本发明涉及吸附脱除空气中所含烃的方法,尤其是涉及吸附脱除某些工厂环境中所含烃的方法,在这些环境中的烃排放应满足立法机构制订的卫生和安全标准。本发明还涉及除碳和氧而外还可能含有O,S和N作为组成原子的挥发性有机化合物。 低温下用适当吸附剂选择吸附空气中的有机化合物的工艺已知并已实施几十年,同时也用解吸气流如空气吹扫已加热到比吸附操作温度高100-200℃的吸附剂而进行解吸操作。目前最常提到的吸附剂表面积大的活性碳,硅质岩和SiO2/Al2O3比例高的沸石如ZSM型沸石,发光沸石及通常的八面沸石深度脱铝后所得的亲油沸石,这些硅化合物的优点是可在热空气中再生,同时又不会出现用活性炭时担心出现的不利影响。易于在这种操作中应用的后一吸附剂可用适当脱铝的无定形二氧化硅-氧化铝(硅酸铝)制得。就吸附速度和饱和时每克固体吸附的烃量而言,这类二氧化二硅-氧化铝的性能比脱铝沸石的性能稍差,但脱铝工艺更简单并且所得固体价格还低。
本发明涉及上述吸附剂,尤其是硅化合物在可利用其有效理性能的特定条件下的应用。这种应用过程中可有效利用吸附剂的活性(就吸附速度而言),其吸附容量,有关脱除COV(挥发性有机化合物)的性能,同时尽可能减少吸附床中的压降。吸附及解吸期间在装置入口和出口间出现的压降实际上构成了各种操作费用中最为重要的经济因素。
现有技术重视应用以轴向固定床,流化床或移动床形式操作的吸附剂地吸附方法(Handbook of seperation processtechnology-1987),其中说明了各种吸附器。在这些吸附器中,根本没有涉及到本发明提出的这种应用。
活化炭类吸附剂包括二氧化硅,脱铝二氧化硅-氧化铝(硅酸铝),硅质岩,易于在水存在下吸附烃,尤其是VOC的脱铝分子筛,本发明目的即涉及这些吸附材料减少经过吸附床的压降的特殊用途或新用途,其应用过程中可保证待去除的烃(VOC或COV)在固体上的良好保持率,因此可大大降低吸附器中压降,同时又不会有损于该操作中以所用吸附剂体积计而期望达到的效果。
本发明方法第一方案中,所用等效(equivalent)直径为0.5-5mm的粒状吸附剂包在金属丝,硅线或耐高温复合材料织成或编成的网容积内。网眼小于颗粒直径并且含颗粒的单元(elementaire)体积的等效直径可根据吸附器尺寸调节。所观察到的压降与单元体积的尺寸密切相关,并且在吸附器内任何单元体积均表现为小型吸附器,就其操作性能而言,亦符合化学工程领域的一般原则。在这些条件下,床层形式可为以下几何形式中的一种或另一种:轴向床,径向床,柱状单元旋转床。这三种床层形式的几何形状已示于图1A,1B,1C中(E表示至少一个入口,而S表示至少一个出口)。吸附剂的单元体积可具有各种几何形状(已示于图1B边上):柱状,球状,立方体或优选为四面体,这在欧洲专利申请NO.494550-A中已作说明。在所有这些情况下,须使吸附床直径比单元体积的等效直径大约50倍。用相同厚度的自由颗粒床达到的压降降低程度大于系数10。因此,在采用自由颗粒床时,可使用厚度为压降所允许的厚度的2至5倍的床层。而且,紧密保持在这些单元体积内的颗粒床层强制使气流沿任意通道流通,在可比的压降和空速下,这些通道可达到比涂上吸附相的平行通道上整块吸附剂获得的效果好得多的提纯效果。
在本发明方法第二方案中,颗粒为自由颗粒,其形状为实心挤出粒状或空心挤出粒状,这些颗粒送入如图2所示的小型径向床中,这些单元吸附器长度为100-200cm,厚度为10-30cm并且置于被处理气体的集气容积内,好象换热管(图2A和2B)。各吸附容积就象从中心进料的小型径向吸附器,而在外部用装有小型吸附器的外壳收集被处理的气体。这种设计方案的优点是减少压降并可装备相同的金属网单元,并且可将这些单元插入集气外壳之前将这些金属网填满。长度为100cm的各单元容量为50-2001,床层厚度与吸附剂颗粒的等效直径和装置内允许的压降有关。两台吸附器可平行排列,其中一台处于吸附阶段,另一如处于解吸阶段(图2D)。各吸附器可包含例如4-36层小型床层,而为了达到大容量,也可将两组小型床层结合起来以使设备的容量加倍。已表明这种低厚度催化床层尤其有利于应用脱铝的亲油分子筛(发光沸石,ZSM,八面沸石),其特性曲线QA·f(PA)(其中QA为固体上吸附的A量,而PA为其分压)在低PA值情况下达到其平稳阶段(固体饱和),A为待吸附烃。在这种情况下,可形成特别明显的吸附前沿,其中可应用低厚度床层。
这种设计中还可配置成图2C所示的平行六面体单元。
不管是用柱体单元,还是用平行六面体单元,有气体进出的壁都用刚性不锈钢网制成(该网可用加强杆增强),所用网的网眼尺寸小于吸附剂颗粒的最小尺寸。
在本发明方法第三方案中,将吸附剂涂在编织铝线或玻璃纤维载体上,制成可使气体沿任意通道流通的垫床。
这些单元压降低,可用于处理流量大,处理压力低的空气。
另一方面,由于涂层吸附剂量小(100kg/m3左右),所以吸附的体积容量低,这就要求按连续再生工艺应用这类吸附剂(见图1C)
为了吸附可略为聚合或不可聚合的常见挥发性有机化合物(COV),可在常用温度和压力条件下进行吸附操作,即在0-120℃,优选20-60℃的温度和待去除气流排除压力下进行吸附操作。一般来说,COV含于空气中,其相对压力为0.1-1MPa,通常为0.1-0.2MPa。所用空速取决于所用吸附剂。就活化炭而言,空速为1000-5000m3待处理气体/h/m3吸附剂(m3/h/m3),对于脱铝沸石,则为5000-50000m3待处理气体/h/m3吸附剂。更具体地讲,就活化炭而言,空速还取决于要求达到的提纯程度。
一旦吸附剂在所应用的吸附和提纯条件下达到饱和,待提纯空气(或气体)就停止流通并用解吸气流代替,解吸气流的性能取决于所用吸附剂。在吸附剂为二氧化硅-氧化铝(硅酸铝)或脱铝沸石时,解吸气流由140-300℃,优选160-250℃的热空气流构成。这种气流通过吸附床的空速为100-500m3/h。该解吸气流经换热器而冷却到常温,其中有机蒸汽部分冷凝后在分离器中从气相中分离。分离后,在希望尽可能除去挥发性有机化合物时,将气相循环到吸附床。解吸操作在接近并略高于大气压的压力下进行。
在所用吸附剂为活化炭时,也可在前述条件下进行解吸,但为了避免吸附剂降解,宁可用近于化学计量的惰性气体(氮或燃烧气)作为解吸气流,而不优选用空气。
上述方法可根据所用吸附器而呈现为两种实施方案,所用吸附器为:移动式或固定式。
在吸附器为图1C所示移动式吸附器时,则吸附床可从吸附区转移到解吸区。分成等体积(如6-10体积)的区域的吸附器可定期经一环形部件绕其轴转动。在吸附器包括n(如6-10)个相同的区域时,则n-3个区域处于吸附阶段并且被处理气体从顶到底穿过这些区域,这已表示在图1C中,另外3个区域则处于解吸阶段,其中包括以下3个步骤:加热,解吸,冷却。在这种情况下,明显区别开的集气区可回收气流,同时可避免其与被处理气体混合。解吸在加热到130-250℃的解吸气流中进行,再生固体的冷却在冷空气流(或冷解吸气流)中进行。
固定吸附器系统可包括两台相同的吸附器,而吸附床的数量和几何形状则不限。吸附器之一处于吸附阶段,而另一台则按以下顺序操作:加热,解吸,冷却。操作原理同于图1A,1B,2A,2C所示。
实施例1
八面沸石的Si/Al原子比为100,呈平均直径1.8mm,平均长度4mm的挤出粒状,将这些颗粒塞入不锈钢网制成的锥形单元体积内,网眼长度为1.2mm,不锈钢网厚为0.3mm。锥的母线长30mm,锥底直径亦为30mm。以85个/升的比例将这些锥体放在柱形吸附器中,在该吸附器中这些锥体形成1.12m高的吸附床,其底表面为0.07m2。该床底部用多孔不锈钢网支撑,网眼为5mm,网厚为1mm。流体从底到顶穿过吸附床。
吸附试验用加了乙酸丁酯和二甲苯的空气进行,温度为30℃,相对湿度(HR)为约70%,而乙酸丁酯和二甲苯在空气中的浓度为200(ppm)。所用空速为10000,计为被污染空气体积/吸附剂体积/小时,这相当于在空容器中的线速度为3.1m/s。所观察到的压降为240mm水柱(24hPa,约24mbar)。在出口对流出物进行分析并在总烃化合物含量为待处理气体中的含量的5%时停止吸附试验而进行解吸。在试验条件下,沸石吸附的烃量为其重量的8.4%。这相当于在床层穿透之前经过2.6小时的操作吸附了2kg烃。
为进行解吸操作,可通入加热到180℃的空气,空速为300m3/m3床层/h。床层温度从30℃逐渐加热到175℃,被吸附烃的解吸也是逐渐的并且用色谱法确定气体的浓度。乙酸丁酯解吸速度快于二甲苯,但在通热空气1小时30分钟后,产品即已完全被解吸。-15℃下冷凝的产品相当于约2kg重。
然后通入未被污染的空气,将吸附剂冷却到30℃,空气空速为2000。在吸附循环期间测得的压降低于10mm水柱(=1hPa=1mbar)。
实施例2
该试验条件同于试验1,只是空速为5700h-1。经过吸附床测得的压降为137mm水柱(=13.7hPa=13.7mbar)。被吸附的总烃最大量可达到所用沸石重量的9.8%,这相当于在床层穿透之前增重2.5kg。吸附4.5h后出现穿透。
用已预先冷却到200℃的准化学计量甲烷燃烧气流进行解吸,其空速为150h-1。在所用条件下,在通解吸气流1h后可认为操作已完成。
实施例3
试验用同于实施例1的沸石在相同的操作条件下进行,只是在边长为3cm的四面体,而不是锥体积内填充吸附剂。所观察到的压降略低(190mm水柱或19hPa=19mbar),而观察到的效果也略低。即在仅进行2.3h吸附操作后床层即穿透。
实施例4
试验在同于实施例2的操作条件下进行,即空速为5000h-1,但用98.7%脱铝的二氧化硅-氧化铝作为吸附剂。该吸附剂为球状,其直径为2-4mm。所得结果表明意外地,但不可忽视地吸附了两种烃,但同时亦吸附了很多的水。用脱铝沸石时,在1.2h,而不是4.5h后即出现床层穿透。在穿透时,吸附剂已吸进了1%的烃溶剂和35%的水。这种吸附剂可有效地用于同时吸附挥发性有机化合物和水蒸汽。
实施例5
该例所用吸附器如图2B所示,在大容量情况下可将吸附器按图2C所示排列成平行六面体或柱体。床壁用刚性不锈钢网制成。其网眼为1.4mm,该网用直径为1mm的线构成以使网有良好的刚性。而且,每一单元均为刚性结构,以避免吸附体积在气体速度或在解吸操作期间的温升情况下出现任何变形。吸附剂层厚为9cm,中心集气室直径为10cm,单元高1m,其床层中含55升吸附剂,被处理气体迅速流过该吸附剂床。固体吸附剂为同于实施例1的脱铝沸石,但应用时未填入某一适当几何形状的单元体积内。
30℃和10000h-1空速下用同于实施例1的气体操作时的压降为61mm水柱(6hPa)。经3小时操作后被吸附烃量为2.1%时,床层穿透。
用加热到220℃的空气流进行的解吸于35mm处操作并使被处理的吸附剂具有其初始性能。
体积相同(551)和厚度相同(9cm),但为平行六面体的床层的压降为50mm水柱,就床层穿透前被吸附的烃量(10.3%)而言,其性能略为好一些。
实施例6
处理实施例1的气体,但作为吸附剂应用活化炭并将其填入同于实施例1的锥体小单元中。锥体单元床层尺寸同于实施例1。有关温度和压力的操作条件也相同,但空速降到4000h-1。所用炭为粒状,其特征如下:平均直径为1.2mm,比表面为937m2/g,松散堆积密度为0.22。在这些条件下,经过23小时操作后才出现床层穿透并且炭上烃保持率为其自身重量的35%。
向床层中通入已冷至250℃并且极其贫氧的天然气燃烧气来进行解吸,气流空速为200h-1。烃冷却后冷凝,分离器出口的气相在与燃烧气混合而使其冷却到250℃后循环送去解吸。经3小时处理后,可认为解吸已完成。
同于第一次的第二次吸附操作的烃吸附量为所用炭重量的34wt%。
解吸操作之后的第三及第四次吸附操作在如上所述条件下进行,其中被吸附烃保持率为34.5wt%和35.3wt%。
实施例7
吸附剂为涂了同于前述实施例的沸石粉的铝线或玻璃纤维编织成的垫床,该吸附剂采用已知生产催化床的适当技术制成。
这样制成的垫为直径80mm,长20mm的柱体,网眼为2-3mm,所用线直径为8/10mm。该吸附剂含92g同于实施例1且Si/Al原子比>100的八面沸石。
将吸附垫放在直径为80mm的柱状吸附器中,室温下向其中通入含300ppm乙酸丁酯,即含烃1.2g/m3的空气,速度为30m3/h,即线速度为1.7m/s。
出口处的浓度每3分钟用色谱法记录一次。
最初四次测量时烃浓度小于25ppm,后续测量时突然升至300ppm,这表明经12-15分钟操作后的吸附前沿已穿透。
经该吸附“床”测得的压降低于2hPa(20mbar),即1.7m/s下低于100mm水柱/m床长度。
总的VVH为30000h-1,吸附容积容量为9kg乙酸丁酯左右/m3床层。
同于前述实施例用150℃下的逆流热空气进行再生。