软钎料及使用该软钎料的电子器件 本发明是关于不使用铅、具有良好的热疲劳性能且对环境没有不利影响的高温软钎料。该软钎料特别适合用于电子元件等的管芯焊接或混合集成电路等发热部件的钎焊。另外,本发明还涉及使用该软钎料的电子器件。
近年来,随着电子仪器的废弃处理和防止环境污染的要求,对于不使用铅的无铅软钎料的呼声越来越高。
但是,电子器件等的钎焊以往一直是使用Pb-Sn系软钎料。Pb-Sn系软钎料有很多优点,例如粘结性好,通过调整两种成分的相对含量可以在很宽的温度范围内选择熔点。特别是63%(重量)Sn-Pb其晶软钎料,其熔点很低,只有183℃,可以在低温下对电子器件进行钎焊,对电子器件的热影响很小,因此得到广泛应用。
另一方面,在电子器件的安装工序中或者安装完毕后,电子器件上经过第一次钎焊的部位有时还会受到第二次加热。例如半导体器件,将半导体元件芯片钎焊到引线框(特别是管芯)上之后,为了引线接合,需要对管芯加热,又如在印刷电路板地两面安装电子器件的混合集成电路,在一面上搭载、钎焊电子器件后,还要在另一面上搭载、钎焊电子器件,进行所谓的二次钎焊,再有,在安装完毕后,由于电子元件本身的发热也会受到加热。
因此,为了防止一次钎焊的材料再进行二次加热时软钎料熔化,致使一次焊接的器件脱落,必须使用液相线温度高的高温软钎料。考虑到减小对电子元件的热影响,这样的高温软钎料要求液相线温度在200-350℃。
作为不含铅且满足高温条件的无铅高温软钎焊材料,曾有人提出以Sn为主要成分并添加少量Cu的Sn-Cu系软钎料,其液相线温度是200-350℃(特开昭61-156823)。另外,作为其它的无铅高温软钎焊材料,有人提出了Sn-In系(特开昭61-55774)、Sn-Cu-Zn系软钎料(特开昭62-163335)。
另外,为了控制芯片焊接材料的厚度,还有人提出在芯片焊接材料中添加金属或绝缘物等的粒子,加压粘结,进行芯片焊接的方案(例如特开平6-685)。
但是,以往的无铅高温软钎焊材料(Sn-Cu)系等在用于管芯焊接或混合集成电路等发热部件的钎焊时,电子仪器在长期使用过程中,钎焊的高温软钎料处龟裂,导致导通不良。究其原因是由于,在使用过程中因电子仪器内部的电子器件发热而使温度升高,使用完毕后又恢复到室温,这种温度变化循环往复(即所谓的热循环)引起热疲劳。无铅高温软钎焊材料很长时间以来就己经为人们所知,但以往的无铅高温软钎焊材料存在热疲劳性能差的问题,因此,含有Pb、热疲劳性能高的含铅高温软钎料仍然得到广泛使用。另外,其它一些现有的无铅高温软钎焊材料存在着钎焊性能差的问题。
本发明的目的是,解决上述现有技术的问题,提供基本上不含铅且液相线温度在200-350℃的无铅高温软钎焊材料及使用该软钎料的电子器件,该无铅高温软钎焊材料可以提高热疲劳性能,提高电子仪器的可靠性,并且对环境没有不利影响。
本发明的另一目的是,在电子元件与基板之间夹持软钎料进行管芯焊接等时,解决由于添加物偏置的倾斜粘结引起的热阻增大和可靠性的问题,克服由于软钎料内各成分的比重不同而引起的成分分布偏析,消除因添加物偏置而引起的倾斜粘结。
为了达到上述目的,本发明的第1种软钎料含有0.005-3.0%(重量)钯(Pd)和97.0-99.995%(重量)锡(Sn),并且液相线温度在200-350℃的范围。
本发明的第2种软钎料含有0.005-3.0%(重量)选自钯(Pd)和锗(Ge)中的至少一种元素,其合计量不超过5.0%(重量),并且还含有95.0-99.995%(重量)锡(Sn)。
在上述第1种软钎料中,优选的是,用0.005-2.0%(重量)选自Ag、Ge、P、Zn、Cu、B、Sb、Bi和In中的至少一种元素代替Pd或Sn的至少一部分。
在上述第2种软钎料中,优选的是,用0.005-2.0%(重量)选自Ag、P、Zn、Cu、B、Sb、Bi和In中的至少一种元素代替Pd、Sn或Ge的至少一部分。
在上述第1-2种软钎料中,优选的是,用0.001-5.0%(重量)的金属或合金粒子代替Pd或Sn的至少一部分。
在上述构成中,优选的是,金属或合金粒子的比重为Sn(比重:7.28)的±2的范围内。
在上述构成中,优选的是,金属或合金粒子是从选自o、Ni和Fe的金属、氧化物、碳化物、氮化物、合金中选择的粒子。
在上述构成中,优选的是,金属或合金粒子的平均粒径是5-100μm。
在上述构成中,优选的是,金属或合金粒子的平均粒径是20-60μm。
在上述构成中,优选的是,金属或合金粒子的熔点是400℃以上。
在上述构成中,优选的是,Sn原料的纯度是99.9%(重量)以上。
在上述构成中,优选的是,软钎料中的铅含量减少到相当于不可避免的杂质中所含有的微量程度。
另外,本发明的第1种电子器件是,使用含有0.005-3.0%(重量)钯(Pd)和97.0-99.995%(重量)锡(Sn)并且液相线温度是200-350℃的软钎料、将基板与电子元件连接而构成。
本发明的第2种电子器件是,使用含有0.005-3.0%(重量)选自钯(Pd)和锗(Ge)中的至少一种元素,其合计量不超过5.0%(重量),并且还含有95.0-99.995%(重量)锡(Sn)的软钎料、将基板与电子元件连接而构成。
在上述第1种电子器件中,优选的是,用0.005-2.0%(重量)选自Ag、Ge、P、Zn、Cu、B、Sb、Bi和In中的至少一种元素代替Pd或Sn的至少一部分。
在上述第2种电子器件中,优选的是,用0.005-2.0%(重量)选自Ag、P、Zn、Cu、B、Sb、Bi和In中的至少一种元素代替Pd、Sn或Ge的至少一部分。
在上述第1-2种电子器件中,优选的是,用0.001-5.0%(重量)的金属或合金粒子代替Pd或Sn的至少一部分。
在上述第1-2种电子器件中,优选的是,金属或合金粒子的比重为Sn(比重:7.28)的±2的范围内。
在上述第1-2种电子器件中,金属或合金粒子的平均粒径是20-60μm。
另外,本发明的第3种电子器件是,使用相对于锡(Sn)含有0.5-2.0%(重量)钯(Pd)且液相线温度在320℃以下的软钎料将电子元件芯片焊接而构成。
在上述第3种电子器件中,优选的是,软钎料中含有比重为Sn(比重:7.28)±2的金属粒子,在熔融低下该软钎料的表面上配置电子元件而构成。
另外,在上述第3种电子器件中,优选的是,在形成以Ni为主体的膜的基板表面与电子元件表面之间设置软钎料,用上述以Ni为主体的膜夹持软钎料,将上述基板与电子元件连接起来。
在上述第1-3中电子器件中,优选的是,软钎料中的铅含量降低到相当于不可避免的杂质中所含有的微量程度。
本发明的优选的组成是,含有95.0%(重量)以上的锡(Sn)和0.005-3.0%(重量)钯(Pd)、余量为其它成分且液相线温度为200-350℃的高温无铅软钎料。上面所述的其它成分,优选的是含有0.005-2.0%(重量)选自Ag、Ge、P、Zn、Cu、B、Sb、Bi和In中的至少一种元素。
另外,本发明优选的是,将比重与Sn大致相等且含有0.1-5.0%(重量)的40μm左右的金属或合金粒子的无铅高温软钎焊材料设置在大致平行配置的电子元件和基板之间将其连接而成的电子器件。
另外,本发明优选的是,在电子元件和基板的至少一方上使用硅、GaAs、陶瓷等容易破裂的脆性材料,在其表面上形成Ni膜,用该Ni膜夹持本发明的无铅高温软钎焊材料将电子元件与基板粘接起来。
本发明的无铅高温软钎焊材料含有0.005-3.0%(重量)钯(Pd)和95.0-99.985%(重量)锡(Sn),并且液相线温度在200-350℃,具有良好的热疲劳性能。
另外,本发明的无铅高温软钎焊材料还可以含有0.005-2.0%(重量)选自Ag、Ge、P、Zn、Cu、B、Sb、Bi和In中的至少一种元素。氧化物是妨碍钎焊性能的主要因素,本发明以Sn为主要成分,因而只要添加氧化物的标准生成能比Sn大的元素,就能解决这个问题。这些添加物对环境没有不良的影响,其中优先选用Ge、Cu、Ag和B。
另外,本发明的电子器件,是将含有0.005-3.0%(重量)钯(Pd)和95.0-99.985%(重量)锡(Sn)(此外还含有其它微量成分)、液相线温度在200-350℃、并且含有0.1-5.0%(重量)比重与Sn大致相等、40μm左右的金属或合金粒子的无铅高温软钎焊材料设置在大致平行配置的电子元件与基板之间将其连接,不仅热疲劳性能良好,而且电子元件可以与基板平行,没有钎焊不均匀,不会发生倾斜粘结。
下面具体地说明本发明的实施方案。
首先说明第1实施方案的无铅高温软钎焊材料的组成。
本发明中使用的Sn原料应采用99.9%(重量)以上的高纯度Sn,最好是纯度在99.99%(重量)以上。Sn原料的纯度越高o夹在杂质中混入的可能性越小。
另外,本发明中所述的“无铅“,是指铅含量减小到不会造成环境污染的量,最好是减小到相当于不可避免的杂质中所含的微量程度。
本发明通过同时存在规定量的Pb和Sn,利用它们的协同作用,可以提高热疲劳性能。
在不含铅的Sn-Pd合金软钎料中,Sn含量在95.0%(重量)以上时,与其含量不足95.0%(重量)时相比,可以大幅度提高热疲劳性能。
因此,Sn含量在95.0%(重量)以上为宜。其中,Sn含量在95.49%(重量)以上时,可进一步提高热疲劳性能,因此,Sn含量最好是在95.49%(重量)以上。
反之,在不含Pb的Sn-Pd合金软钎料中,Sn含量超过99.985%(重量)时,合金中不可能含有本发明所必须的Pd。因此Sn含量的上限在99.985%(重量)为宜。其中,Sn含量在99.94%(重量)以下时,作为有效的共存元素的Pd含量可以达到0.05%(重量)以上,进一步提高热疲劳性能。因此,Sn含量最好是在99.94%(重量)以下。
综上所述,Sn含量在95.0-99.985%(重量)为宜,优选的是95.0-99.94%(重量),最好是95.49-99.94%(重量)。
另一方面,在不含Pb的Sn-Pd合金软钎料中,Pd含量在0.005%(重量)以上时,与其含量不足0.005%(重量)时相比,可以大幅度提高热疲劳性能。因此,Pd含量必须在0.005%(重量)以上。其中,Pd含量在0.05%(重量)以上时,热疲劳性能进一步提高。因此,Pd含量最好是在0.05%(重量)以上。
反之,在不含Pb的Sn-Pb合金中,Pb含量超过3.0时,与其含量低于3.0%(重量)时相比,热疲劳性能降低。因此,Pd含量必须在3.0%(重量)以下。其中,Pd含量在2.5%(重量)以下时,热疲劳性能进一步提高。因此,Pd含量最好是在2.5%(重量)以下。
综上所述,Pd含量应定为0.005-3.0%(重量),优选的是0.05-3.0%(重量),最好是0.05-2.5%(重量)。在本发明中,只要同时存在规定量的Pd和Sn,即使含有其它元素,也能维持本发明本发明的效果。作为其它元素,可以含有0.005-2.0%(重量)选自Ag、Ge、P、Zn、Cu、B、Sb、Bi和In中的至少一种元素。为了获得良好的环境效果,优先选用Ag、Ge、Cu、B。
本发明的无铅高温软钎焊材料的液相线温度必须是200-350℃。液相线温度如果低于200℃,进行二次加热时的温度也必须低于200℃,使得二次加热的温度受到限制。因此,液相线温度最低必须在200℃以上。反之,液相线温度在350℃以上时,使电子器件产生热应变,因此液相线温度必须在350℃以下。
本发明的无铅高温软钎焊材料,可以加工成带状、丝状,或者也可以用来作为浸渍浴或蒸镀用的材料。另外,也可以掺入高熔点粒子,制成复合材料使用。带材的加工方法是,先浇铸成金属锭,然后轧制、纵切,加工成规定尺寸的带材。线材的加工方法是,将合金锭挤出或者将金属熔液喷到水中急冷,制成线材坯料,然后通过拔丝加工成规定尺寸的线材。
本发明的无铅高温软钎焊材料,在进行第一次钎焊后进行第二次加热,然后承受室温-高温热循环时,作为第一次钎焊材料仍然可以有效地使用。例如管芯焊接或混合集成电路安装等。下面具体地进行说明。
图1是树脂封装前的钎焊装置的侧视图。在作为基板的引线框的管芯1的表面上设置镀Ni层2。在作为电子元件即半导体元件的IC芯片5的上面设置Al电极6,下面设置金属化层镀Ni层4。将金属丝7引线焊接到上面的Al电极6上。金属线7将半导体元件和引线电连接,金属线7的另一端连接到位于引线框内,带有镀Ni层8的内部引线9上。用本发明的无铅高温软钎焊材料,通过IC芯片5下面的镀Ni层4和管芯1表面的镀Ni层2将基片与芯片状的电子元件即半导体IC芯片5大致平行地连接(芯片焊接)起来。
制造方法是,在管芯1的上面夹着园形或方形的软钎焊小片载置IC芯片5,使之从氢气氛的加热炉中通过,通过第一次加热进行钎焊。然后,从管芯1的下面、以150-250℃的温度进行第二次加热,将金属线7热压焊接到Ai电极6上。
另外,混合集成电路的情况图中并未示出,是将IC芯片搭载在集成电路板的一面上,用本发明的无铅高温软钎焊材料进行第一次钎焊,为了实现电子仪器的小型化,需要在印刷电路板的另一面搭载电子器件,因此要使用液相线温度比本发明制品低的软钎料进行第二次钎焊。
下面详细说明电子元件使用硅半导体元件的情况。
在Sn中添加1%(重量)Pd,在320℃下熔融搅拌,然后轧制加工,得到宽4mm,厚100μm的片状无铅高温软钎焊材料。接着,将上述片载置到有镀Ni膜的TO-200插件用引线框上,在每边2.3mm的背面上配置附着形成Ni膜的硅制芯片的半导体元件,然后进行芯片焊接。
改变Pd含量,同样进行操作,求出对于硅制芯片的半导体元件最适宜的含量。结果,Pd含量在0.5%(重量)以上时,可以防止硅制芯片的半导体元件产生裂纹。另外,Pd含量在2.0%(重量)以下时,将芯片焊接温度设定在320℃以下,可以实现芯片焊接装置的高寿命化和防止芯片焊接材料氧化。
下面说明钎焊厚度的控制。
在Sn(比重7.28)中分别添加1%(重量)的Pd和Ge以及0.3%(重量)的Ni(比重8.8),然后在300℃下熔融搅拌。使其从熔化容器的下面一滴一滴地流出,按规定量滴到TO-220插件用引线框的半导体元件载置部位上,然后从其上面芯片焊接硅制芯片。接着用Al丝配线、树脂封装、引线加工,制成半导体器件。结果,采用熔融滴下软钎料的方法也得到了没有倾斜粘结的产品(浇注封装方式)。
本发明的无铅高温软钎焊材料,在将半导体元件管芯焊接时,为了保持其水平度而掺入高熔点粒子。高熔点粒子的熔点在400℃以上,其含量为0.001-5.0%(重量)(优选的是0.001-0.6%(重量)),粒子的平均粒径是5-100μm。适宜的高熔点材料有Cu、Ni等的金属粒子、氧化物、碳化物等。
另外,在将作为电子元件的半导体元件与基板连接时,两者之间的钎焊料厚度应控制在30-60μm,用于控制这一厚度的粒子,其粒径为40μm±20μm,与无铅高温软钎焊材料的主成分Sn的比重差应在2以内。比重差大于2时,如果比Sn轻,在软钎料内就会上浮,反之,如果比Sn重,就会下沉,致使结合力降低,可靠性下降。特别优先选用比重差在2以内并且比Sn重的Ni或Cu(比重8.9)或Fe(比重7.9)。如果是氧化物或碳化物,则不能得到这样比重的粒子。
另外,平均粒径在40μm±20μm的范围更好。粒径增加10μm时,将导致半导体元件等的芯片缺损或产生裂纹,如果厚度增大,将导致热阻增加。在电子元件和基板的至少一方上使用硅、GaAs、陶瓷等易碎裂的脆性材料特别有效。
如上所述,本发明的无铅高温软钎焊材料中含有的粒子的粒径是40μm±20μm,采用与无铅高温软钎焊材料的主成分Sn的比重差在2以内的金属。因为这样可以改善导电性能和对于半导体元件的散热特性。
另外,在电子元件和基板的至少一方上使用硅、GaAs、陶瓷等易碎裂的脆性材料,在它们的表面上具有以Ni为主体的镀膜(Ni膜或Ni合金膜),用该镀Ni膜夹持本发明无铅高温软钎焊材料将电子元件与基板连接时,结合力强,热疲劳性能和散热特性非常好。在本发明的无铅高温软钎焊材料中所含粒子的粒径是40μm±20μm且该粒子是与无铅高温软钎焊材料的主成分Sn的比重差在2以内的金属时,由于Ni膜与金属粒子的合金化以及良好的连接性,可以进一步提高上述效果,从而热组特性也得到改善。
作为铜材,适合用于镀Ni的引线框、半导体元件Cr/Cr+Ni/Ag(0.3μm)。
特别是功率半导体器件使用的芯片焊接,不仅要通过电流,还必须使元件内部产生的热量向外散热,在这种场合,传热性的缓冲、不同部件之间热应变的缓冲是非常重要的。
在本发明中,也可以是含有0.005-3.0%(重量)的钯(Pd),其余为锡(Sn)和不可避免的杂质。
实施例
下面通过实施例更具体地说明本发明。在下面的实施例(例如表1-2等)中,软钎料组合物的总量不一定是100%,因为还含有微量的杂质。因此,(100%-软钎料组合物总重量%)即为不可避免的杂质的重量%。
实施例1
参照图2的试片和测定方法的示意图进行说明。
以纯度为99.99%(重量)的Sn作为基体材料,配入规定量的Pd(加上不可避免的杂质,总计为100%(重量)),经过真空熔炼、锻造,得到表1中所示成分的合金锭。将该合金锭轧制成厚0.1mm×宽10.0mm的带。在以该带材为原料进行冲压加工,得到厚0.1mm×直径1.8mm的软钎料小圆片。
使用该软钎料小圆片A将热膨胀系数不同的二种材料钎焊,制成试片10,进行热疲劳试验A。
试片10中的热膨胀系数不同的二种材料,采用热膨胀系数为17.5×10-6/℃的Cu和4.4×10-6/℃的42合金(42重量%Ni-Fe)。将软钎料小圆片夹在带有9μm厚的镀Ai层的直径1.8mm×长20mm的铜和42合金棒之间,在氩气流中、350℃下进行钎焊。即,用软钎料15将带有镀Ni层12的铜棒11和带有镀Ni层14的42合金棒13连接。此时,使用无机酸类水溶性助熔剂(日本アルフアメタルズ制IA200L)。
热疲劳试验A是使用气相热冲击试验装置(日立制作所ES50L)、以-55℃×15分、室温×5分、150℃×15分、室温×5分作为一个热循环,反复循环直至达到规定的热疲劳。
热疲劳的测定,是在规定循环次数的热疲劳试验后,用图2所示的方法确定软钎料的开裂状况。用电源16在试片的两端施加规定范围的电压,测定流过一定电流时的两端电压。在实测的两端电压从热疲劳试验A开始前的初始值增加10%时,判定为由于裂纹而导致不良,以此时的循环次数作为达到不良的循环次数,根据测定值用外插法求出。测定结果汇总示于下面的表1中。
实施例2-25、比较例1-5
按表1中所示改变实施例1中合金锭的成分,除此之外与实施例1同样操作,加工成软钎料小圆片,制作试片,进行热疲劳试验A。测定结果示于表1和表2中。
表1实施例 组成(重量%) 液相线 温度 (℃) 热疲劳 试验 Pd Ag Ge P Zn Cu B Sb Bi In Sn至不良的循环次数 1 2 3 4 5 0.005 0.05 1.0 2.5 3.0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 99.985 99.94 98.99 97.49 96.99 200-350 ″ ″ ″ ″ 550 820 1010 810 660 6 7 8 9 10 1.0 1.0 1.0 0.005 0.05 0.005 0.3 1.0 1.0 1.0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 98 985 98.69 97.99 98.985 98.94 ″ ″ ″ ″ ″ 1010 1020 1000 540 830 11 12 13 14 15 2.5 3.0 2.5 1.0 1.0 1.0 1.0 2.0 - - - - - 0.3 - - - - - 0.3 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 96.49 95.99 95.49 98.69 98.69 ″ ″ ″ ″ ″ 810 650 800 1010 1000 16 17 18 19 20 1.0 1.0 1.0 1.0 1.0 - - - - - - - - - - - - - - - 0.3 - - - - - 0.3 - - - - - 0.3 - - - - - 0.3 - - - - - 0.3 - - - - - 98.69 98.69 98.69 98.69 98.69 ″ ″ ″ ″ ″ 1010 1010 1000 1020 1000 21 22 23 24 25 1.0 1.0 1.0 1.0 2.5 - - - - 2.0 - 0.1 0.1 0.1 - - 0.1 - 0.1 - - - 0.1 0.1 - - - 0.1 0.1 0.4 - - - 0.1 - - - - 0.1 - - - - 0.1 - 0.3 - - 0.1 - 98.69 98.79 98.69 98.19 95.09 ″ ″ ″ ″ ″ 1010 1010 1020 1010 710
表2比较例 组 成(重量%) 液相线 温度 (℃)热疲劳试验 pd Ag Cu Au Sn达到不良的循环次数 1 2 3 4 5 -10.0 1.0 0.1 - - - 5.0 - - - - 3.9 - 0.7 - - - 9.8 ------------------------------- 99.99 89.99 90.09 90.09 99.29 200-350 >350 >350 200-350 200-350 230 310 290 290 260
由表1和表2可以看出,不含有本发明的必要成分Pd的比较例1,达到不良的循环次数只有230次。另外,Pd含量超过规定量、达到10%(重量)的比较例2,达到不良的循环次数也很差只有310次。
虽然含有规定量的Pd,但其它成分含量较多,Sn含量不足95.0%(重量)的比较例3和4,达到不良的次数也很低,只有290次。另外,虽然含有规定量的Sn,但不含Pd、含有其它元素Cu的比较例5,达到不良的循环次数只有260次。相比之下,本发明的由0.005-3.0%(重量)Pd和95.0-99.985%(重量)Sn构成的实施例1-5,在热疲劳试验A中,达到不良的循环次数高达550-1010。其中,Pd含量为0.05-3.0%(重量)、Sn含量为95.0-99.94%(重量)者,上述循环次数更达到660-1010。另外,Pd含量为0.05-2.5%(重量)、Sn含量为95.49-99.94%(重量)者,上述循环次数更好,达到810-1010。
此外,本发明的另一些实施例,即除了含有0.005-3.0%(重量)Pd和95.0-99.985%(重量)Sn以外,还含有0.005-2.0%(重量)选自Ag、Ge、P、Zn、Cu、B、Sb、Bi和In中的至少一种元素的实施例6-25,在热疲劳试验A中达到不良的循环次数是540-1020,显示出与实施例1-5同样良好的效果。其中,Pd含量为0.05-3.0%(重量)、Sn含量为95.0-99.94%(重量)者,上述循环次数是710-1020,与实施例2-5同样显示出更好的效果。再有,Pd含量为0.05-2.5%(重量)、Sn含量为95.49-99.94%(重量)者,上述循环次数是800-1010,与实施例2-5同样显示出更好的效果。
实施例31-33、比较例10-11
作为其它的实施例,将用本发明的无铅高温软钎焊材料和用以往的软钎料将每边3mm的功率晶体管即硅制半导体元件搭载在功率半导体器件通常使用的TO-220插件上的情况进行比较。比较例10是Pb-Sn(重量%为95∶5),比较例11是Sn-Ag(重量%为96.5∶3.5)的例子。实施例31是Sn-Ge(重量%为98.5∶1.5),实施例32是Sn-Pd(重量为98.5∶1.5),实施例33是Sn-Pd-Ge(重量%为97∶1.5∶1.5)的例子。
试验方法是热冲击试验(将钎焊部分在-65℃和150℃的液相中交替浸渍30分钟达到规定次数(下面称为热疲劳试验B。因为,虽然对于晶体管来说是热冲击试验,但对于软钎料来说,是由于各构成部件之间的应变而引起的热疲劳试验的一种)和热疲劳试验C(通过使晶体管通电1分钟、断电2分钟的电力控制,使晶体管的温度从25℃升温90℃达到115℃,如此反复规定次数,对半导体元件施加功率,使其自身发热,进行发热部位的半导体元件和散热部位的引线框之间的芯片焊接材料的热疲劳试验)。此时的功率晶体管的热组变化达到初始值的1.3倍时,判定为不良。在热疲劳试验B的场合,用30个试样,热疲劳试验C用10个试样,测定规定次数后的不良数目。结果示于表3中。
表3 热疲劳试验B、C(不良数/操作数) 热冲击试验 (-55℃150℃液相各30分钟 热疲劳试验 (ΔTj=90℃ on/off=1分/2分) 0 循环 500 循环 1000 循环 1500 循环 2000 循环 0 循环 5000 循环 10000 循环 15000 循环 20000 循环 30000 循环 比较例10 (Pb/Sn=95/5重量%) 0/30 0/30 1/30 4/30 7/30 0/10 0/10 2/10 4/10 7/10 9/10 比较例11 Sn/Ag=96.5/3.5重量%) 0/30 2/30 6/30 11/30 18/30 0/10 0/10 0/10 3/10 5/10 7/10本发明 实施例31 Sn/Ge 0/30 0/30 1/30 4/30 6/30 0/10 0/10 0/10 2/10 4/10 6/10 实施例32 Sn/Pd 0/30 0/30 1/30 3/30 5/30 0/10 0/10 0/10 1/10 3/10 5/10 实施例33 Sn/Pd/Ge 0/30 0/30 0/30 2/30 5/30 0/10 0/10 0/10 1/10 2/10 3/10
由表3可以看出,与比较例10和11相比,无论是热疲劳试验B还是热疲劳试验C都是实施例31、32、33的结果要好。特别是试验条件严酷的热疲劳试验B,这一差别更为显著。另外,与实施例31的Sn-Ge(重量%为98.5∶1.5)相比,实施例32的Sn-Pd(重量%为98.5∶1.5)的结果要好,实施例33的Sn-Pd-Ge(重量%为97∶1.5∶1.5)的结果更好。由此可知,本发明的无铅高温软钎焊材料,与使用以往的含Pb的软钎料相比,采用各种试验方法测得的热疲劳性能均有提高。特别是Sn-Pd-Ge系软钎料,在Pd-Ge合计量为5%(重量)以下且至少一方含量为规定的0.05-3.0%(重量)时,所得到的结果最好。
一般地说,在本发明中,与Ge相比Pd多者钎焊性能要好,即作为软钎料来说,Pd比Ge的效果更好。
发明的效果
如上所述,本发明的无铅高温软钎焊材料含有规定量的Pd和Sn,液相线温度为200-350℃,是高温的软钎料,不含铅,可以提高热疲劳性能,对环境没有不利影响,并且可以提高电子仪器的可靠性。
在上述Pd和Sn含量范围内,即使含有规定的其它元素,也能得到同样的效果。其中,在Sn-Pd-Ge系软钎料中,Pd-Ge合计量在5%(重量)以下时,可以得到特别好的效果。
另外,在电子元件或基板的至少一方使用硅、GaAs、陶瓷等容易碎裂的脆性材料,在它们的表面上具有以Ni为主体的膜(Ni膜或Ni合金膜等),用该Ni膜夹持本发明的无铅高温软钎焊材料将电子元件与基板钎接时,结合力强,热疲劳性能和数热特性极好。
另外,如果含有粒径为40μm±20μm、与无铅高温软钎焊材料的主要成分Sn的比重差在2以内的金属粒子,将有利于控制钎焊厚度,这样还可以减小热阻。
再有,Pd含量在0.5%(重量)以上时,可以消除硅片等脆性材料的裂纹或缺损,其含量在2.0%(重量)以下时,基板与电子元件的钎接温度在320℃以下,可以防止无铅高温软钎焊材料的氧化,提高钎接装置的寿命。
附图的简要说明图1是本发明的第1实施方案的电子器件的剖面图。图2是本发明的实施例中的试片及其测定方法的示意图。符号的说明1 管芯2、4、8镀Ni层3 软钎料5 IC芯片6 Al电极7 金属丝9 内部引线10 试片11 铜棒12、14镀Ni层13 合金棒15 软钎料16 电源