状态诊断方法和状态诊断装置.pdf

上传人:t**** 文档编号:4042530 上传时间:2018-08-12 格式:PDF 页数:11 大小:757.37KB
返回 下载 相关 举报
摘要
申请专利号:

CN201410524592.7

申请日:

2014.10.08

公开号:

CN104517027A

公开日:

2015.04.15

当前法律状态:

实审

有效性:

审中

法律详情:

实质审查的生效IPC(主分类):G06F 19/00申请日:20141008|||公开

IPC分类号:

G06F19/00(2011.01)I

主分类号:

G06F19/00

申请人:

横河电机株式会社

发明人:

大谷哲也; 和田英彦; 黑田知宏

地址:

日本东京

优先权:

2013-210142 2013.10.07 JP

专利代理机构:

北京天昊联合知识产权代理有限公司11112

代理人:

陈源; 李铭

PDF下载: PDF下载
内容摘要

一种基于波形数据诊断被诊断对象的操作状态的状态诊断方法。获取表示时序数据的值的波形作为目标波形,波形的时间轴被配置为将被诊断对象的操作的开始时间或者将被诊断对象的操作的改变时间设置为原点。计算表示被诊断对象的正常状态或异常状态的基准波形与目标波形之间的相似度。基于相似度确定被诊断对象的状态。

权利要求书

权利要求书
1.  一种用于基于波形数据诊断被诊断对象的操作状态的状态诊 断方法,包括:
获取表示时序数据的值的波形作为目标波形,波形的时间轴被 配置为将所述被诊断对象的操作的开始时间或者将所述被诊断对象 的操作的改变时间设置为原点;
计算表示所述被诊断对象的正常状态或异常状态的基准波形与 所述目标波形之间的相似度;以及
基于所述相似度确定所述被诊断对象的状态。

2.  根据权利要求1所述的状态诊断方法,其中:
所述基准波形是表示时序数据的值的波形,其时间轴被配置为 将在所述被诊断对象的正常状态下所述被诊断对象的操作的开始时 间或者所述被诊断对象的操作的改变时间设置为原点,或者所述基准 波形可以是表示时序数据的值的波形,其时间轴被配置为将在所述被 诊断对象的异常状态下所述被诊断对象的操作的开始时间或者所述 被诊断对象的操作的改变时间设置为原点。

3.  根据权利要求1或2所述的状态诊断方法,其中:
多个波形可被用作所述基准波形;以及
所述被诊断对象的状态被确定为与所述相似度最高的所述基准 波形相对应的状态。

4.  根据权利要求1或2所述的状态诊断方法,其中:
通过将所述基准波形与在表示所述值的轴的方向上移动、扩展 或压缩所述目标波形所获得的波形进行比较来计算所述相似度。

5.  根据权利要求1或2所述的状态诊断方法,其中:
通过将所述基准波形与在时间轴的方向上移动、扩展或压缩所 述目标波形所获得的波形进行比较来计算所述相似度。

6.  一种用于基于波形数据诊断被诊断对象的操作状态的状态诊 断装置,包括:
获取模块,被配置为获取表示时序数据的值的波形作为目标波 形,波形的时间轴被配置为将所述被诊断对象的操作的开始时间或者 将所述被诊断对象的操作的改变时间设置为原点;
计算模块,被配置为计算表示所述被诊断对象的正常状态或异 常状态的基准波形与通过所述获取模块获取到的所述目标波形之间 的相似度;以及
确定模块,被配置为基于所述计算模块计算出的所述相似度确 定所述被诊断对象的状态。

说明书

说明书状态诊断方法和状态诊断装置
技术领域
本发明涉及用于基于波形数据诊断操作状态的状态诊断方法和 状态诊断装置。
背景技术
在诸如制造厂、工厂、铁路、道路和桥梁的社会基础设施中, 许多设施已经极其老化。因此,维护成本的增加值得忧虑。在这种情 况下,视情维护(CBM)比基于时间的维护(TBM)更加优选,其中, 视情维护是指不断地通过传感器检测设施的状态,然后根据它们的状 态来维护、检查、翻修或替换设施,而基于时间的维护是指周期性地 维护、检查、翻修或替换设施。
根据传感器信号诊断设施的状态(例如,设施是否正常或异常) 的方法包括:基于由一个或多个传感器信号表示的值的范围确定状态 的方法。如果不能仅基于值的范围确定状态,有时可以基于由传感器 信号的值表示的波形来确定设施的状态。
在基于波形数据诊断状态(诸如正常和异常状态)的情况下, 通常使用例如以下方法。即,例如,如专利文献1所描述的,首先对 波形数据执行诸如平滑和异常值排除的预处理。如果波形数据是声音 数据或振荡数据,则对波形数据执行例如使用快速傅立叶转换(FFT) 转换为谱数据的预处理。接下来,计算特征量并将其与正常图案的特 征量和异常图案的特征量进行比较。诸如最大值、最小值和超过阈值 的次数的各种量被用作特征量。
[现有技术文献]
[专利文献]
[专利文献1]JP-A-2004-110602
然而,使用特征量的现有技术的方法需要根据要解决的问题设 计将要使用的预处理方法和特征量。例如,在专利文献1所描述的 Mahalanobis-Taguchi(MT)系统中,提出了多种方法来作为其中所 使用的特征量计算方法。然而,其进行反复试验来确定选择哪种方法 以及哪个值被设置为参数。这种反复试验通常需要花费较多的时间。 此外,反复试验工作内容的质量极大地影响稍后诊断的结果。
发明内容
本发明的示例性实施例提供了一种状态诊断方法和一种状态诊 断装置,其可以不进行反复试验工作而获得适当的诊断结果。
一种用于基于波形数据诊断被诊断对象的操作状态的状态诊断 方法,包括:
获取表示时序数据的值的波形作为目标波形,其时间轴被配置 为将被诊断对象的操作的开始时间或者将被诊断对象的操作的改变 时间设置为原点;
计算表示被诊断对象的正常状态或异常状态的基准波形与目标 波形之间的相似度;以及
基于相似度确定被诊断对象的状态。
根据该状态诊断方法,基于基准波形和目标波形之间的相似度 进行诊断。因此,可以不进行反复试验工作而获得适当的诊断结果。
基准波形可以是表示时序数据的值的波形,其时间轴被配置为 将在被诊断对象的正常状态下被诊断对象的操作的开始时间或者被 诊断对象的操作的改变时间设置为原点,或者基准波形可以是表示时 序数据的值的波形,其时间轴被配置为将在被诊断对象的异常状态下 被诊断对象的操作的开始时间或者被诊断对象的操作的改变时间设 置为原点。
多个波形可被用作基准波形;以及
被诊断对象的状态可以被确定为与相似度最高的基准波形相对 应的状态。
可以通过将基准波形与在表示值的轴的方向上移动、扩展或压 缩目标波形所获得的波形进行比较来计算相似度。
可以通过将基准波形与在时间轴的方向上移动、扩展或压缩目 标波形所获得的波形进行比较来计算相似度。
一种被配置为基于波形数据诊断被诊断对象的操作状态的状态 诊断装置,包括:
获取模块,被配置为获取表示时序数据的值的波形作为目标波 形,该波形的时间轴被配置为将被诊断对象的操作的开始时间或者将 被诊断对象的操作的改变时间设置为原点;
计算模块,被配置为计算表示被诊断对象的正常状态或异常状 态的基准波形与通过获取模块获取的目标波形之间的相似度;以及
确定模块,被配置为基于计算模块所计算出的相似度确定被诊 断对象的状态。
根据该状态诊断装置,基于基准波形和目标波形之间的相似度 进行诊断。因此,可以不进行反复试验工作而获得适当的诊断结果。
根据本发明的状态诊断方法,基于基准波形和目标波形之间的 相似度进行诊断。因此,可以不进行反复试验工作而获得适当的诊断 结果。
根据本发明的状态诊断装置,基于基准波形和目标波形之间的 相似度进行诊断。因此,可以不进行反复试验工作而获得适当的诊断 结果。
附图说明
图1是示出根据本发明的状态诊断装置的框图。
图2是示出根据该实施例的状态诊断装置的操作的流程图。
图3A是示出在时间轴的方向上扩展/压缩目标波形的示图。
图3B是示出在时间轴的方向上移动目标波形的示图。
图4A是示出在表示时序数据的值的轴的方向上移动目标波形的 示图。
图4B是示出在表示时序数据的值的轴的方向上扩展/压缩目标 波形的示图。
具体实施方式
以下将描述根据本发明的状态诊断装置的实施例。
图1是示出根据本发明的状态诊断装置的框图。
如图1所示,根据该实施例的状态诊断装置包括用于获取基准 波形的离线处理模块10和用于在线计算波形相似度的在线处理模块 20。
如图1所示,离线处理模块10包括波形数据库11、波形分析模 块12和基准波形存储模块13。波形数据库11在包括启动各个设施 和系统中的每一个的时间和改变各个设施和系统中的每一个的操作 的时间的非平稳操作时间期间存储过去的响应波形。波形分析模块 12分析存储在波形数据库11中的波形并提取或生成基准波形。基准 波形存储模块13存储波形分析模块12中的基准模型。
在线处理模块12包括波形获取模块21、预处理执行模块22、 相似度计算模块23和状态确定模块24。波形获取模块21在线获取 目标波形,目标波形是非平稳操作期间(诸如启动各个设施和系统中 的每一个时和改变各个设施和系统中的每一个的操作时)的当前响应 波形。预处理执行模块22对波形获取模块21所获取的目标波形执行 预处理。相似度计算模块23通过将预处理执行模块22对其执行了预 处理的目标波形与基准波形进行比较来计算由波形获取模块21所获 取的目标波形与由基准波形存储模块13所给出的基准波形之间的相 似度。状态确定模块24基于相似度计算模块23所计算得出的相似度 来确定各个设施和系统中的每一个的状态(其由目标波形来表示)。
接下来,将描述根据该实施例的状态诊断装置的操作。
图2是示出根据该实施例的状态诊断装置的操作的流程图。
图2中的步骤S1至S3示出了离线处理模块10的操作。
在图2的步骤S1中,存储在波形数据库11中的多个波形被读 入波形分析模块12。
接下来,在步骤S2中,使用波形分析模块12分析从波形数据 库11读出的每个波形。因此,提取或生成适合用作基准波形的波形。
接下来,在步骤S3中,在步骤S2中提取或生成的波形作为基 准波形存储在基准波形存储模块13中。然后,终止处理。
在步骤S2中,使用波形分析模块12选择基准波形。这里,可 以充分通过人为判定来提取与各个设施和系统中的每一个的正常状 态相对应的波形、与各个设施和系统中的每一个的异常状态相对应的 波形等。可选地,可以代替人为判定而使用波形集群分析技术。在这 种情况下,通过集群分析将存储在波形数据库11中的多个波形分为 多组波形(集群),诸如正常波形组和异常波形组(分别与各个设施 和系统中的每一个的正常状态以及各个设施和系统中的每一个的异 常状态相对应)。然后,获取每个集群的中心波形并将其设置为基准 波形。可以使用每个集群的波形的平均来计算中心波形。
如果存在与各个设施和系统中的每一个的正常状态相对应的多 个模式、或者如果存在与各个设施和系统中的每一个的异常状态相对 应的多个模式,则可以准备与每个模式相对应的多个波形作为分别表 示正常状态和异常状态的基准波形。
步骤S11至S14示出了在线处理模块20的操作。
在图2的步骤S11中,波形获取模块21在线获取目标波形,目 标波形是非平稳操作期间(诸如启动各个设施和系统中的每一个时和 改变各个设施和系统中的每一个的操作时)的当前响应波形。
接下来,在步骤S12中,预处理执行模块22对波形获取模块21 所获取的目标波形执行预处理。
接下来,在步骤S13中,相似度计算模块23将预处理执行模块 22对其执行了预处理的目标波形与从基准波形存储模块13中获取的 基准波形进行比较,以计算目标波形和基准波形之间的相似度。
接下来,在步骤S14中,状态确定模块24基于相似度计算模块 23所计算得出的相似度来确定各个设施和系统中的每一个的状态 (其由目标波形来表示)。然后,处理终止。
在步骤S13中,在目标波形的时间轴和基准波形的时间轴被设 置为使得开始操作的时间或改变操作的时间为相同时间的状态下,计 算目标波形和基准波形之间的相似度。即,在步骤S12中,开始操作 的时间或改变操作的时间不与基准波形相匹配的波形不被提取或生 成为目标波形。
在步骤S13中,相似度计算模块23以矢量形式表示两个波形 (即,目标波形和基准波形),限定矢量之间的距离,并且评估该距 离是否较小、相似度是否较高。例如,该距离为以下欧几里德 (Euclidean)距离。
首先,相似度计算模块23使用n个采样x(1)至x(n)表示基准 波形,并且还使用n个采样y(1)至y(n)表示目标波形。此时,通过 等式1表示基准波形和目标波形之间的欧几里德距离。
等式(1)
顺便提及,当计算相似度时,可以使用相关系数来代替欧几里德 距离。在这种情况下,如果相关系数较大,则相似度被评估为较高。 在使用n个采样x(1)至x(n)表示基准波形并且使用n个采样y(1)至 y(n)表示目标波形的情况下,通过等式(2)表示基准波形和目标波 形的相关系数。
等式(2)
这里,和分别是x和y的平均数。
如上所述,如果存在正常情况下的多个模式、或者存在异常状态 下的多个模式,则多个波形可以被用作基准波形,以表示与每个模式 相对应的正常或异常状态。在这种情况下,在步骤S14中,可以确定 由目标波形表示的状态(即,各个设施或系统中的每一个的状态)是 与相似度计算模块23计算出的相似度最高的基准波形相对应的状态 (即,与特定模式相对应的正常状态或者与特定模式相对应的异常状 态)。
步骤S12中的预处理包括异常值排除、平滑和变量范围标准化。
异常值排除包括由传感器的故障和校准所生成的异常值的排除以 及由于通信错误所引起的缺少值而导致的异常值的排除。此外,可通 过平滑值来抑制噪声分量。如果存储在波形数据库11(参见图1)中 的时序数据包括许多由于传感器的故障和校准以及由于通信错误所引 起的缺少值而导致的异常值和噪声,这些原因会严重影响相似度的值。 因此,相似度会被不正确地数字化。这种不利因素可通过执行预处理 (诸如从时序数据中排除异常值或者通过平滑(过滤处理)来减少噪 声分量)来避免。
顺便提及,欧几里德距离的标准化可被用作变量范围标准化。在 这种情况下,可以广泛使用已知方法。例如,可以执行标准化以使得 两个波形(即,目标波形和基准波形)的方差或两个波形中的每一个 的差值(最大值-最小值)为1。
此外,可以通过在时间轴的方向上执行目标波形的扩展/压缩来进 行校正,并且可以在表示时序数据的值的轴的方向上执行目标波形的 移动以及在表示时序数据的值的轴的方向上执行目标波形的扩展/压缩 作为预处理。
图3A、图3B、图4A和图4B是示出预处理执行模块22如何对 波形执行校正的示图。在图3A、图3B、图4A和图4B中,实线61表 示基准波形,而虚线62表示目标波形。
图3A示出了时间轴方向上的目标波形的扩展/压缩。图3A示出 了由虚线62表示的目标波形如何以状态I、II和III的顺序在时间轴的 方向(在该图中为横向)上顺序扩展。在图3A中,状态I表示目标波 形在时间轴的方向上与状态II相比被压缩的状态。状态III表示目标波 形在时间轴的方向上与状态II相比被扩展的状态。图3B示出了目标波 形在时间轴的方向上的移动。图3B示出了由虚线62表示的目标波形 如何以状态I、II和III的顺序在时间轴的方向(在该图中为右手方向) 上顺序移动。
图4A示出了目标波形在表示时序数据的值的轴的方向上的移动。 图4A示出了由虚线62表示的目标波形如何以状态I、II和III的顺序 在表示时序数据的值的轴的方向(在该图中为向上方向)上顺序移动。
图4B示出了目标波形在表示时序数据的值的轴的方向上的扩展/ 压缩。图4B示出了由虚线62表示的目标波形如何以状态I、II和III 的顺序在表示时序数据的值的轴的方向(在该图中为上下方向)上顺 序扩展。在图4B中,状态I表示目标波形与状态II相比在表示时序数 据的值的轴的方向上被压缩的状态。状态III表示目标波形与状态II相 比在表示时序数据的值的轴的方向上被扩展的状态。
顺便提及,即使当对目标波形执行包括在时间轴方向上的扩展/ 压缩的任何校正时,也需要计算目标波形和基准波形中的每一个的时 间轴的原点(对应于开始操作的时间或改变操作的时间)总是与另一 波形的时间轴的原点相一致状态下的相似度。图3A、图3B、图4A和 图4B示出了在操作改变时设置每个时间轴的原点的实例。
即使形状基本类似的两个波形在相位上相互不同、在数据值上相 互不同、并且一定程度上在时间轴方向上的位置或尺寸方面相互不同, 也可以通过如图3A、图3B、图4A和图4B所示结合移动和扩展/压缩、 并且搜索与最高相似度相对应的结合来获得高相似度。因此,可以确 定地提取基本与基准波形类似的目标波形。顺便提及,在时间轴方向 上的移动需要在确保目标波形和基准波形的时间轴方向上的位置在操 作的开始时间或操作的改变时间处基本相互一致的状态的范围内执 行。可通过在时间轴方向上的细微移动来使两个波形中的操作的开始 时间或操作的改变时间精确地相互匹配。
例如,可通过时间轴方向上的扩展/压缩来排除由于工厂中存在的 容器之间的容量差异所导致的流速变化和温度变化速率的影响。因此, 可以确定地提取基本类似的目标波形。例如,如果在工厂运行期间产 量或容器容量发生变化,则考虑工艺量值的数据值以及发生变化的时 间改变。即使在这种情况下,也可以搜索到工厂或操作特有的波形的 相似度,而不会检测不到。如果关于压力的时序变化询问压力比而非 数据值,则可以通过在表示压力值的轴的方向上的扩展/压缩来确定地 提取基本与基准波形类似的目标波形。此外,如果询问数据值的比, 则表示数据值的轴可以是对数轴。
根据本发明,启动引擎的时间或加速引擎的时间可以作为“被诊 断对象的操作的开始时间或被诊断对象的操作的改变时间”的实例。 在这种情况下,可以通过将与表示引擎的旋转数量的数据相对应的响 应波形设置为目标波形来诊断引擎的状态。
此外,目标波形不限于与表示引擎的旋转数量的数据相对应的响 应波形。基于温度、压力等的任意测量值的任何波形都可用作目标波 形。
此外,被诊断的设施和系统不限于特定的设施和系统。在包括工 厂设施和引擎的所有装置中,移动、旋转、液体流动、施加电流和加 热等的操作的开始时间处的响应波形、或者基于设置变化等的操作的 改变时间处的响应波形都可以被广泛用作目标波形。因此,可以执行 这些装置的诊断。
如上所述,根据本发明的状态诊断方法和状态诊断装置,基于基 准波形和目标波形之间的相似度进行诊断。因此,可以不进行重复试 验工作而获取适当的诊断结果。可以使用欧几里德距离或者相关系数 来计算相似度。从而,根据本发明的状态诊断方法和状态诊断装置消 除了根据被诊断对象设置各个特征量和参数的操作的需要。
本发明的应用范围不限于上述实施例。本发明可以广泛适用于用 于基于波形数据诊断操作状态的状态诊断方法或状态诊断装置。

状态诊断方法和状态诊断装置.pdf_第1页
第1页 / 共11页
状态诊断方法和状态诊断装置.pdf_第2页
第2页 / 共11页
状态诊断方法和状态诊断装置.pdf_第3页
第3页 / 共11页
点击查看更多>>
资源描述

《状态诊断方法和状态诊断装置.pdf》由会员分享,可在线阅读,更多相关《状态诊断方法和状态诊断装置.pdf(11页珍藏版)》请在专利查询网上搜索。

一种基于波形数据诊断被诊断对象的操作状态的状态诊断方法。获取表示时序数据的值的波形作为目标波形,波形的时间轴被配置为将被诊断对象的操作的开始时间或者将被诊断对象的操作的改变时间设置为原点。计算表示被诊断对象的正常状态或异常状态的基准波形与目标波形之间的相似度。基于相似度确定被诊断对象的状态。。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 物理 > 计算;推算;计数


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1