的方法, 包括将 CH 4 气体加入至所述反应器空间, 用于沉积所述缓冲 层。 13.如权利要求 12的方法, 包括在所述硅烷流的 2/3的流下加入所述 C。

10、H 4 。 权 利 要 求 书CN 102844892 A 1/7页 4 用于光伏电池的新本征吸收体层 0001 技术领域 本 发 明 涉 及 一 种 新 颖 的 本 征 吸 收 体 层 (i-层 ), 其 在 高 达 6.6埃 /秒 的 提 高 的 沉 积 速 率下沉积 ;以及包含所述 i-层的光伏电池及模块。 本发明进一步涉及布置在太阳能电池的 p-i-n配置的 p与 i层间的缓冲层。 那些本征吸收体层可使用作为用于单、 双及三结非晶硅 太 阳 能 电 池 /模 块 的 吸 收 体 及 作 为 用 于 非 晶 /微 晶 堆 叠 (micromorph)太 阳 能 电 池 /模 块 (=非晶。

11、与微晶电池的堆叠组合 )的顶部电池。 0002 发明背景 现 有 技 术 图 3示 出 一 基 本、 简 单 的 光 伏 电 池 40, 其 包 含 透 明 基 板 41, 例 如 为 玻 璃, 在 其 上沉积有一层透明导电氧化物 (TCO) 42。该层亦称为正面接触, 并且作为用于光伏元件的 第一电极。 基板 41与正面接触 42的组合也被称作盖板 (superstrate) 。 下一层 43作为有 源光伏层, 并展示形成 p-i-n结的三 “子层 ”。所述层 43包含氢化微晶硅, 纳米晶体硅或 非 晶 硅 或 其 组 合。 子 层 44(邻 近 TCO正 面 接 触 42)是 正 掺 杂 。

12、的, 该 邻 近 子 层 45是 本 征 的, 及 该最后子层 46是负掺杂的。 在替代实施例中, 如所述的该层序列 p-i-n可以反转为 n-i-p, 那么, 层 44被识别为 n层, 层 45再度为本征的, 层 46为 p层。 0003 最后, 该电池包括后面接触层 47(也称为背向接触 ), 其可由氧化锌、 氧化锡或 ITO 制 成 ;及 反 射 层 48。 可 替 代 地, 可 实 现 金 属 背 向 接 触, 其 可 结 合 背 反 射 器 48与 背 向 接 触 47 的 物 理 性 质。 为 了 阐 明 的 目 的, 箭 头 指 示 出 入 射 光。 太 阳 能 电 池 (也 称。

13、 为 光 伏 电 池 )是 将 电磁能量 (诸如光或太阳辐射 )直接转换成电力的半导体装置。 用于这样的电池的光吸收 层的半导体以如下表征 :在其价电子带与其导电子带间的能量带隙 (“禁带中央材料 “)。 自 由电子通常无法存在或保持在这些带隙中。 0004 当 光 由 所 述 半 导 体 材 料 吸 收 时, 在 低 能 量 状 态 (价 带 )下 的 电 子 可 被 激 发 并 且 跳 过该带隙至在导带中的未被占 据的较高能量状态。 被激发至较高能量状态的电子遗留下未 被占据的低能量位置 (其称为空穴 )。 这些空穴可在半导体基质中逐原子转移, 并且因此作 为在价带中的电荷载流子 (如在导。

14、带中的自由电子般 ), 且因此有助于电导率。 在半导体中 被 吸 收 的 大 部 分 光 子 产 生 这 样 的 电 子 空 穴 对。 这 些 电 子 空 穴 对 产 生 光 电 流, 并 且 在 内 建 场 存在下, 产生太阳能电池的光电压。 0005 由 光 所 产 生 的 电 子 空 穴 对 最 终 将 复 合 并 且 转 换 成 热 或 光 子, 除 非 防 止 如 此 进 行。 为 了 防 止 复 合, 通 过 掺 杂 或 界 面 连 接 不 同 材 料 来 产 生 空 间 电 荷 层 从 而 在 半 导 体 中 产 生 局 部 电场。 该空间电荷层分隔开空穴及电子以用作电荷载流子。。

15、 一旦被分隔开, 这些收集的空穴 及电子电荷载流子产生空间电荷, 其在该结两端产生电压 (其为光电压 )。 如果让这些分隔 开的空穴及电荷载流子流过外部负载时, 它们将构成光电流。 技术上, 此通过建立与 a. m. p-i-n结构的 i-层相邻的薄 p-及 n-掺杂的半导体层实现。 该 i-层或 本征层展示对光的 吸收体行为及 a.m.电子空穴对的产生。 0006 实 践 上, 该 半 导 体 必 需 设 计 成 具 有 小 的 带 隙, 以 便 甚 至 来 自 较 低 能 量 辐 射 的 光 子 可激发电子跳过该带隙 ;但是, 在如此进行时, 存在至少二种必需妥协的负效应。 0007 首 。

16、先, 小 的 带 隙 导 致 低 光 电 压 装 置, 因 此 低 功 率 输 出 发 生。 其 次, 来 自 较 高 的 能 量 说 明 书CN 102844892 A 2/7页 5 辐 射 的 光 子 将 产 生 许 多 具 有 许 多 过 量 的 能 量 的 热 载 流 子, 该 过 量 的 能 量 在 这 些 热 载 流 子 直 接热化到达导带边缘后作为热被损失。 0008 另 一 方 面, 如 果 该 半 导 体 设 计 成 具 有 较 大 的 带 隙 以 增 加 光 电 压 并 减 少 由 热 载 流 子 的热化所造成的能量损失时, 则来自较低能量辐射的光子将不被吸收。 因此, 在。

17、设计常规的 单 结 太 阳 能 电 池 时, 需 要 平 衡 这 些 考 虑 并 尝 试 设 计 出 具 有 最 理 想 的 带 隙 的 半 导 体, 实 现 :在 该平衡中, 必须有来自大及小能量光子二者的显著能量损失。 0009 诸 如 具 有 带 隙 1.1电 子 伏 特 的 硅 的 材 料 相 对 不 贵 并 且 视 为 用 于 常 规 的 单 结 太 阳 能电池的好的太阳能量转换半导体。 0010 太 阳 能 电 池 的 转 换 效 率 由 电 池 电 流、 电 压 及 填 充 因 子 (fill factor)确 定。 电 池 吸收光的能力或本征吸收体层的吸收系数确定可实现的最大密。

18、度电流。 选择可吸收尽可能 多 的 入 射 光 的 吸 收 体 材 料 非 常 重 要。 仅 有 具 有 能 量 高 于 吸 收 体 层 的 带 隙 的 光 子 可 被 吸 收。 从 电 池 引 出 电 荷 载 流 子 的 能 量 确 定 电 池 的 电 压。 填 充 因 子 为 质 量 因 子, 其 也 指 示 出 在 太 阳 能 电 池 中 复 合 的 载 流 子 的 分 数。 填 充 因 子 愈 高, 吸 收 体 层 的 质 量 愈 高。 如 果 在 吸 收 体 层 中 有较少缺陷时, 将有较少复合中心, 因此将有较少由于复合导致的损失。 0011 在晶体硅中, 具有配位数 4的硅原子的。

19、四面体结构在大范围上继续。 在非晶硅中, 原子形成连续的随机网状物 ;因此, 无长范围次序存在。 此材料具有无序性质 ;并非全部原 子都具有配位数 4。 其显露出, 某些缺陷 (称为悬空键 )作为复合中心并产生自 Si-H的弱 或 断 键。 这 些 悬 空 键 是 异 常 电 行 为 的 原 由。 为 了 克 服 无 序, 该 材 料 可 通 过 氢 钝 化。 氢 化 的 非晶硅 (a-Si: H)具有低量的此缺陷, 但是不幸的是 (a-Si: H)与 Staebler-Wronsky效应或 光致退化 (LID)相关联。 0012 已 经 示 出 以 氢 稀 释 已 知 的 前 驱 物 气 体。

20、 硅 烷 对 a-Si: H层 的 质 量 具 有 有 益 的 效 应。 其改善结构的次序, 此再次对以 a-Si: H为基 础的光电子材料的稳定性有益。 0013 对通过 PECVD沉积的层来说, 已经示出氢稀释降低全部已知的沉积技术 (诸如 RF、 DC、 VHF)的生长速率。对具有好的稳定性的膜, 已经实现 4埃 /秒的生长速率。但是, 在 2 埃 /秒的可比较的较低生长速率下已经沉积出具有最好的稳定性的膜。 0014 技 术 现 状 的 沉 积 工 艺 产 生 以 工 艺 气 体 稀 释 比 率 为 1(硅 烷 :氢 =1: 1)沉 积 的 本 征 层。 好 的 效 率 结 果 已 以。

21、 3.6埃 /秒 的 沉 积 速 率 实 现。 可 通 过 增 加 在 沉 积 期 间 的 RF功 率 实 现甚至较高的沉积速率, 但是层的质量及均匀性降低。 基于薄膜 a-Si: H的太阳能电池的共 同优点为它们可以低成本制造, 但是沉积速率为较低。 0015 因 此, 具 有 高 质 量 本 征 吸 收 体 层 (具 有 少 数 缺 陷 )及 合 适 的 带 隙 为 一 项 挑 战。 为 了降低太阳能电池的成本, 沉积系统的高生产量为关键因子, 因为吸收体层占据任何 p-i-n 太阳能电池结构的主要部分。因此, 吸收体层的沉积速率非常重要。 0016 对 薄 膜 太 阳 能 电 池 来 说。

22、, 重 要 的 是 实 现 高 生 产 量 及 尽 可 能 多 的 高 质 量 材 料 二 者。 其帮助降低生产成本及提供相对高的效率。 已知的技术面临生产量及稳定性的问题。 装置 稳 定 性 可 通 过 增 加 在 i-层 中 的 氢 稀 释 改 善, 但 随 后, 生 产 量 降 低。 如 果 将 焦 点 放 在 生 产 量 上时, i-层在大表面 (1.4平方米或更大 )上的均匀性受影响, 因为当功率增加用以获得高 速率时, 此最后参数恶化。 0017 本发明的一个目标为改进所提出的吸收体层的生产量且同时维持其质量。 0018 通 常 来 说, 此 通 过 以 如 下 的 方 式 将 压。

23、 力、 功 率 及 气 流 结 合 至 新 的 加 工 状 况 而 解 决 : 说 明 书CN 102844892 A 3/7页 6 使得能克服在增加的沉积速率下的均匀性及稳定性问题。 0019 此 通 过 在 太 阳 能 电 池 的 p-i-n配 置 中 制 造 非 晶 氢 化 硅 的 本 征 吸 收 体 层 的 方 法 来 实 现, 其 通 过 在 反 应 器 中 在 用 于 所 述 层 的 基 础 结 构 上 PECVD沉 积 所 述 层 而 进 行, 所 述 沉 积 包括 : 在所述反应器中建立 1毫巴至 1.8毫巴间的压力 ; 建立硅烷流与氢流, 其中硅烷对氢的稀释为 1: 4高至 。

24、1: 10; 以每 1.4平方米待涂覆的基础结构表面在 600瓦至 1200瓦间的产生器功率产生 RF 等离子体。 0020 在根据本发明的方法的一个实施例中, 所提出的沉积是在 200的温度处执行的。 0021 在 根 据 本 发 明 的 方 法 的 一 个 实 施 例 中, 在 生 长 速 率 4.4埃 /秒 至 6.6埃 /秒 下 执 行沉积。 0022 在根据本发明的方法的一个实施例中, 有建立以下之一 : 压力 : 1毫巴 ;及 硅烷流 :每 1.4平方米基础结构表面 450 sccm; 氢流 :每 1.4平方米基础结构表面 2000 sccm; 功率 :每 1.4平方米基础结构表面。

25、 600瓦 ; 或, 优选为 压力 : 1.8毫巴 ;及 硅烷流 :每 1.4平方米基础结构表面 450 sccm; 氢流 :每 1.4平方米基础结构表面 2000 sccm; 功率 :每 1.4平方米基础结构表面 1200瓦。 0023 本 发 明 的 进 一 步 目 标 为 改 善 本 征 吸 收 体 层 的 稳 定 性。 已 知 的 现 象 为 来 自 p-层 的 硼可扩散进入相邻的 i-层中, 此对其光吸收性质有害。 0024 在本发明的进一步实施例中, 为了额外地解决此目标, 其中下列有效 : 该 基 础 结 构 的 表 面 为 p-i-n电 池 的 p层 的 表 面, 及 在 所 。

26、述 p层 的 所 提 出 的 表 面 与 所 述 吸收体层间提供缓冲层 ;或 该 基 础 结 构 的 表 面 为 该 p-i-n电 池 的 n层 的 表 面, 及 在 所 提 出 的 吸 收 体 层 与 待 沉 积 在 所述吸收体层上的随后层间提供缓冲层 ; 通 过 利 用 下 列 不 同 的 设 定 以 与 该 吸 收 体 层 的 沉 积 相 同 的 沉 积 工 艺 执 行 非 晶 氢 化 硅 的 缓冲层的沉积 : 所提出的压力 :已建立用来沉积该吸收体层的压力的 1/2至 1/3; 所提出的硅烷流 :已建立用来沉积该吸收体层的硅烷流的 1/2至 1/4; 所提出的氢流 :已建立用来沉积该吸。

27、收体层的氢流的 2-2.5倍 ; 所提出的功率 :已施加用来沉积该吸收体层的功率的 1/2至 1/3。 0025 在 最 后 所 提 出 的 实 施 例 中, 进 一 步 优 选 为 将 CH 4 气 体 加 入 至 该 反 应 器 空 间 来 沉 积 所述缓冲层。 0026 在进一步实施例中, 所提出的加入 CH 4 是在硅烷流的 2/3的流下执行的。 0027 在 本 发 明 的 进 一 步 实 施 例 中, 该 吸 收 体 层 沉 积 为 具 有 在 l00纳 米 至 600纳 米 间 的 厚度, 优选地在 150纳米至 300纳米间的厚度。 说 明 书CN 102844892 A 4/。

28、7页 7 0028 仍然在具有缓冲层的进一步实施例中, 该缓冲层沉积为具有在 5纳米至 15纳米间 的厚度, 优选地在 7纳米至 11纳米间的厚度。 0029 在 具 有 所 沉 积 的 缓 冲 层 的 本 发 明 的 进 一 步 实 施 例 中, 用 于 缓 冲 层 的 沉 积 速 率 对 用 于吸收体层的沉积速率的比率被选择为在 1: 7至 1: 5间。 0030 本发明的目标也为改善该本征吸收体层的稳定性。 已知的现象为来自 p层的硼可 扩散进入相邻的 i-层中, 此对其光吸收性质有害。 0031 此 目 标 通 过 这 样 的 方 法 解 决 :在 p-i-n太 阳 能 电 池 中 的。

29、 非 晶 氢 化 硅 的 本 征 吸 收 体 层 与 这 样 的 p-i-n电 池 的 p层 间 制 造 非 晶 氢 化 硅 的 缓 冲 层 的 方 法, 其 通 过 在 反 应 器 中 在 基 础结构上 PECVD沉积所述缓冲层来进行, 所述沉积包括 : 在该反应器中建立压力, 其为在 0.3毫巴至 0.9毫巴间 ; 在该反应器中建立硅烷流, 其为每 1.4平方米待涂覆的基础结构表面在 180 sccm至 225 sccm间 ; 在该反应 器中建立氢流, 其为每 1.4平方米待涂覆的基础结构表面在 4000 sccm至 5000 sccm间 ; 以 产 生 器 功 率 产 生 RF等 离 子。

30、 体, 该 功 率 为 每 1.4平 方 米 待 涂 覆 的 基 础 结 构 表 面 在 200瓦至 600瓦间。 0032 在仅提出的方法的实施例中, 将 CH 4 气体加入至该反应器空间来沉积所述缓冲层。 0033 在进一步实施例中, 此加入 CH 4 气体是在硅烷流的 2/3的流下执行的。 0034 附图的简要说明 图 1a:该新 a-Si: H吸收体层的均匀性及沉积速率, 通过椭圆光度法测量。 0035 图 1b:该新缓冲层的均匀性及沉积速率, 通过椭圆光度法测量。 0036 图 2:在 基 线 模 块 与 具 有 根 据 本 发 明 的 i层 的 模 块 间 的 比 较。 二 模 块。

31、 都 具 有 背 反 射器及相同的 i层厚度 (wbr)。 发明概要 0037 本发明的用来制造半导体薄膜太阳能电池中的非晶层的方法包括在 1毫巴至 1.8 毫 巴 间 的 整 体 压 力 水 平 下, 每 基 板 尺 寸 的 RF功 率 对 硅 烷 流 量 对 氢 流 量 的 特 定 关 系, 其 中 该 压 力 水 平 对 特 定 的 RF功 率 水 平 范 围 保 持 不 变, 同 时 可 靠 地 实 现 高 生 产 量、 好 的 均 匀 性 及 层 稳定性。 0038 为 了 较 好 的 电 池 性 能, 可 引 进 缓 冲 层, 其 与 包 含 具 有 低 碳 含 量 的 a-Si:。

32、 H的 p-层 44相 邻 (参 照 图 3)。 由 于 其 功 能 性, 其 可 视 为 i层 45的 相 关 部 分。 这 样 的 缓 冲 层 应 该 慢 慢 地 生 长 ( 以 低 沉 积 速 率 ) , 以 防 止 硼 (来 自 相 邻 的 p层 44)污 染 i层。 除 了 阻 挡 杂 质 的 功 能 外, 如 果 该 组 分 经 适 当 地 选 择, 该 缓 冲 层 可 提 高 p层 的 V oc 。 不 同 研 究 已 示 出 经 适 当 选 择 的缓冲层可提高 PV电池的初始性能。 0039 发明的详细描述 所公开的发明旨在解决生产量问题而没有影响均匀性。 在模块 /电池性能中。

33、可忽略的 损失 (与标准技术现状工艺比较 )为可接受的, 同时退化系数仍然相同。 0040 所公开的发明进一步旨在改进薄膜硅光伏电池的性能。 0041 本发明涉及一种包含以工艺气体 (硅烷 :氢为 1: 4高至 1: 10)的稀释物制备的本 说 明 书CN 102844892 A 5/7页 8 征 非 晶 硅 吸 收 体 层 的 光 伏 电 池 或 模 块。 该 本 征 层 (i层 )已 经 通 过 PECVD, 在 200 沉 积 温 度 处, 在 坚 硬 的 平 坦 基 板 (玻 璃 )上, 以 高 达 6.6埃 /秒 的 生 长 速 率, 以 好 的 稳 定 性 及 好 的 均 匀 性 。

34、制 造 (图 1)。 因 此, 图 1a示 出 新 a-Si: H吸 收 体 层 的 均 匀 性 及 沉 积 速 率, 其 通 过 椭 圆光度法在 1315点光栅中测量。于此, 下列占优势 : 最小 :( 纳米 ) 310.88 最大 :( 纳米 ) 367.89 平均 : 350.15 均匀性 : (%) 8.40 t: (秒 ) 500.00 沉积速率 : (埃 /秒 ) 6.6 标准偏差 (%): 2.42 本 发 明 有 助 于 以 生 产 方 面 的 高 生 产 量、 高 效 率 及 因 此 低 生 产 成 本 制 造 太 阳 能 电 池 或 模 块。 对 1.4平 方 米 的 模 。

35、块 尺 寸 来 说, 在 TCO ZnO正 面 接 触 上 制 造 具 有 输 出 功 率 122瓦 的 模 块 (图 2)。 0042 图 2示出在基线模块与具有根据本发明的 i层的模块间的比较。 二模块都具有背 反射器及相同的 i层厚度 (wbr)。 0043 对新 i层来说, 于此, 下列占优势 : 功率 : 122瓦 App. Eff.: 9.4% 有效面积 Eff.: 9.1% Voc: 143.7伏特 Voc/电池 : 910.5毫伏特 Isc: 1.233安培 Jsc: 14.62毫安 /平方 厘米 FF: 68.3% Rs: 15.44欧姆 Rp: 3721欧姆。 0044 对。

36、基线来说, 于此, 下列占优势 : 功率 : 124瓦 App. Eff.: 9.58% 有效面积 Eff.: 9.28% Voc: 141伏特 Voc/电池 : 887毫伏特 Isc: 1.278安培 Jsc: 15.17毫安 /平方厘米 FF: 68.9% Rs: 14.68欧姆 Rp: 4431欧姆。 0045 此结果为与技术现状模块相同的水平。 已经观察到经制备具有根据本发明的新 i 说 明 书CN 102844892 A 6/7页 9 层 的 电 池 具 有 与 在 技 术 现 状 中 相 同 的 退 化 系 数。( 取 决 于 i层 厚 度 及 吸 收 体 层 的 氢 稀 释, 2。

37、0-25%的效率退化 )。 0046 已经发现该带隙较宽。 从外部量子效率测量来看, 此新 i层的带隙已发现为 1.69 电子伏特 (与在技术现状中, 于基线程式上所使用的 i层的 1.66电子伏特比较 )。 这可从 电 池 /模 块 的 V oc 及 J sc 看 出 并 且 使 得 该 新 i层 合 适 于 用 于 单、 双 及 三 结 非 晶 硅 太 阳 能 电 池 /模块中, 并且作为非晶 /微晶堆叠太阳能电池 /模块的顶部电池。 该制造工艺较快因此较 便宜, 然而模块性能损失仅 2瓦。 0047 在下列表中所给出的 RF功率代表 RF产生器的输出功率。 在等离子体中的实际功 率 取 。

38、决 于 在 产 生 器 与 等 离 子 体 工 艺 腔 间 的 电 缆 长 度。 因 此, 必 需 对 不 同 电 缆 长 度 施 加 校 正 因 子。 对 标 准 PECVD沉 积 系 统, 如 Kai 1-1200( 可 从 Oerlikon Solar购 得 ) 来 说, 每 个 反 应器的 i层的沉积条件为 : 多 种 研 究 已 示 出 正 常 高 的 RF功 率 水 平 将 导 致 增 加 的 沉 积 速 率 及 改 进 的 层 密 度。 改 进 的 密 度 对 稳 定 性 有 益, 换 句 话 说, 预 计 有 较 小 的 退 化。 另 一 方 面, 所 沉 积 的 层 的 均 。

39、匀 性 将 降 低。但是, 全部三个准则都重要 :高生产量、 好的均匀性及层稳定性。 0048 本发明人的努力示出并不需要为了其它二个目标而牺牲其中的一个目标。 从上述 表中可认识到, 对 1.4平方米待涂覆的基板来说, 450 sccm的硅烷流及 2000 sccm的氢流足 以产生持续高均匀 (8.8%或更好 )层, 然而 RF功率可从 600增加至 1200瓦并可维持在 4.4 至 6.6埃 /秒 间 的 相 应 沉 积 速 率。 换 句 话 说, 在 此 特 定 的 工 艺 窗 口 中, 甚 至 加 倍 的 RF功 率 水 平 也 不 会 导 致 层 均 匀 性 降 低。 如 第 三 列。

40、 示 出, 进 一 步 增 加 氢 及 硅 烷 流 (在 提 高 的 整 体 压 力下 )将不会自动地造成沉积速率及 /或均匀性增加。 0049 上 述 精 确 值 应 该 不 限 制 本 发 明 的 范 围。 在 1至 1.8毫 巴 间 的 整 体 压 力 水 平 下, 每 基 板 尺 寸 的 RF功 率 :硅 烷 流 量 :氢 流 量 的 关 系 可 转 移 至 其 它 基 板 尺 寸, 而 具 有 可 比 较 的 结 果。RF 功率可如上所述般相应地改变。 0050 关于 V oc 的电池效率的进一步优化已经由新缓冲层组分实现。 此缓冲层布置在 p层 44与 i层 45间 (缓 冲 层 。

41、未 在 图 3中 示 出 )。 新 缓 冲 层 相 应 提 高 p-i-n层 堆 叠 或 太 阳 能 电 池 /模块的 p/i界面而没有对生产量有负面冲击。 此缓冲层已经以比现有技术程式少 30% 的沉积速率沉积。 该缓冲层已经以 20倍的氢稀释 (硅烷 :氢 =1: 20)沉积。 为了提高电池 /模块的 V oc , 将 CH 4 加入至缓冲层的工艺气体流, 高达 SiH 4 +CH 4 流的 39%。 0051 某些研究已示出在 i-层中的 CH 4 提高初始测量的电池性能, 但是降低层质量 (如 因此稍后观察到提高的 LID)。 0052 由 于 根 据 本 发 明 的 进 一 步 实 。

42、施 例 的 该 缓 冲 层, 可 实 现 提 高 的 初 始 效 率。 在 LID中 未观察到负影响。根据 i层厚度, 观察到 20-25%退化。 说 明 书CN 102844892 A 7/7页 10 0053 在实验实施例中, 该缓冲层厚度被选择为 9纳米。 在该电池 /模块程式中, 用于此 新缓冲层的沉积时间因此为 100秒。 但是, 就生产量而言, 这是无害的 (与现有技术程式比 较 ), 因为如上所述增加的 a-Si: H沉积速率补偿此效应。 0054 每个反应器用于缓冲层的沉积条件为 : 新缓冲层 RF功率 (瓦 ) 299 压力 (毫巴 ) 0.5 SiH 4 (sccm) 20。

43、8 H 2 (sccm) 4160 CH 4 (sccm) 134 沉积速率 (埃 /秒 ) 0.92 均匀性 (%) 15.14 沉积根据本发明的实施例的该缓冲层。 0055 上 述 精 确 值 不 应 该 限 制 本 发 明 的 范 围。 在 基 本 上 0.5毫 巴 的 整 体 压 力 水 平 下, 每 基 板 尺 寸 的 RF功 率 :硅 烷 流 量 :氢 流 量 :甲 烷 流 量 的 关 系 可 转 移 至 其 它 基 板 尺 寸 而 具 有 可 比较的结果。该缓冲层的厚度可变化 +/-2纳米。 0056 进 一 步 数 据 显 示 在 图 1b)中。 此 图 示 出 新 缓 冲 层。

44、 的 均 匀 性 及 沉 积 速 率, 其 通 过 椭 圆光度法在 11001300基板上于 1311点光栅中测量。于此, 下列占优势 : 最小 : (纳米 ) 58.56 最大 : (纳米 ) 79.46 平均 : 75.23 均匀性 : (%) 15.14 USEC: (%) 27.78 t: (秒 ) 800.00 沉积速率 : (埃 /秒 ) 0.94 标准偏差 (%): 3.95 如 先 前 所 提 及, 可 创 造 地 结 合 该 新 缓 冲 层 以 实 现 整 体 改 进 的 本 征 吸 收 体 层 系 统。 此 缓 冲 层 系 统 包 含 低 速 率 沉 积 的 具 有 微 量。

45、 碳 的 a-Si: H缓 冲 层 加 上 高 速 率 沉 积 的 a-Si: H体 吸 收体层。 该体吸收体 (i-)层被选择为在 100纳米至 600纳米间, 优选地在 150-300纳米间。 该 缓 冲 层 被 沉 积 至 厚 度 在 5纳 米 至 15纳 米 间, 优 选 地 为 7纳 米 至 11纳 米。 已 经 发 现 沉 积 速率比率 (低速率工艺沉积速率 :高速率工艺沉积速率 )被有利地选择为基本上在 1: 7至 1: 5间。所述用于缓冲层的气体流量比率可有利地与对上述体 i-层所描述的比率结合。 0057 对于在体吸收体 (i-)层 a-Si: H之后的 a-Si: H缓冲层系统实现本发明的实施例, 其中下列比率应该有效 : 比率 新缓冲层 体 (i-)吸收体 RF功率 1 2-3 压力 1 2-3 SiH 4 1 2-2.5 H 2 2-2.5 1 CH 4 1 0 沉积速率 1 5-7 说 明 书CN 102844892 A 10 1/3页 11 图 1a 说 明 书 附 图CN 102844892 A 11 2/3页 12 图 1b 说 明 书 附 图CN 102844892 A 12 3/3页 13 图 2 图 3( 现有技术 ) 说 明 书 附 图CN 102844892 A 13 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 电学 > 基本电气元件


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1