多层非织造隔热纤维胎 【技术领域】
本发明涉及改进的由合成纤维材料和特别是具有隔热性能一致性和羽绒的手感的隔热材料构成的隔热和缓冲结构。
背景技术
大家知道有许多天然的和合成的填充材料用于隔热作用,像外衣之类,如短外衣,冬季运动帽、手套,睡袋和床上用品如枕头、盖被、床垫、床罩。
天然羽绒已广泛应用于隔热,主要是因为它突出的单位重量隔热效率,柔软性和回弹性能。由于可以适当地弄松散和容纳在一物品或衣服的里面,羽绒一般被选择为隔热材料。但是羽绒当变湿时,会变紧密且失去它的隔热特性,并且当它暴露在潮气中时会发出一种令人相当不舒服的气味。同时,当物品中的羽绒压紧时,也需仔细地受控制的清洁和干燥过程来恢复它地蓬松和所产生的隔热特性。
对制备具有羽绒特性和结构的、以合成纤维为基底的结构已有了许多尝试。有几种尝试生产了代替羽绒的替代品,它通过将合成纤维材料转变成具有与纤维胎相关的特定方向的纤维、然后粘合切段纤维用以稳定纤维网来提高隔热特性的隔热纤维胎。
这样的尝试包括一用一般共面纤维包裹在套子里形成的枕头,其中纤维大体垂直于枕头表面的椭圆横截面的主轴线以提供一定的回弹性和蓬松性;一隔热材料,它是一微纤维与卷曲膨松纤维相混合的纤维网,卷曲膨松纤维可任意地充分地与微纤维相混合、相互缠结,以提供每单位厚度上高的热阻和适中的重量;一有缠结切段纤维和粘合切段纤维非织造隔热纤维胎,它在纤维网的表面部分大体平行于纤维网的表面而在纤维胎的中心部分大体垂直于纤维胎面,同时,粘合切段纤维在接触点与结构切段纤维和其他的粘合切段纤维相粘合。
其他的结构包括一80%-90%重量、直径3微米-12微米纺丝和拉伸的卷曲切段合成聚合微纤维,和5%-20%重量直径是从大于12微米一直到50微米的合成聚合切段微纤维的混合物,这后一种纤维被描述为其隔热特性可与羽绒相比;一粘合切段纤维结构的合成纤维隔热材料,它包括直径3微米-12微米的70%-95%重量的合成聚合微纤维和直径12微米-50微米的5%-30%重量的合成聚合微纤维,其中至少一些纤维在它们的接触点处粘合,粘合使合成结构的密度在3kg/m3到16kg/m3的范围内,粘合的集合物的隔热特性是相等于或大体上不小于未粘合集合物的隔热特性。在这集合物中整个集合物是粘合在一起的以保持对细纤维的旦尼尔支承和强度,而不受大纤维成分的较低热容热的影响。
一更进一步的结构建议提供一回弹的,热粘合的非织造纤维纤维胎,包括在一平面上有均匀的压缩模量,它比垂直与这个平面方向测量的压缩模量要大并且在整个厚度上的密度大体相同。这纤维胎通过形成一包含有至少20%重量的卷曲的和/或可卷曲的复合纤维也就是双组分粘合切段纤维的纤维胎来制备,它具有能在每厘米延伸长度上小于10个卷曲的卷曲频度,以及5到30的分特。纤维胎是通过让它经受一加热到超出软化复合纤维的成分温度的向上的一流体流动来影响内部纤维粘合而实现热粘合的。
本发明的技术方案
本发明提供一种非织造隔热纤维胎,它包括多层纤维网,每层纤维网包括粘合切段纤维和切段填充纤维的混合,粘合切段纤维与其他的粘合切段纤维和所述的切段填充纤维在每一层中的接触点处粘合以增强纤维胎各层间的结构稳定性。纤维胎可包括2旦尼尔或更多旦尼尔的切段填充纤维。纤维胎最好经过后处理如通过表面粘合以稳定成层的结构。
本发明也提供一种制备一隔热非织造多层纤维胎的方法,包括如下的步骤:
(a)形成一粘合切段纤维和切段填充纤维的纤维网;
(b)给所述的纤维网加以足够的热量,将粘合切段纤维与其他粘合切段纤维和切段填充纤维在接触点处粘合以稳定纤维网;和
(c)形成一由所述多层纤维网构成的纤维胎。纤维网最好通过梳理形成并通过重叠经梳理过的纤维网而形成各层。另外,这方法最好包括对纤维胎的后处理,如通过表面粘合稳定层的结构。
本发明的非织造隔热纤维胎具有隔热特性,特别是单位重量隔热效率可与羽绒的单位重量隔热效率相比或超过它,但没有羽绒对潮湿的敏感性。多层纤维胎的每层的存在提高了纤维胎的可覆盖性,柔软性或手感并且与单层结构的纤维胎的成分和构造相比提高了隔热特性。
本发明的纤维胎的机械特性例如密度,抗压性能,膨松性和它的隔热特性可通过改变纤维的旦尼尔,基本重量,粘合切段纤维率的结构,纤维类型,层表面的表面结构,和粘合状况在一很大的范围内变动。
附图简要说明
图1所示为本发明的多层非织造隔热纤维胎。
图2所示为本发明的多层非织造隔热纤维胎的较佳实施例的横剖面图。
对本发明的详细说明
图1中所示为本发明非织造隔热纤维胎10,它由包括切段填充纤维12和粘合切段纤维13的各个层面II构成。在每一层中粘合切段纤维在接触点处粘合其他纤维和切段填充纤维这样使各层间保持它们的完整性。
就性质上讲,可用于本发明的切段填充纤维通常是单组分的,包括,但不局 限于,聚对苯二甲酸乙二酯,聚酰胺,毛织物,聚乙烯氯化物,丙烯酸和聚烯烃如聚丙烯。虽然卷曲的和不卷曲的切段填充纤维可用于本发明的纤维胎,但是较好用具有每厘米1-10个卷曲数的卷曲纤维,更好的是用具有每厘米3-5个卷曲数的卷曲纤维。
虽然150mm长的切段填充纤维也能使用,但是适用于本发明纤维胎的切段填充纤维的长度还是以15mm到大约50mm的为好,最好是从25mm到50mm。
切段填充纤维的直径可在相当宽的范围内变化。可是,这样的变化改变了稳定化纤维胎的物理特性和热特性。通常,较细旦尼尔的纤维增加纤维胎的隔热特性,而较大旦尼尔的纤维则减小纤维胎的隔热特性。对于切段填充纤维有用的纤维旦尼尔数范围以0.2-15旦尼尔为好,0.5-5旦尼尔更好,最好的范围是从0.5-3旦尼尔,同时经常应用混合的纤维旦尼尔以得到希望的稳定化纤维胎的热特性和机械特性和优质的手感。4旦尼尔以下的较细旦尼尔的纤维提供改进的热阻,覆盖性,柔软度和手感,当旦尼尔数减小时这些性能有较大的提高。大于大约4旦尼尔的较大旦尼尔纤维使纤维胎具有较大的强度,缓冲和回弹力,随着纤维旦尼尔数增加,这些特性大大增强。
许多粘合切段纤维适用于稳定本发明的纤维胎,包括非结晶的可熔纤维,可被不连续涂复的有粘附涂层的纤维,和沿着纤维的长度在一共同并排延伸的、同心皮芯或椭圆皮芯结构上并排排列的具有一粘附组分和一旦尼尔持组分双组分的粘合切段纤维,并且粘附组分至少形成了纤维外表面的一部分。可粘合切段纤维的粘附组分最好用热粘合。用热粘合的纤维的粘附组分必须能在一低于纤维胎的切段填充纤维的熔解温度的温度下热激活(如可熔)。
用于本发明的粘合切段纤维尺寸的范围可从大约0.5到15旦尼尔,但如果粘合切段纤维的尺寸小于大约4旦尼尔并最好小于大约2旦尼尔时可得到最佳隔热特性。和切段填充纤维一起使用时,较小旦尼尔数的粘合切段纤维提高了纤维胎的隔热特性,而较大旦尼尔数的粘合切段纤维则降低了纤维胎的隔热特性。和切段填充纤维一起使用时,也可使用一等于或大于2旦尼尔的粘合切段纤维的混合物。
虽然长达150mm的纤维也可用,但粘合切段纤维的长度以大约15mm到75mm为好,但最好是大约25mm到50mm。粘合切段纤维最好是卷曲的,且以每厘米具有1到10个卷曲为好,最好的是每厘米3到5个卷曲。当然粘附粉末和喷雾状物也可用于粘合切段填充纤维,但是它们很难在整个纤维网上均匀分布故不理想。
一用于稳定本发明纤维胎的特别有用的粘合切段纤维是一卷曲的皮芯型粘合切段纤维,它有一个结晶的聚对苯二甲酸乙二酯的核心,核心被一激活的共聚聚烯烃的粘附聚合物外壳包围。外壳在一低于核心材料温度时可被热软化。由Hoechst Celanese公司提供的这种纤维,对于本发明纤维胎的制备特别有用的,并且在美国专利No.5,256,050和美国专利No.4,950,541中有所说明。其他皮芯型粘附纤维也可用以改进本发明的特性。典型的例子包括用来提高纤维胎的回弹性能的、具有一较高模量的核心的纤维或用来提高纤维胎的干清洁性的具有较好溶解度的外壳的纤维。
本发明纤维胎中的切段填充纤维和粘合切段纤维的数量可在一较大的范围内变动。通常,纤维胎中的粘合切段纤维的数量变化的范围很宽。纤维胎中的纤维重量以含5%到100%的粘合切段纤维和0%到95%的切段填充纤维为好,更好的是含10%到80%的粘合切段纤维和20%到90%的切段填充纤维,最好的是含20%到50%的粘合切段纤维和50%到80%的切段填充纤维。
本发明非织造隔热纤维胎以能提供单位重量隔热效率至少大约20clo/kg/m2为好,更好的是至少大约25clo/kg/m2,最好的是至少大约30/clo/kg/m2并且辐射参数小于大约20(W/mk)(kg/m3)(100),更好的是小于大约15(W/mk)(kg/m3)(100),最好的是小于10(W/mk)(kg/m3)(100)
本发明非织造纤维胎的体积密度以小于大约0.1g/cm3为好,更好的是小于大约0.005g/cm3,最好的是小于大约0.003g/cm3.当体积密度小到0.001g/cm3或更小时,能得到有效的隔热特性。为得到这样的体积密度,纤维胎的厚度范围以0.5cm到15cm为好,更好的是2cm到20cm,最好的是5cm到15cm,并且基本重量以从20g/m2到600g/m2为好,更好的是从80g/m2到400g/m2,最好的是从100g/m2到300g/m2。
构成本发明纤维胎各层的纤维网能利用任何现有的纤维网成型工艺制备包括梳理,扯松,如利用Rando-WebberTM的气流成网等。通常梳理是较佳的。每一层的厚度以大约1mm到60mm为好,更好的是大约3mm到20mm,并且每层的基本重量以大约5g/m2到300g/m2为好,更好的是大约5g/m2到100g/m2,最好的是大约10g/m2到30g/m2。
热粘合可通过任何能达到足够粘合粘合切段纤维以提供足够的结构稳定性的装置实现。这样的装置包括,但不局限于,普通的热空气炉,微波炉,或红外线能源。
形成多层的纤维胎的方法不是关键性的。可通过交叉铺网多道夫铺网,通过联接纤维网成形设备或任何其他铺网技术而形成多层。本发明纤维胎可以容纳至大约100层,但通常容纳5到30层,并且一般只要有2层便可见效。
分层的纤维胎最好经过后处理以稳定分层结构。这可通过加热纤维胎表面而实现,如使用普通的热空气炉,微波炉或红外线能源来粘合在纤维胎边缘上的各层的边缘。这正如图2所示,其中可见带有层21的纤维胎20的横截面,它单独在纤维胎20的中心部分并且在边缘22处被粘合。
在下面的例子中,使用下列的测定方法。
厚度
可通过应用一Custom科学仪器公司的型号为No.CS-49-46的低压厚度测量仪并在表面上作用一13.8Pa(0.002psi)的力来确定每块纤维胎的厚度。
密度
固定两平面样品的尺寸并按上述方法测出厚度而确定出每个纤维胎中的一个样品的体积。样品的密度是质量除以体积而计算出来的。
热阻
可根据ASTM-D-15185确定由于机械热对流,传导,和辐射而引起的混合热损失而测定出纤维胎的热阻。
手感
每块纤维胎的手感在同一尺度范围上从差,一般,好到优秀加以评定和划分。
下面的实施例将进一步说明本发明,但在这些实施例中的具体的材料,数量和其他条件和细节不应不合理的限制本发明。在实施例中,所有的成分和百分比除非有特别说明,均以重量表示。
实施例1-6
在实施例1中,切段填充纤维(75%重量的TreviraTM型121聚对苯二甲酸乙二酯,1.2旦尼尔,3.8cm长,可从Hoechst Celanese公司得到)和粘合切段纤维(根据美国专利No.4,950,541和美国专利No.5,256,050制备的25%重量的皮芯纤维有一被一2.2旦尼尔,2.5cm长的线性低密度聚乙烯融共聚合物的粘附聚合物外壳包围的聚对苯二甲酸乙二酯核心)是用一Hergeth Hollingsworth公司的CromtexTM开启机开启和混合。纤维被传送到一梳理机,该梳理机使用一个道夫滚筒和一个冷凝滚筒这样梳理提供一在一侧上纤维是基本定向于机器方向以提供一大体平滑的表面而纤维的另一表面定向于一更垂直的方向以提供一疏松的纤维特性的纤维网。然后纤维网穿过一温度为218摄氏度,速率是1.68米/分的空气循环炉以得到一稳定的纤维网。然后纤维网就交叉铺网成一12层的纤维胎。
在实施例2中,一纤维胎如实施例1那样制备,除了纤维的含量是切段填充纤维(55%重量的TreviraTM型121聚对苯二甲酸乙二酯,1.2旦尼尔,3.8cm长,可从Hoechst Celanese公司得到)和粘合切段纤维(在实施例1中使用的45%重量的皮芯纤维)。
在实施例3中,一纤维胎如实施例1那样制备,除了纤维的含量是切段填充纤维(25%重量的TreviraTM型121聚对苯二甲酸乙二酯,1.2旦尼尔,3.8cm长,可从Hoechst Celanese公司得到)和粘合切段纤维(在实施例1中使用的75%重量的皮芯纤维)和交叉铺网形成一12层纤维胎的纤维网。
在实施例4中,一纤维胎如实施例1那样制备,除了纤维的含量是切段填充纤维(55%重量的TreviraTM型121聚对苯二甲酸乙二酯,1.2旦尼尔,3.8cm长,可从Hoechst Celanese公司得到)和粘合切段纤维(在实施例1中使用的45%重量的皮芯纤维)和交叉铺网形成一5层纤维胎的纤维网。
在实施例5中,一纤维胎如实施例1那样制备,除了纤维的含量是切段填充纤维(55%重量的TreviraTM型121聚对苯二甲酸乙二酯,1.2旦尼尔,3.8cm长,可从Hoechst Celanese公司得到)和粘合切段纤维(在实施例1中使用的45%重量的皮芯纤维)和交叉铺网形成一20层纤维胎的纤维网。
在实施例6中,一纤维胎如实施例1那样制备,除了纤维的含量是切段填充纤维(55%重量的TreviraTM型121聚对苯二甲酸乙二酯,0.5旦尼尔,3.8cm长,可从Wellman Fiber Industries,Florence,SC得到)和粘合切段纤维(在实施例1中使用的45%重量的皮芯纤维)。
在实施例7中,一纤维胎如实施例1那样制备,除了纤维的含量是切段填充纤维(55%重量的TreviraTM型121聚对苯二甲酸乙二酯,0.85旦尼尔,3.8cm长,可从Hoechst Celanese公司得到)和粘合切段纤维(在实施例1中使用的45%重量的皮芯纤维)。
样品都作了基本重量,体积密度,厚度,热阻,单位重量隔热效率和手感的测试。测试的结果显示在表I中。 表I 实施例 1 2 3 4 5 6 7切段填充纤 维(%) 75 55 25 55 55 55 55粘合切段纤 维 25 45 75 45 45 45 45基本重量 (g/m2) 233 240 255 101 383 221 250厚度(cm) 10.6 9.5 9.8 3.7 14.4 8.2 14.9体积密度 (kg/m3) 2.2 2.5 2.6 2.7 2.7 2.8 1.7热阻(clo) 7.4 7.0 6.9 3.1 10.4 7.6 8.8单位重量隔 热效率(clo/kg/m2) 31.8 29.2 23.6 30.3 27.2 30.4 35.2 手感 优质 优质 优质 优质 优质 优质 优质
正如从表1中的数据所示,在实施例1,2和3中粘合切段纤维的数量改变大体上并不影响厚度,密度和手感,但增加大旦尼尔数的切段填充纤维的数量则降低热阻和单位重量隔热效率。当重量较高时,厚度和热阻均增加,密度大体保持不变而单位重量隔热效率降低。大体不变的密度证明在成层前粘合切段纤维网可保持纤维网各层无损伤从而使各层的重量不会挤压纤维胎。
实施例8-10
在实施例8-10中,一纤维胎如实施例1那样制备,除了使用是切段填充纤维(TreviraTM型121聚对苯二甲酸乙二酯,1.2旦尼尔,3.8cm长,可从HoechstCelanese公司得到)和粘合切段纤维(在实施例1中使用的皮芯纤维)的数量显示在表II中,每块纤维胎通过交叉铺网12层纤维网并且随后交叉铺网纤维胎的表面是用163摄氏度的红外线辐射36分钟而粘合形成的。纤维胎的测试同实施例1-7相同。结果显示在表II中。 表II 实施例 8 9 10切段填充纤维(%) 75 55 25粘合切段纤维(%) 25 45 75基本重量(g/m2) 215 286 277 厚度(cm) 6.5 7.6 7.1体积密度(kg/m3) 3.3 3.8 3.9 热阻(clo) 5.8 6.7 6.7单位重量隔热效率 (clo/kg/m2) 26.7 23.5 24.3 手感 优质 优质 优质
正如表II中的数据所示,纤维胎的表面粘合确实也使纤维胎具有极佳的热阻和单位重量隔热效率,虽然改变较小旦尼尔数的切段填充纤维的数量确实对它们的影响不大。
比较的实施例C1-C6
在比较的实施例C1中,一纤维胎如实施例2那样制备除了纤维网没有在交叉铺网前粘合。在比较的实施例C2-C6中,可商品化地得到的不同的隔热材料是使用实施例1-6中使用的测定方法加以评定的。这些材料如下:从Lacrosse,WI公司仓库提供的Goose Down 600(比较的实施例C2);从纽约的Albany的Albany国际公司提供的PrimaloffTM(比较的实施例C3);从Wilmington,DE的Dupont公司提供的ComforelTM(比较的实施例C4);从San Mateo,CA的Eastman化学公司提供的Kod-O-FilTM(比较的实施例C5);和从杜邦公司提供的ThermoloftTM(比较的实施例C6)测定结果显示在表III中。 表III 实施例 C1 C2 C3 C4 C5 C6切段填充纤维(%) 55 - - - - -粘合切段 纤维 - - - - - -基本重量 (g/m2) 259 237 308 278 146 324厚度(cm) 6.6 6.0 3.9 3.9 2.2 3.7体积密度(kg/m3) 3.9 4.0 7.8 7.2 6.6 8.8热阻(clo) 5.8 7.4 5.3 5.5 2.3 4.4单位重量隔热效率(clo/kg/m2) 22.2 31.1 17.3 19.8 15.8 13.4 覆盖性 手感 好 优质 好 好 差 一般
正如表III中的数据所示,比较的实施例C1的未粘合切段纤维胎的热阻、单位重量隔热效率比实施例2中相似的纤维胎低,手感比实施例2的差。比较的实施例C2的羽绒样品有极佳的热阻,单位重量隔热效率和手感,虽然当弄湿一般的羽绒时它可能有不好闻的味道比较的实施例C3-C6的单位重量隔热效率和手感比羽绒样品或本发明的纤维胎差。