一种芳香酸生产中母固料回收系统水分在线分析方法.pdf

上传人:大师****2 文档编号:361927 上传时间:2018-02-11 格式:PDF 页数:10 大小:436.29KB
返回 下载 相关 举报
摘要
申请专利号:

CN201010287035.X

申请日:

2010.09.17

公开号:

CN101995891A

公开日:

2011.03.30

当前法律状态:

终止

有效性:

无权

法律详情:

未缴年费专利权终止 IPC(主分类):G05D 27/02申请日:20100917授权公告日:20120919终止日期:20140917|||授权|||实质审查的生效IPC(主分类):G05D 27/02申请日:20100917|||公开

IPC分类号:

G05D27/02; G01N27/04; G06N3/08

主分类号:

G05D27/02

申请人:

南京工业大学

发明人:

管国锋; 万辉; 佟丽

地址:

210009 江苏省南京市新模范马路5号

优先权:

专利代理机构:

南京天华专利代理有限责任公司 32218

代理人:

徐冬涛

PDF下载: PDF下载
内容摘要

本发明公开了一种芳香酸生产中母固料回收系统水分在线分析方法,该方法选择影响水分含量分析的参数,温度、金属离子浓度以及电导率值,将其归一化,然后利用神经网络模型进行计算得到水分含量的软测量值;最后根据软测量值对水分含量进行实时推断控制。本发明对芳香酸生产中母固料循环氧化回收系统水分含量实施在线分析,主要解决目前芳香酸生产中母固料循环氧化回收系统水质成份较复杂,水分含量只能采用取样离线分析,操作繁琐,劳动强度大,分析时间长,不能实现装置自动化操作的问题。本发明的芳香酸生产中母固料回收系统水分在线分析方法具有操作简单、稳定性好、响应时间短、重现性好等优点,能够连续、实时、在线测定复杂组分溶液中的水分含量。

权利要求书

1: 一种芳香酸生产中母固料回收系统水分在线分析方法, 其特征是包括以下步骤 : A) 利用分布式控制系统获取芳香酸生产中母固料回收过程中影响打浆醋酸水分含量 的工艺参数, 包括温度 T、 物质浓度 C、 电导率值 S, 并将温度 T、 物质浓度 C、 电导率值 S 以及 打浆醋酸水分含量人工分析值 R 进行归一化处理 ; B) 选择步骤 A 中 3 个参数做为 BP 神经网络模型的输入神经元, 打浆醋酸中水分含量做 为 BP 神经网络模型的输出神经元, 利用改进的标准 BP 神经网络模型进行模拟计算, 在神经 网络模型中, 输入层的节点数为 2-10, 隐含层层数为 1-10-, 隐层节点数为 1-50, 输出层节 点数为 1-10, 输入层与隐含层之间传递函数为双曲正切 tansig 函数、 隐含层和输出层传递 函数为线性 purelin 函数 ; C)BP 神经网络模型实时输出值经过反归一化后, 利用分布式控制系统通过数据的实 时、 连续采集, 得到水分含量的 BP 神经网络预测值 Y, 再利用水分含量人工分析值 R 对水分 含量的 BP 神经网络预测值 Y 进行在线校正 : 当水分含量的 BP 神经网络预测值与人工分析值相对误差大于设定值时, 通过实时分 析得到的定系数对神经网络预测值进行在线校正, 得到打浆醋酸水分含量的软测量值 ; D) 根据上述水分含量的软测量值, 据此对温度、 物质含量、 电导率值进行实时推断控 制; 通过上述三个操作参数的实时调节, 实现对水分含量的调节, 即实现水分含量的推断控 制。
2: 根据权利要求 1 所述的芳香酸生产中母固料回收系统水分在线分析方法, 其特征在 于步骤 A) 中所述进行归一化处理包括以下步骤 : 利用公式 将温度 T, 物质浓度 C 和电导率值 S 以及水分含量人工分析值数据进行归一化处理, 将 其归一化到 [0.1, 1] 之间, 其中 : x 为归一化处理后数据集 ; X 为归一化以前数据集 ; max(X) 和 min(X) 为数据集 X 的最大值和最小值。
3: 根据权利要求 1 所述的芳香酸生产中母固料回收系统水分在线分析方法, 其特征在 于步骤 C 中所述在线校正的方法为 : 利用公式 Y* = (1+γ)*Y 进行在线校正 如果 则 否则 γ = 0 其中 R 表示人工分析值, Y 表示 BP 神经网络预测值, Y* 为校正值, BP 神经网络预测值 经过在线校正后得到水分含量的最终软测量值, 经过测试, 利用上述神经网络模型分析得 到的水分含量与人工分析值之间绝对相对误差 5%以内, 平均相对误差 3%以内。
4: 根据权利要求 1 所述的芳香酸生产中母固料回收系统水分在线分析方法, 其特征在 于步骤 C 中 BP 神经网络模型实时输出值经过反归一化后, 利用分布式控制系统通过数据的 实时、 连续采集, 得到水分含量的 BP 神经网络预测值 Y 的方法为 : 根据工业生产提供的的实时数据范围, 通过实验测得的数据作为在线分析软测量模型 2 的训练样本。选择改进后的标准 BP 神经网络对水分含量进行分析预测, 输入神经元分别对 应为归一化处理后的温度 t, 物质浓度 c 和电导率值 s, 输出神经元对应为归一化处理后的 水分含量人工分析值 ; 在上述训练样本中选择部分数据作为神经网络学习样本, 另外的数据作为测试样本检 测神经网络的稳定性和泛化能力, 最后取学习样本和测试样本的预测值与人工分析值相对 误差都较小的一组权值和阀值作为神经网络模型参数 ; 在上述神经网络模型参数确定后, 就可以把现场实时不断采集的数据归一化处理后带 入神经网络进行计算, 然后将神经网络输出值经反归一化处理, 就得到水分含量的神经网 络预测值。
5: 根据权利要求 1 所述的芳香酸生产中母固料回收系统水分在线分析方法, 其特征在 于此方法可应用于对苯二甲酸、 间苯二甲酸、 邻苯二甲酸等芳香酸生产母固料回收系统中。
6: 根据权利要求 1 所述的芳香酸生产中母固料回收系统水分在线分析方法, 其特征在 于所述物质浓度为酸溶液体系中的金属离子、 有机物、 醋酸或悬浮物的浓度。
7: 根据权利要求 1 所述的芳香酸生产中母固料回收系统水分在线分析方法, 其特征在 于所述步骤 D 还包括利用置于氧化反应器之前酸进料管道中以及母固配料罐之后的管道 中的电导率在线分析仪, 判定进料含水量超标或设备操作出现异常引起的含水量超标。

说明书


一种芳香酸生产中母固料回收系统水分在线分析方法

    技术领域 :
     本发明涉及一种将电导率原理应用于水分含量在线分析的方法, 以及通过神经网 络实现水分在线分析的建模技术, 具体是一种芳香酸生产中母固料回收系统水分在线分析 方法。 背景技术 :
     精对苯二甲酸 (PTA) 是生产聚酯切片、 薄膜、 涂料及工程塑料的重要原料, 由对二 甲苯经高温氧化, 生成粗对苯二甲酸, 再加氢精制制得。 对二甲苯氧化过程是芳烃上的甲基 通过一系列氧化反应最终转变为羧基的过程, 是一连串反应, 简化的反应路径如下 :
     精对苯二甲酸 (PTA) 生产精制单元中, PTA 结晶离心分离后的大量母液, 经进一步 过滤分离后, 滤饼中除了 TA 外, 还含有大量的 PT 酸。PT 酸也可作为生产 TA 的原料。为了 节约原料, 降低 PX 单耗, 化工厂开发了母固料返回氧化系统的回收技术。回收利用母固料 中的 PT 酸, 在提高产品收率的同时降低三废排放量。由于打浆醋酸含水量的不确定性以及 母液过滤机操作不稳定性, 使得滤饼中水含量不稳定, 当滤饼中水含量较高时, 打浆重新配 料后, 会使得氧化反应器中水含量超标。 水含量对对二甲苯氧化过程的反应速率、 氧化反应 的选择性和氧化产物的纯度都有很大影响。 实际生产中, 由于水含量未进行在线分析, 传统 的定时取样分析含水量的方式, 不能反映生产过程中含水量的瞬时变化。当水含量突然超 标时, 现有离线分析通常会滞后数小时, 远远不能满足生产上的控制要求。 母固料回用系统 水样中所含成份较复杂, 对在线测量水分含量有很大的影响。目前还没有在线分析仪器能 够快速、 准确测量母固料中水分含量, 关于电导率法在芳香酸母固料回用系统水分在线分 析的应用未见报导。
     测定水分含量最经典的方法是卡尔 . 费休滴定法。虽然该方法有了很大的改进, 但是仍然具有试剂配制繁琐、 配置条件苛刻, 不能实现真正意义上的实时、 在线检测等缺 点。 另外还有近红外水分测定方法, 利用水对近红外波长光的吸收来测定水分含量, 但此种 方法只用在粉末或片状物料中, 不适用于溶液中水含量的测定。电导率法在线测量水分含 量具有方便、 快速、 廉价的特点, 并且有很好的灵敏度和选择性, 结合人工智能和自动控制 对水分含量实施智能控制和优化操作, 实时准确的监测循环氧化回收系统水分含量, 确保 各装置处于最优工作状态。
     BP 神经网络算法基本原理为 : 利用输出后的误差来估计输出层的直接前导层的 误差, 再用这个误差估计更前一层的误差, 如此一层一层的反传下去, 就获得了所有其他各
     层的误差估计。
     BP 神经网络算法学习的过程为 : 神经网络在外界输入样本的刺激下不断改变网 络的连接权值, 以使网络的输出不断地接近期望的输出。学习的本质是对各连接权值的动 态调整, 学习规则即权值调整规则, 即在学习过程中网络中各神经元的连接权变化所依据 的一定的调整规则。 发明内容
     本发明提供一种芳香酸生产中母固料回收系统水分在线分析方法, 主要解决目前 芳香酸生产中母固料循环氧化回收系统水质成份较复杂, 水分含量只能采用取样离线分 析, 操作繁琐, 劳动强度大, 分析时间长, 不能实现装置自动化操作的问题。
     本发明技术方案 :
     一种芳香酸生产中母固料回收系统水分在线分析方法, 包括以下步骤 :
     A) 利用分布式控制系统获取芳香酸生产中母固料回收过程中影响打浆醋酸水分 含量的工艺参数, 包括温度 T、 物质浓度 C、 电导率值 S, 并将温度 T、 物质浓度 C、 电导率值 S 以及打浆醋酸水分含量人工分析值 R 进行归一化处理 ;
     B) 选择步骤 A 中 3 个参数做为 BP 神经网络模型的输入神经元, 打浆醋酸中水分含 量做为 BP 神经网络模型的输出神经元, 利用改进的标准 BP 神经网络模型进行模拟计算, 在 神经网络模型中, 输入层的节点数为 2-10, 隐含层层数为 1-10-, 隐层节点数为 1-50, 输出 层节点数为 1-10, 输入层与隐含层之间传递函数为双曲正切 tansig 函数、 隐含层和输出层 传递函数为线性 purelin 函数 ;
     C)BP 神经网络模型实时输出值经过反归一化后, 利用分布式控制系统通过数据的 实时、 连续采集, 得到水分含量的 BP 神经网络预测值 Y, 再利用水分含量人工分析值 R 对水 分含量的 BP 神经网络预测值 Y 进行在线校正 :
     当水分含量的 BP 神经网络预测值与人工分析值相对误差大于设定值时, 通过实 时分析得到的定系数对神经网络预测值进行在线校正, 得到打浆醋酸水分含量的软测量 值;
     D) 根据上述水分含量的软测量值, 据此对温度、 物质含量、 电导率值进行实时推断 控制 ; 通过上述三个操作参数的实时调节, 实现对水分含量的调节, 即实现水分含量的推断 控制。
     所述步骤 A) 中进行归一化处理包括以下步骤 :
     利用公式
     将温度 T, 物质浓度 C 和电导率值 S 以及水分含量人工分析值数据进行归一化处 理, 将其归一化到 [0.1, 1] 之间, 其中 : x 为归一化处理后数据集 ; X 为归一化以前数据集 ; max(X) 和 min(X) 为数据集 X 的最大值和最小值。
     所述步骤 C 中在线校正的方法为 :
     利用公式
     Y* = (1+γ)*Y 进行在线校正
     5101995891 A CN 101995896
     说则明书3/5 页如果否则 γ = 0其中 R 表示人工分析值, Y 表示 BP 神经网络预测值, Y* 为校正值, BP 神经网络预 测值经过在线校正后得到水分含量的最终软测量值, 经过测试, 利用上述神经网络模型分 析得到的水分含量与人工分析值之间绝对相对误差 5%以内, 平均相对误差 3%以内。
     所述步骤 C 中 BP 神经网络模型实时输出值经过反归一化后, 利用分布式控制系统 通过数据的实时、 连续采集, 得到水分含量的 BP 神经网络预测值 Y 的方法为 :
     根据工业生产提供的的实时数据范围, 通过实验测得的数据作为在线分析软测量 模型的训练样本。选择改进后的标准 BP 神经网络对水分含量进行分析预测, 输入神经元分 别对应为归一化处理后的温度 t, 物质浓度 c 和电导率值 s, 输出神经元对应为归一化处理 后的水分含量人工分析值 ;
     在上述训练样本中选择部分数据作为神经网络学习样本, 另外的数据作为测试样 本检测神经网络的稳定性和泛化能力, 最后取学习样本和测试样本的预测值与人工分析值 相对误差都较小的一组权值和阀值作为神经网络模型参数 ;
     在上述神经网络模型参数确定后, 就可以把现场实时不断采集的数据归一化处理 后带入神经网络进行计算, 然后将神经网络输出值经反归一化处理, 就得到水分含量的神 经网络预测值。
     此方法可应用于对苯二甲酸、 间苯二甲酸、 邻苯二甲酸等芳香酸生产母固料回收 系统中。
     所述物质浓度为酸溶液体系中的金属离子、 有机物、 醋酸或悬浮物的浓度。
     所述步骤 D 还包括利用置于氧化反应器之前酸进料管道中以及母固配料罐之后 的管道中的电导率在线分析仪, 判定进料含水量超标或设备操作出现异常引起的含水量超 标。
     电导率在线分析配制的温度测量装置, 可根据水分控制要求, 设计电导率上限值, 当电导率值超出上限值时则仪器发出报警。
     本发明的有益效果是 :
     本发明的芳香酸生产中母固料回收系统水分在线分析方法具有操作简单、 稳定性 好、 响应时间短、 重现性好等优点, 能够连续、 实时、 在线测定复杂组分溶液中的水分含量。 通过使用本次发明所述方法对芳香酸生产中母固料循环氧化回收系统影响水分含量测量 的工艺参数实施智能控制, 为生产决策提供快速、 可靠的水分测量结果。 附图说明
     图 1 为水分含量测量神经网络软测量模型结构图 ( 中间部分隐含层未绘出 ), 该软 测量模型采用改进的标准 BP 神经网络。
     图 2 为 BP 神经网络结构框图。
     图 3 为水分含量软测量模型程序框图。 具体实施方式
     下面结合实施例和附图对本发明作进一步的说明 :水分含量 BP 神经网络模型的建立 :
     前馈神经网络 (BP 模型 ) 是目前神经网络领域研究最多应用最多的网络模型。其 非线性逼近能力是它博得青睐的主要原因。但是 BP 算法也有一些缺陷, 主要是它训练过程 的不确定性。具体表现为 : 对于一些复杂的问题, 由于学习速率太小, BP 算法可能要经过几 小时甚至更长时间的训练。不少人对梯度下降法的缺点提出了许多改进算法, 如二阶快速 BP 算法、 动量因子法、 作用函数调整法等。这些改进方法比梯度下降法在收敛速度、 逼近精 度上有明显提高。 但在多变量、 大样本输入情况下仍然存在推广能力差、 逼近精度低甚至使 训练瘫痪的问题。为此, 本发明采用贝叶斯正则化算法对 BP 网络进行改进, 建立复杂化工 过程的在线分析模型。 贝叶斯正则化方法是通过修正神经网络的训练性能函数来提高其推 广能力的, 通过采用新的性能指标函数, 可以在保证网络训练误差尽可能小的情况下, 使网 络具有较小的权值, 即使得网络的有效权值尽可能地少, 这实际上相当于自动缩小了网络 的规模。
     通过实验获取芳香酸生产母固料循环氧化回收系统中影响水分含量测量的工艺 操作参数, 包括温度 T, 金属离子含量 C 和电导率值 S。这里的软测量模型考虑了上述 3 个 参数对水分含量测量的影响。所以模型选择上述 3 个参数做为神经网络输入神经元, 水分 含量做为神经网络输出神经元。
     将温度 T, 金属离子含量 C 和电导率值 S 以及水分含量人工分析值数据进行归一 化处理, 归一化范围可以选取为 [0, 1], [-1, 1], [-0.5, 0.5] 等, 这里将其归一化到 [0.1, 1] 之间。归一化方法为 :
     其中 : x 为归一化处理后数据集 ; X 为归一化以前数据集 ; max(X) 和 min(X) 为数据 集 X 的最大值和最小值。
     在神经网络模型中, 输入层的节点数为 i, 中间层层数为 L, 隐层节点数为 j, 输出 层节点数为 k, 层之间传递函数有极限函数、 线性函数、 S 形函数和竞争函数等。在本发明实 施时 : 输入层的节点数为 i(i = 3), 隐含层层数为 L(L = 1), 隐层节点数为 j(j = 15), 输 出层节点数为 k(k = 1), 输入层与隐含层之间传递函数为双曲正切 tansig 函数、 隐含层和 输出层传递函数为线性 purelin 函数。
     根据工业生产提供的的实时数据范围, 通过实验测得的数据作为在线分析软测量 模型的训练样本。选择改进后的标准 BP 神经网络对水分含量进行分析预测, 输入神经元分 别对应为归一化处理后的温度 t, 金属离子含量 c 和电导率值 s, 输出神经元对应为归一化 处理后的水分含量人工分析值, 水分含量神经网络软测量模型结构如图 2 所示。
     在上述训练样本中选择部分数据作为神经网络学习样本, 另外的数据作为测试样 本检测神经网络的稳定性和泛化能力, 最后取学习样本和测试样本的预测值与人工分析值 相对误差都较小的一组权值和阀值作为神经网络模型参数。
     在上述神经网络模型参数确定后, 就可以把现场实时不断采集的数据 ( 模型输入 变量所需数据 ) 归一化处理后带入神经网络进行计算, 然后将神经网络输出值经反归一化 处理, 就得到水分含量的神经网络预测值。
     在 DCS 的应用模块或先进过程管理模块上按图 3 所示的程序流程实现控制语言的
     编程。 通过数据的实时、 连续采集, 就能得到芳香酸生产中母固料循环氧化回收系统影响水 分含量测量的实时神经网络预测值, 或者采用其他在线计算机进行实时神经网络预测值计 算。
     模型校正 :
     由于实际生产过程中存在多种干扰因素, 上述水分含量的神经网络模型预测值和 工业装置的人工分析值不可避免会产生一定的偏差。 因此, 必须每隔一段时间, 用人工分析 值 ( 通常每天分析一次 ) 对神经网络模型预测值进行在线校正, 使该神经网络模型能适应 工业生产过程的变化性和连续性, 最终得到水分含量的软测量值。 模型校正方法 : 如果神经 网络预测值与人工分析值之间相对误差超出神经网络模型允许误差范围, 则通过定系数对 预测值进行校正。
     水分含量在线分析模型的建立 :
     根据水分含量的软测量值, 经人工分析值分析在线校正后, 据此对温度、 金属离子 含量、 电导率值进行实时推断控制 ; 通过上述三个操作参数的实时调节, 实现对水分含量的 调节, 即实现水分含量的推断控制。
     通过实验获得影响水分含量测量的主要工艺操作参数 : 温度 T(X1)、 金属离子浓 度 C(X2)、 电导率值 S(X3), 以及水分含量人工分析值, 并将这些数据归一化到 [0.1, 1] 的范 围, 归一化的方法如下 :
     其中 : x 为归一化处理后数据集 ; X 为归一化以前数据集 ; max(X) 和 min(X) 为数 据集 X 的最大值和最小值。温度的变化范围为 [20, 80], 单位为℃ ; 金属离子变化范围 [0, 300], 单位为 ppm, 电导率值的变化范围为 [2.55, 2620], 单位为 μs/cm。
     通过实验测得 416 组实验数据, 利用人工实验分析值作为目标值进行神经网络训 练。其中前 360 组数据作为训练样本, 后 56 组数据作为预测样本。通过对神经网络模型进 行离线训练, 得到改进的标准 BP 神经网络结构、 权值和阀值。改进的标准 BP 神经网络计算 采用的传递函数依次为对数 S 形传递函数和 purelin 线性传递函数。
     在 DCS 的应用模块或先进过程控制模块上按照图 3 的程序实现控制语言的编程, 通过数据的实时、 连续采集, 将训练好的权值及阀值带入神经网络进行计算, 此时得到的水 分含量值在 [0.1, 1] 之间 ; 将该神经网络计算值进行反归一化, 得到水分含量软测量值。 最 后, 利用最近时刻水分含量的人工分析值对反归一化后的神经网络预测值进行在线校正, 在线校正方法为 :
     Y* = (1+γ)*Y
     如果则否则 γ = 0其中 R 表示人工分析值, Y 表示神经网络预测值, Y* 为校正值。
     神经网络预测值经过在线校正后得到水分含量的最终软测量值。
     经过测试, 利用上述神经网络模型分析得到的水分含量与人工分析值之间最大绝 对相对误差为 5.5969%, 平均相对误差为 0.6076%。这表明在工业允许误差范围之内所建 立模型可以实现水分含量的在线推断控。

一种芳香酸生产中母固料回收系统水分在线分析方法.pdf_第1页
第1页 / 共10页
一种芳香酸生产中母固料回收系统水分在线分析方法.pdf_第2页
第2页 / 共10页
一种芳香酸生产中母固料回收系统水分在线分析方法.pdf_第3页
第3页 / 共10页
点击查看更多>>
资源描述

《一种芳香酸生产中母固料回收系统水分在线分析方法.pdf》由会员分享,可在线阅读,更多相关《一种芳香酸生产中母固料回收系统水分在线分析方法.pdf(10页珍藏版)》请在专利查询网上搜索。

1、10申请公布号CN101995891A43申请公布日20110330CN101995891ACN101995891A21申请号201010287035X22申请日20100917G05D27/02200601G01N27/04200601G06N3/0820060171申请人南京工业大学地址210009江苏省南京市新模范马路5号72发明人管国锋万辉佟丽74专利代理机构南京天华专利代理有限责任公司32218代理人徐冬涛54发明名称一种芳香酸生产中母固料回收系统水分在线分析方法57摘要本发明公开了一种芳香酸生产中母固料回收系统水分在线分析方法,该方法选择影响水分含量分析的参数,温度、金属离子浓度以。

2、及电导率值,将其归一化,然后利用神经网络模型进行计算得到水分含量的软测量值;最后根据软测量值对水分含量进行实时推断控制。本发明对芳香酸生产中母固料循环氧化回收系统水分含量实施在线分析,主要解决目前芳香酸生产中母固料循环氧化回收系统水质成份较复杂,水分含量只能采用取样离线分析,操作繁琐,劳动强度大,分析时间长,不能实现装置自动化操作的问题。本发明的芳香酸生产中母固料回收系统水分在线分析方法具有操作简单、稳定性好、响应时间短、重现性好等优点,能够连续、实时、在线测定复杂组分溶液中的水分含量。51INTCL19中华人民共和国国家知识产权局12发明专利申请权利要求书2页说明书5页附图2页CN10199。

3、5896A1/2页21一种芳香酸生产中母固料回收系统水分在线分析方法,其特征是包括以下步骤A利用分布式控制系统获取芳香酸生产中母固料回收过程中影响打浆醋酸水分含量的工艺参数,包括温度T、物质浓度C、电导率值S,并将温度T、物质浓度C、电导率值S以及打浆醋酸水分含量人工分析值R进行归一化处理;B选择步骤A中3个参数做为BP神经网络模型的输入神经元,打浆醋酸中水分含量做为BP神经网络模型的输出神经元,利用改进的标准BP神经网络模型进行模拟计算,在神经网络模型中,输入层的节点数为210,隐含层层数为110,隐层节点数为150,输出层节点数为110,输入层与隐含层之间传递函数为双曲正切TANSIG函数。

4、、隐含层和输出层传递函数为线性PURELIN函数;CBP神经网络模型实时输出值经过反归一化后,利用分布式控制系统通过数据的实时、连续采集,得到水分含量的BP神经网络预测值Y,再利用水分含量人工分析值R对水分含量的BP神经网络预测值Y进行在线校正当水分含量的BP神经网络预测值与人工分析值相对误差大于设定值时,通过实时分析得到的定系数对神经网络预测值进行在线校正,得到打浆醋酸水分含量的软测量值;D根据上述水分含量的软测量值,据此对温度、物质含量、电导率值进行实时推断控制;通过上述三个操作参数的实时调节,实现对水分含量的调节,即实现水分含量的推断控制。2根据权利要求1所述的芳香酸生产中母固料回收系统。

5、水分在线分析方法,其特征在于步骤A中所述进行归一化处理包括以下步骤利用公式将温度T,物质浓度C和电导率值S以及水分含量人工分析值数据进行归一化处理,将其归一化到01,1之间,其中X为归一化处理后数据集;X为归一化以前数据集;MAXX和MINX为数据集X的最大值和最小值。3根据权利要求1所述的芳香酸生产中母固料回收系统水分在线分析方法,其特征在于步骤C中所述在线校正的方法为利用公式Y1Y进行在线校正如果则否则0其中R表示人工分析值,Y表示BP神经网络预测值,Y为校正值,BP神经网络预测值经过在线校正后得到水分含量的最终软测量值,经过测试,利用上述神经网络模型分析得到的水分含量与人工分析值之间绝对。

6、相对误差5以内,平均相对误差3以内。4根据权利要求1所述的芳香酸生产中母固料回收系统水分在线分析方法,其特征在于步骤C中BP神经网络模型实时输出值经过反归一化后,利用分布式控制系统通过数据的实时、连续采集,得到水分含量的BP神经网络预测值Y的方法为根据工业生产提供的的实时数据范围,通过实验测得的数据作为在线分析软测量模型权利要求书CN101995891ACN101995896A2/2页3的训练样本。选择改进后的标准BP神经网络对水分含量进行分析预测,输入神经元分别对应为归一化处理后的温度T,物质浓度C和电导率值S,输出神经元对应为归一化处理后的水分含量人工分析值;在上述训练样本中选择部分数据作。

7、为神经网络学习样本,另外的数据作为测试样本检测神经网络的稳定性和泛化能力,最后取学习样本和测试样本的预测值与人工分析值相对误差都较小的一组权值和阀值作为神经网络模型参数;在上述神经网络模型参数确定后,就可以把现场实时不断采集的数据归一化处理后带入神经网络进行计算,然后将神经网络输出值经反归一化处理,就得到水分含量的神经网络预测值。5根据权利要求1所述的芳香酸生产中母固料回收系统水分在线分析方法,其特征在于此方法可应用于对苯二甲酸、间苯二甲酸、邻苯二甲酸等芳香酸生产母固料回收系统中。6根据权利要求1所述的芳香酸生产中母固料回收系统水分在线分析方法,其特征在于所述物质浓度为酸溶液体系中的金属离子、。

8、有机物、醋酸或悬浮物的浓度。7根据权利要求1所述的芳香酸生产中母固料回收系统水分在线分析方法,其特征在于所述步骤D还包括利用置于氧化反应器之前酸进料管道中以及母固配料罐之后的管道中的电导率在线分析仪,判定进料含水量超标或设备操作出现异常引起的含水量超标。权利要求书CN101995891ACN101995896A1/5页4一种芳香酸生产中母固料回收系统水分在线分析方法技术领域0001本发明涉及一种将电导率原理应用于水分含量在线分析的方法,以及通过神经网络实现水分在线分析的建模技术,具体是一种芳香酸生产中母固料回收系统水分在线分析方法。背景技术0002精对苯二甲酸PTA是生产聚酯切片、薄膜、涂料及。

9、工程塑料的重要原料,由对二甲苯经高温氧化,生成粗对苯二甲酸,再加氢精制制得。对二甲苯氧化过程是芳烃上的甲基通过一系列氧化反应最终转变为羧基的过程,是一连串反应,简化的反应路径如下00030004精对苯二甲酸PTA生产精制单元中,PTA结晶离心分离后的大量母液,经进一步过滤分离后,滤饼中除了TA外,还含有大量的PT酸。PT酸也可作为生产TA的原料。为了节约原料,降低PX单耗,化工厂开发了母固料返回氧化系统的回收技术。回收利用母固料中的PT酸,在提高产品收率的同时降低三废排放量。由于打浆醋酸含水量的不确定性以及母液过滤机操作不稳定性,使得滤饼中水含量不稳定,当滤饼中水含量较高时,打浆重新配料后,会。

10、使得氧化反应器中水含量超标。水含量对对二甲苯氧化过程的反应速率、氧化反应的选择性和氧化产物的纯度都有很大影响。实际生产中,由于水含量未进行在线分析,传统的定时取样分析含水量的方式,不能反映生产过程中含水量的瞬时变化。当水含量突然超标时,现有离线分析通常会滞后数小时,远远不能满足生产上的控制要求。母固料回用系统水样中所含成份较复杂,对在线测量水分含量有很大的影响。目前还没有在线分析仪器能够快速、准确测量母固料中水分含量,关于电导率法在芳香酸母固料回用系统水分在线分析的应用未见报导。0005测定水分含量最经典的方法是卡尔费休滴定法。虽然该方法有了很大的改进,但是仍然具有试剂配制繁琐、配置条件苛刻,。

11、不能实现真正意义上的实时、在线检测等缺点。另外还有近红外水分测定方法,利用水对近红外波长光的吸收来测定水分含量,但此种方法只用在粉末或片状物料中,不适用于溶液中水含量的测定。电导率法在线测量水分含量具有方便、快速、廉价的特点,并且有很好的灵敏度和选择性,结合人工智能和自动控制对水分含量实施智能控制和优化操作,实时准确的监测循环氧化回收系统水分含量,确保各装置处于最优工作状态。0006BP神经网络算法基本原理为利用输出后的误差来估计输出层的直接前导层的误差,再用这个误差估计更前一层的误差,如此一层一层的反传下去,就获得了所有其他各说明书CN101995891ACN101995896A2/5页5层。

12、的误差估计。0007BP神经网络算法学习的过程为神经网络在外界输入样本的刺激下不断改变网络的连接权值,以使网络的输出不断地接近期望的输出。学习的本质是对各连接权值的动态调整,学习规则即权值调整规则,即在学习过程中网络中各神经元的连接权变化所依据的一定的调整规则。发明内容0008本发明提供一种芳香酸生产中母固料回收系统水分在线分析方法,主要解决目前芳香酸生产中母固料循环氧化回收系统水质成份较复杂,水分含量只能采用取样离线分析,操作繁琐,劳动强度大,分析时间长,不能实现装置自动化操作的问题。0009本发明技术方案0010一种芳香酸生产中母固料回收系统水分在线分析方法,包括以下步骤0011A利用分布。

13、式控制系统获取芳香酸生产中母固料回收过程中影响打浆醋酸水分含量的工艺参数,包括温度T、物质浓度C、电导率值S,并将温度T、物质浓度C、电导率值S以及打浆醋酸水分含量人工分析值R进行归一化处理;0012B选择步骤A中3个参数做为BP神经网络模型的输入神经元,打浆醋酸中水分含量做为BP神经网络模型的输出神经元,利用改进的标准BP神经网络模型进行模拟计算,在神经网络模型中,输入层的节点数为210,隐含层层数为110,隐层节点数为150,输出层节点数为110,输入层与隐含层之间传递函数为双曲正切TANSIG函数、隐含层和输出层传递函数为线性PURELIN函数;0013CBP神经网络模型实时输出值经过反。

14、归一化后,利用分布式控制系统通过数据的实时、连续采集,得到水分含量的BP神经网络预测值Y,再利用水分含量人工分析值R对水分含量的BP神经网络预测值Y进行在线校正0014当水分含量的BP神经网络预测值与人工分析值相对误差大于设定值时,通过实时分析得到的定系数对神经网络预测值进行在线校正,得到打浆醋酸水分含量的软测量值;0015D根据上述水分含量的软测量值,据此对温度、物质含量、电导率值进行实时推断控制;通过上述三个操作参数的实时调节,实现对水分含量的调节,即实现水分含量的推断控制。0016所述步骤A中进行归一化处理包括以下步骤0017利用公式00180019将温度T,物质浓度C和电导率值S以及水。

15、分含量人工分析值数据进行归一化处理,将其归一化到01,1之间,其中X为归一化处理后数据集;X为归一化以前数据集;MAXX和MINX为数据集X的最大值和最小值。0020所述步骤C中在线校正的方法为0021利用公式0022Y1Y进行在线校正说明书CN101995891ACN101995896A3/5页60023如果则否则00024其中R表示人工分析值,Y表示BP神经网络预测值,Y为校正值,BP神经网络预测值经过在线校正后得到水分含量的最终软测量值,经过测试,利用上述神经网络模型分析得到的水分含量与人工分析值之间绝对相对误差5以内,平均相对误差3以内。0025所述步骤C中BP神经网络模型实时输出值经。

16、过反归一化后,利用分布式控制系统通过数据的实时、连续采集,得到水分含量的BP神经网络预测值Y的方法为0026根据工业生产提供的的实时数据范围,通过实验测得的数据作为在线分析软测量模型的训练样本。选择改进后的标准BP神经网络对水分含量进行分析预测,输入神经元分别对应为归一化处理后的温度T,物质浓度C和电导率值S,输出神经元对应为归一化处理后的水分含量人工分析值;0027在上述训练样本中选择部分数据作为神经网络学习样本,另外的数据作为测试样本检测神经网络的稳定性和泛化能力,最后取学习样本和测试样本的预测值与人工分析值相对误差都较小的一组权值和阀值作为神经网络模型参数;0028在上述神经网络模型参数。

17、确定后,就可以把现场实时不断采集的数据归一化处理后带入神经网络进行计算,然后将神经网络输出值经反归一化处理,就得到水分含量的神经网络预测值。0029此方法可应用于对苯二甲酸、间苯二甲酸、邻苯二甲酸等芳香酸生产母固料回收系统中。0030所述物质浓度为酸溶液体系中的金属离子、有机物、醋酸或悬浮物的浓度。0031所述步骤D还包括利用置于氧化反应器之前酸进料管道中以及母固配料罐之后的管道中的电导率在线分析仪,判定进料含水量超标或设备操作出现异常引起的含水量超标。0032电导率在线分析配制的温度测量装置,可根据水分控制要求,设计电导率上限值,当电导率值超出上限值时则仪器发出报警。0033本发明的有益效果。

18、是0034本发明的芳香酸生产中母固料回收系统水分在线分析方法具有操作简单、稳定性好、响应时间短、重现性好等优点,能够连续、实时、在线测定复杂组分溶液中的水分含量。通过使用本次发明所述方法对芳香酸生产中母固料循环氧化回收系统影响水分含量测量的工艺参数实施智能控制,为生产决策提供快速、可靠的水分测量结果。附图说明0035图1为水分含量测量神经网络软测量模型结构图中间部分隐含层未绘出,该软测量模型采用改进的标准BP神经网络。0036图2为BP神经网络结构框图。0037图3为水分含量软测量模型程序框图。具体实施方式0038下面结合实施例和附图对本发明作进一步的说明说明书CN101995891ACN10。

19、1995896A4/5页70039水分含量BP神经网络模型的建立0040前馈神经网络BP模型是目前神经网络领域研究最多应用最多的网络模型。其非线性逼近能力是它博得青睐的主要原因。但是BP算法也有一些缺陷,主要是它训练过程的不确定性。具体表现为对于一些复杂的问题,由于学习速率太小,BP算法可能要经过几小时甚至更长时间的训练。不少人对梯度下降法的缺点提出了许多改进算法,如二阶快速BP算法、动量因子法、作用函数调整法等。这些改进方法比梯度下降法在收敛速度、逼近精度上有明显提高。但在多变量、大样本输入情况下仍然存在推广能力差、逼近精度低甚至使训练瘫痪的问题。为此,本发明采用贝叶斯正则化算法对BP网络进。

20、行改进,建立复杂化工过程的在线分析模型。贝叶斯正则化方法是通过修正神经网络的训练性能函数来提高其推广能力的,通过采用新的性能指标函数,可以在保证网络训练误差尽可能小的情况下,使网络具有较小的权值,即使得网络的有效权值尽可能地少,这实际上相当于自动缩小了网络的规模。0041通过实验获取芳香酸生产母固料循环氧化回收系统中影响水分含量测量的工艺操作参数,包括温度T,金属离子含量C和电导率值S。这里的软测量模型考虑了上述3个参数对水分含量测量的影响。所以模型选择上述3个参数做为神经网络输入神经元,水分含量做为神经网络输出神经元。0042将温度T,金属离子含量C和电导率值S以及水分含量人工分析值数据进行。

21、归一化处理,归一化范围可以选取为0,1,1,1,05,05等,这里将其归一化到01,1之间。归一化方法为00430044其中X为归一化处理后数据集;X为归一化以前数据集;MAXX和MINX为数据集X的最大值和最小值。0045在神经网络模型中,输入层的节点数为I,中间层层数为L,隐层节点数为J,输出层节点数为K,层之间传递函数有极限函数、线性函数、S形函数和竞争函数等。在本发明实施时输入层的节点数为II3,隐含层层数为LL1,隐层节点数为JJ15,输出层节点数为KK1,输入层与隐含层之间传递函数为双曲正切TANSIG函数、隐含层和输出层传递函数为线性PURELIN函数。0046根据工业生产提供的。

22、的实时数据范围,通过实验测得的数据作为在线分析软测量模型的训练样本。选择改进后的标准BP神经网络对水分含量进行分析预测,输入神经元分别对应为归一化处理后的温度T,金属离子含量C和电导率值S,输出神经元对应为归一化处理后的水分含量人工分析值,水分含量神经网络软测量模型结构如图2所示。0047在上述训练样本中选择部分数据作为神经网络学习样本,另外的数据作为测试样本检测神经网络的稳定性和泛化能力,最后取学习样本和测试样本的预测值与人工分析值相对误差都较小的一组权值和阀值作为神经网络模型参数。0048在上述神经网络模型参数确定后,就可以把现场实时不断采集的数据模型输入变量所需数据归一化处理后带入神经网。

23、络进行计算,然后将神经网络输出值经反归一化处理,就得到水分含量的神经网络预测值。0049在DCS的应用模块或先进过程管理模块上按图3所示的程序流程实现控制语言的说明书CN101995891ACN101995896A5/5页8编程。通过数据的实时、连续采集,就能得到芳香酸生产中母固料循环氧化回收系统影响水分含量测量的实时神经网络预测值,或者采用其他在线计算机进行实时神经网络预测值计算。0050模型校正0051由于实际生产过程中存在多种干扰因素,上述水分含量的神经网络模型预测值和工业装置的人工分析值不可避免会产生一定的偏差。因此,必须每隔一段时间,用人工分析值通常每天分析一次对神经网络模型预测值进。

24、行在线校正,使该神经网络模型能适应工业生产过程的变化性和连续性,最终得到水分含量的软测量值。模型校正方法如果神经网络预测值与人工分析值之间相对误差超出神经网络模型允许误差范围,则通过定系数对预测值进行校正。0052水分含量在线分析模型的建立0053根据水分含量的软测量值,经人工分析值分析在线校正后,据此对温度、金属离子含量、电导率值进行实时推断控制;通过上述三个操作参数的实时调节,实现对水分含量的调节,即实现水分含量的推断控制。0054通过实验获得影响水分含量测量的主要工艺操作参数温度TX1、金属离子浓度CX2、电导率值SX3,以及水分含量人工分析值,并将这些数据归一化到01,1的范围,归一化。

25、的方法如下00550056其中X为归一化处理后数据集;X为归一化以前数据集;MAXX和MINX为数据集X的最大值和最小值。温度的变化范围为20,80,单位为;金属离子变化范围0,300,单位为PPM,电导率值的变化范围为255,2620,单位为S/CM。0057通过实验测得416组实验数据,利用人工实验分析值作为目标值进行神经网络训练。其中前360组数据作为训练样本,后56组数据作为预测样本。通过对神经网络模型进行离线训练,得到改进的标准BP神经网络结构、权值和阀值。改进的标准BP神经网络计算采用的传递函数依次为对数S形传递函数和PURELIN线性传递函数。0058在DCS的应用模块或先进过程。

26、控制模块上按照图3的程序实现控制语言的编程,通过数据的实时、连续采集,将训练好的权值及阀值带入神经网络进行计算,此时得到的水分含量值在01,1之间;将该神经网络计算值进行反归一化,得到水分含量软测量值。最后,利用最近时刻水分含量的人工分析值对反归一化后的神经网络预测值进行在线校正,在线校正方法为0059Y1Y0060如果则否则00061其中R表示人工分析值,Y表示神经网络预测值,Y为校正值。0062神经网络预测值经过在线校正后得到水分含量的最终软测量值。0063经过测试,利用上述神经网络模型分析得到的水分含量与人工分析值之间最大绝对相对误差为55969,平均相对误差为06076。这表明在工业允许误差范围之内所建立模型可以实现水分含量的在线推断控。说明书CN101995891ACN101995896A1/2页9图1图2说明书附图CN101995891ACN101995896A2/2页10图3说明书附图CN101995891A。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 物理 > 控制;调节


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1