制备胰岛素样生长因子1与聚乙二醇的偶联物的方法.pdf

上传人:奻奴 文档编号:346670 上传时间:2018-02-10 格式:PDF 页数:47 大小:1.91MB
返回 下载 相关 举报
摘要
申请专利号:

CN200780031987.1

申请日:

2007.08.29

公开号:

CN101511390A

公开日:

2009.08.19

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效|||公开

IPC分类号:

A61K47/48; C12N15/12; C07K14/65; C12N9/52; C12N15/62

主分类号:

A61K47/48

申请人:

弗·哈夫曼-拉罗切有限公司

发明人:

S·费舍尔; F·赫西; H·克内根; K·朗; F·梅茨格; J·T·雷古拉; C·尚茨; A·肖布马尔; H·J·舍恩菲尔德

地址:

瑞士巴塞尔

优先权:

2006.8.31 EP 06018170.8

专利代理机构:

北京市中咨律师事务所

代理人:

黄革生;凌 立

PDF下载: PDF下载
内容摘要

制备赖氨酸聚(乙二醇)化IGF-I或IGF-I变体的方法,所述变体包含的选自第27位、第65位和/或第68位赖氨酸的一个或两个氨基酸独立地被另一个极性氨基酸取代,其特征在于培养包含表达载体的原核宿主细胞,所述表达载体含有编码融合蛋白的核酸,所述融合蛋白包含的所述IGF-I或IGF-I变体的N末端与前肽的C末端连接,所述前肽C末端以氨基酸-Y-Pro终止,其中Y选自Pro、Pro-Ala、Pro-Gly、Pro-Thr、Ala-Pro、Gly-Pro、Thr-Pro、Arg-Pro或Pro-Arg-Pro;回收并聚(乙二醇)化所述融合蛋白;用IgA蛋白酶切割所述聚(乙二醇)化的融合蛋白;并回收所述聚(乙二醇)化的IGF-I或IGF-I变体。所述IGF-I或IGF-I变体用于治疗神经变性疾病,如阿尔茨默氏病。

权利要求书

1.  制备赖氨酸聚(乙二醇)化IGF-I或IGF-I变体的方法,所述变体包含的选自第27位、第65位和/或第68位赖氨酸的一个或两个氨基酸独立地被另一个极性氨基酸取代,其特征在于:
a)培养包含表达载体的原核宿主细胞,所述表达载体含有编码融合蛋白的核酸,所述融合蛋白包含的所述IGF-I或IGF-I变体的N末端与前肽的C末端连接,
b)所述前肽C末端以氨基酸-Y-Pro终止,其中Y选自Pro、Pro-Ala、Pro-Gly、Pro-Thr、Ala-Pro、Gly-Pro、Thr-Pro、Arg-Pro或Pro-Arg-Pro,
c)回收并聚(乙二醇)化所述融合蛋白,
d)用IgA蛋白酶切割所述聚(乙二醇)化的融合蛋白,并
e)回收所述聚(乙二醇)化的IGF-I或IGF-I变体。

2.
  权利要求1的方法,其特征在于所述前肽由通式Met-X1-Hisn-X2-Y-Pro-表示,其中
·Met表示甲硫氨酸
·X1是键、丝氨酸或天冬酰胺
·His是组氨酸
·n是从0至10之间的数字,
·X2是选自肽SEQ ID NO:6-10的接头肽,
·Pro是脯氨酸,并且
·Y选自Pro、Pro-Ala、Pro-Gly、Pro-Thr、Ala-Pro、Gly-Pro、Thr-Pro、Arg-Pro或Pro-Arg-Pro。

3.
  权利要求1或2的方法,其特征在于所述前肽不包含赖氨酸残基。

4.
  权利要求1至3中任一项的方法,其特征在于所述极性氨基酸独立地是精氨酸、谷氨酰胺或天冬酰胺。

5.
  权利要求1至4中任一项的方法,其特征在于所述赖氨酸聚(乙二醇)化的IGF-I变体在第65位和第68位赖氨酸处被单聚(乙二醇)化或二聚(乙二醇)化。

6.
  权利要求5的方法,其特征在于所述赖氨酸聚(乙二醇)化的IGF-I变体是RRK并且所述变体在第68位赖氨酸处被单聚(乙二醇)化,或所述赖氨酸聚(乙二醇)化的IGF-I变体是RKR并且所述变体在第65位赖氨酸处被单聚(乙二醇)化。

7.
  权利要求5的方法,其特征在于所述赖氨酸聚(乙二醇)化的IGF-I变体是RKK,并且所述变体在第65位和第68位赖氨酸处被单聚(乙二醇)化或二聚(乙二醇)化。

8.
  权利要求5的方法,其特征在于所述赖氨酸聚(乙二醇)化的IGF-I变体是RRK、RKR或RKK的混合物,并且所述变体在第65位和第68位赖氨酸处被单聚(乙二醇)化或二聚(乙二醇)化。

9.
  权利要求1至4中任一项的方法,其特征在于所述赖氨酸聚(乙二醇)化的IGF-I被随机单聚(乙二醇)化或二聚(乙二醇)化。

10.
  权利要求1至9中任一项的方法,其特征在于所述PEG具有20至100kDa的总分子量。

11.
  权利要求1至10中任一项的方法,其特征在于所述聚(乙二醇)基团是分支的聚(乙二醇)基团。

12.
  包含赖氨酸聚(乙二醇)化的IGF-I或IGF-I变体的融合蛋白,所述变体包含的选自第27位、第65位和/或第68位赖氨酸的一个或两个氨基酸独立地被另一个极性氨基酸取代,其N末端与前肽的C末端连接,其特征在于所述前肽C末端以氨基酸-Y-Pro终止,其中Y选自Pro、Pro-Ala、Pro-Gly、Pro-Thr、Ala-Pro、Gly-Pro、Thr-Pro、Arg-Pro或Pro-Arg-Pro。

13.
  权利要求12的融合蛋白,其特征在于所述前肽具有至多30个氨基酸的长度。

14.
  权利要求12或13的融合蛋白,其特征在于通式Met-X1-Hisn-X2-Y-Pro-[IGF-I或IGF-I变体],
其中
·IGF-I表示人IGF-I并且IGF-I变体表示IGF-I,其中选自第27位、第65位和/或第68位赖氨酸的一个或两个氨基酸独立地被另一个极性氨基酸取代,
·Met表示甲硫氨酸,
·X1是键、丝氨酸或天冬酰胺,
·His是组氨酸,
·n是从0至10之间的数字,
·X2是选自肽SEQ ID NO:6-10的接头肽,
·Pro是脯氨酸,并且
·Y选自Pro、Pro-Ala、Pro-Gly、Pro-Thr、Ala-Pro、Gly-Pro、Thr-Pro、Arg-Pro或Pro-Arg-Pro。

15.
  赖氨酸聚(乙二醇)化的IGF-I,其特征在于不包含N末端的甲硫氨酸。

16.
  赖氨酸聚(乙二醇)化的IGF-I变体,其中选自第27位、第65位和/或第68位赖氨酸的一个或两个氨基酸独立地被另一个极性氨基酸取代,其特征在于所述变体不包含N末端的甲硫氨酸。

17.
  药物组合物,其包含权利要求15或16的赖氨酸聚(乙二醇)化的IGF-I或IGF-I变体。

18.
  权利要求15或16的赖氨酸聚(乙二醇)化的IGF-I或IGF-I变体用于制备治疗阿尔茨默氏病(AD)的药物的用途。

19.
  用于治疗阿尔茨默氏病(AD)的方法,其特征在于对需要此类治疗的患者施用药学有效量的权利要求15或16的赖氨酸聚(乙二醇)化的IGF-I或IGF-I变体。

说明书

制备胰岛素样生长因子-1与聚(乙二醇)的偶联物的方法
本发明涉及用于制备胰岛素样生长因子-I(IGF-I)与聚(乙二醇)(PEG)的偶联物的方法、含有此类偶联物的药物组合物及使用此类偶联物的方法。
发明背景
阿尔茨海默氏病(AD)是神经变性的日益流行形式,其导致了65岁以上年龄的人群中所有痴呆病例的约50%-60%。目前它影响了全世界估计1500万人口,并且由于人群中老年人的相对增多,其流行率很可能在未来20年至30年间增长。AD是从临床症状发作至死亡具有约8.5年平均持续时间的进行性疾病。在与更高的心理功能相关的脑区域中锥形神经元的死亡和神经突触的损失产生典型症状,其特征在于认知功能的严重且进行性损伤(Francis,P.T.,等,J.Neurol.Neurosurg.Psychiatry 66(1999)137-147)。AD是世界上老年性痴呆和早衰性痴呆的最常见形式,在临床上被认为是严重的进行性痴呆,其表现为记忆、智力功能的持续丧失和说话紊乱(Merritt,A Textbook of Neurology,第6版,Lea& Febiger,Philadelphia(1979),第484-489页)。在神经病理学上AD的主要标志是两个特征性损伤的存在:淀粉状蛋白老年斑和神经纤维缠结(NFT)。当斑点在神经元外沉积时,在死后脑中的神经元内观察到了缠结。淀粉状蛋白斑核心的一种主要成分是病理学上沉积的小淀粉状蛋白β肽(Aβ),其被来自淀粉状蛋白前体蛋白(APP)的分泌酶切割(Selkoe,D.J.,Physiol.Rev.81(2001)741-766;Hardy,J.和Selkoe,D.J.,Science 297(2002)353-356;Bush,A.I。和Tanzi,R.E.,Proc.Natl.Acad.Sci.美国99(2002)7317-7319)。具有39-43残基(MW~4kDa)的自身聚集肽Aβ合成为更大APP(110-120kDa)的部分。APP是具有大的N末端胞外结构域、单个跨膜结构域和短的胞质尾区的I型膜内含糖蛋白。Aβ区跨越APP的胞外结构域和跨膜结构域部分。关于APP参与AD中神经细胞死亡的最常见假说是淀粉状蛋白假说。该假说假设斑点淀粉状沉积物或部分聚集的可溶性Aβ触发了神经毒性级联,从而引起与AD病理学相似的神经变性(Selkoe,D.J.,Physiol.Rev.81(2001)741-766;Hardy,J.和Selkoe,D.J.,Science297(2002)353-356)。
人胰岛素样生长因子I(IGF-I)是结构上与胰岛素相关的循环激素。传统上认为IGF-I是促生长素在外周组织上发挥作用的主要介质。IGF-I由70个氨基酸组成,也被称为生长调节素C并由SwissProt No.P01343定义。在例如,le Bouc,Y.,等,FEBS Lett.196(1986)108-112;dePagter-Holthuizen,P.,等,FEBS Lett.195(1986)179-184;SandbergNordqvist,A.C.,等,Brain Res.Mol.Brain Res.12(1992)275-277;Steenbergh,P.H.,等,Biochem.Biophys.Res.Commun.175(1991)507-514;Tanner,J.M.,等,Acta Endocrinol.(Copenh.)84(1977)681-696;Uthne,K.,等,J.Clin.Endocrinol.Metab.39(1974)548-554;EP 0 123 228;EP 0 128733;US 5,861,373;US 5,714,460;EP 0 597 033;WO 02/32449;WO93/02695中提到了用途、活性及制备。
IGF-I的功能调控是非常复杂的。在循环中,仅0.2%的IGF-I以游离形式存在,而大多数结合IGF结合蛋白(IGFBP’s),所述IGF结合蛋白对IGF具有很高的亲和力,并调节IGF-I的功能。可通过释放IGF-I的机制(如通过蛋白酶蛋白水解IGFBP)局部释放所述因子。
IGF-I在发育的及成熟的脑中起旁分泌作用(Werther,G.A.,等,Mol.Endocrinol.4(1990)773-778)。体外研究表明IGF-I对CNS中几种类型的神经元而言是潜在的非选择性营养物质(Knusel,B.,等,J.Neurosci.10(1990)558-570;Svrzic,D.,和Schubert,D.,Biochem.Biophys.Res.Commun.172(1990)54-60),所述神经元包括多巴胺能神经元(Knusel,B.,等,J.Neurosci.10(1990)558-570)和少突胶质细胞(McMorris,F.A.,和Dubois-Dalcq,M.,J.Neurosci.Res.21(1988)199-209;McMorris,F.A.,等,Proc.Natl.Acad.Sci.美国83(1986)822-826;Mozell,R.L.,和McMorris,F.A.,J.Neurosci.Res.30(1991)382-390))。US 5,093,317提到胆碱能神经元细胞的存活通过施用IGF-I而提高。还已知IGF-I刺激外周神经再生(Kanje,M.,等,Brain Res.486(1989)396-398)并提高鸟氨酸脱羧酶的活性(US5,093,317)。US 5,861,373和WO 93/02695提到通过提高患者中枢神经系统中IGF-I和/或其类似物的有效浓度来治疗主要影响神经胶质和/或非胆碱能神经细胞的中枢神经系统损伤或疾病的方法。WO 02/32449涉及通过向哺乳动物鼻腔施用包含治疗有效量的IGF-I或其生物活性变体的药物组合物来减少或预防哺乳动物枢神经系统中局部缺血损伤的方法。IGF-I或其变体通过鼻腔吸收并以有效减少或预防与局部缺血事件相关的局部缺血损伤的量转运至哺乳动物的中枢神经系统中。EP 0 874 641要求IGF-I或IGF-II用于制备药物的用途,所述药物用于治疗或预防中枢神经系统中因AIDS相关痴呆、AD、帕金森氏病、匹克氏病、亨延顿病、肝性脑病、皮质基底神经节综合征、进行性痴呆、具痉挛性parapavresis的家族性痴呆、进行性核上麻痹、多发性硬化、谢耳德脑硬化症或急性坏死出血性脑炎而引起的神经元损伤,其中所述药剂是用于在血脑屏障或血脊髓屏障外经肠胃外施用有效量的该IGF的形式。
已将降低游离IGF-I的脑水平和血清水平与AD的散发型和家族型的发病机理相关联。此外,IGF-I保护神经元免于Aβ诱导的神经毒性(Niikura,T.,等,J.Neurosci.21(2001)1902-1910;Dore,S.,等,Proc.Natl.Acad.Sci.美国94(1997)4772-4777;Dore,S.,等,Ann.NY Acad.Sci.890(1999)356-364)。近来,表明外周施用IGF-I能够降低大鼠和小鼠中的脑Aβ水平(Carro,E.,等,Nat.Med.8(2002)1390-1397)。此外,该研究证实在转基因AD小鼠模型中延长的IGF-I治疗显著减轻脑的淀粉状蛋白斑负担。这些数据强烈支持IGF-I能够通过从脑中清除Aβ来降低脑的Aβ水平和减轻斑点相关脑痴呆的观点。
已经证明用聚(乙二醇)(PEG)对蛋白质进行共价键修饰是延长体内蛋白质循环半衰期的有效方法(Hershfield,M.S.,等,N.Engl.J.Med.316(1987)589-596;Meyers,F.J.,等,Clin.Pharmacol.Ther.49(1991)307-313;Delgado,C.,等,Crit.Rev.Ther.Drug Carrier Syst.9(1992)249-304;Katre,Advanced Drug Delivery Reviews 10(1993)91-114;EP A 0 400 472;Monfardini,C.,等,Bioconjugate Chem.6(1995)62-69;Satake-Ishikawa,R.,等,Cell Struct.Funct.17(1992)157-160;Katre,N.V.,等,Proc.Natl.Acad.Sci.美国84(1987)1487-1491;Tsutsumi,Y.,等,Jpn.J.Cancer Res.85(1994)9-12;Inoue,H.,等,J.Lab.Clin.Med.124(1994)529-536;Chamow,S.M.,等,Bioconjugate Chem.5(1994)133-140)。
聚(乙二醇)化的其他优点是增加可溶性和降低蛋白质免疫原性(Katre,N.V.,J.Immunol.144(1990)209-213)。蛋白质聚(乙二醇)化的常用方法是使用被氨基反应性试剂(如N羟基琥珀酰亚胺基(NHS))激活的聚(乙二醇)。使用此类试剂,聚(乙二醇)在游离的伯氨(如赖氨酸残基的N末端α-氨基和ε-氨基)处连接到蛋白质上。然而,该方法的主要缺陷是蛋白质通常含有相当大量的赖氨酸残基,因而聚(乙二醇)基团在所有游离ε-氨基处均以非特异方式连接到蛋白质上,产生随机聚(乙二醇)化蛋白质的异源产物混合物。因而,许多NHS聚(乙二醇)化的蛋白质因比活性低而不适合用于商业用途。失活起因于一个或更多个赖氨酸残基或生物活性所需的N末端氨基残基的共价键修饰,或聚(乙二醇)残基在蛋白质活性位点附近或活性位点处的共价连接。例如,发现使用NHS聚(乙二醇)化试剂对人促生长素进行修饰将该蛋白质的生物活性降低了10倍多(Clark,R.,等,J.Biol.Chem.271(1996)21969-21977)。人促生长素除N末端氨基酸之外还含有9个赖氨酸。这些赖氨酸中的某些定位在已知对受体结合至关重要的蛋白质区域中(Cunningham,B.C.,等,Science 254(1991)821-825)。此外,通过使用氨基反应性聚(乙二醇)试剂修饰促红细胞生成素也导致生物活性几乎完全丧失(Wojchowski,D.M.,等,Biochim.Biophys.Acta 910(1987)224-232)。用氨基反应性聚(乙二醇)化试剂对干扰素-α2进行共价键修饰导致40-75%的生物活性丧失(美国专利号5,382,657)。对G-CSF进行类似修饰导致高于60%的活性丧失(Tanaka,H.,等,Cancer Res.51(1991)3710-3714),并且对白细胞介素-2进行类似修饰导致高于90%的生物活性丧失(Goodson,R.J.,和Katre,N.V.,BioTechnology 8(1990)343-346)。
WO 94/12219和WO 95/32003要求包含PEG和IGF或半胱氨酸(cystein)突变的IGF的聚乙二醇偶联物,所述PEG在突变蛋白质N末端区中的游离半胱氨酸处连接到所述突变蛋白质上。WO 2004/60300描述了N末端聚(乙二醇)化的IGF-I。
将IgA蛋白酶的识别位点描述为Yaa-Pro.!.Xaa-Pro。Yaa代表Pro(或少数情况下代表与Ala、Gly或Thr组合的Pro:Pro-Ala、Pro-Gly或Pro-Thr)。Xaa代表Thr、Ser或Ala(Pohlner,J.,等,Bio/Technology 10(1992)799-804;Pohlner,J.,等,Nature 325(1987)458-462;和US5,427,927)。Wood,S.G.和Burton J.,Infect.Immun.59(1991)1818-1822已经鉴定了天然切割位点。来自淋球菌(2型,Neisseria gonorrhoea(type 2))的免疫球蛋白A1蛋白酶的合成肽底物是自我蛋白酶解位点Lys-Pro-Ala-Pro.!.Ser-Pro、Val-Ala-Pro-Pro.!.Ser-Pro、Pro-Arg-Pro-Pro.!.Ala-Pro、Pro-Arg-Pro-Pro.!.Ser-Pro、Pro-Arg-Pro-Pro.!.Thr-Pro和IgA1切割位点Pro-Pro-Thr-Pro.!.Ser-Pro和Ser-Thr-Pro-Pro.!.Thr-Pro。
WO 2006/066891公开了由胰岛素样生长因子-1(IGF-I)变体与一个或两个聚(乙二醇)基团构成的偶联物,其特征在于所述IGF-I变体在野生型IGF-I氨基酸序列第27位、第37位、第65位、第68位氨基酸的至多三个氨基酸上具有氨基酸改变,使得一个或两个所述氨基酸是赖氨酸,并且第27位氨基酸是极性氨基酸而不是赖氨酸,并且所述赖氨酸通过伯氨结合,并且公开了所述聚(乙二醇)基团具有从20至100kDa的总分子量。此类偶联物可用于治疗神经变性疾病(如阿尔茨海默氏病)。WO 2006/074390涉及IGF-I融合多肽。
发明概述
本发明包括用于制备赖氨酸聚(乙二醇)化IGF-I或赖氨酸聚(乙二醇)化IGF-I变体的方法,所述变体包含的选自第27位、第65位和/或第68位赖氨酸的一个或两个氨基酸独立地被另一个极性氨基酸取代,其特征在于
a)培养包含表达载体的原核宿主细胞,所述表达载体含有编码融合蛋白的核酸,所述融合蛋白包含的所述IGF-I或IGF-I变体的N末端与前肽的C末端连接,
b)由此所述前肽C末端以氨基酸-Y-Pro终止,其中Y选自Pro、Pro-Ala、Pro-Gly、Pro-Thr、Ala-Pro、Gly-Pro、Thr-Pro、Arg-Pro或Pro-Arg-Pro,
c)回收并聚(乙二醇)化所述融合蛋白,
d)用IgA蛋白酶切割所述聚(乙二醇)化的融合蛋白,并
e)回收所述聚(乙二醇)化的IGF-I或IGF-I变体。
在一个实施方案中,所述方法的特征在于赖氨酸聚(乙二醇)化IGF-I变体是RRK,并且所述变体在第68位赖氨酸处被单聚(乙二醇)化,或所述赖氨酸聚(乙二醇)化IGF-I变体是RKR,并且所述变体在第65位赖氨酸处被单聚(乙二醇)化。
在另一个实施方案中,所述方法的特征在于所述赖氨酸聚(乙二醇)化IGF-I变体是RKK,并且所述变体在第65位和第68位赖氨酸处单聚(乙二醇)化或二聚(乙二醇)化。
在另一个实施方案中,所述方法的特征在于所述赖氨酸聚(乙二醇)化IGF-I变体是RRK、RKR或RKK的混合物,并且所述变体在第65位和第68位赖氨酸处单聚(乙二醇)化或二聚(乙二醇)化。
本发明的其他实施方案是融合蛋白,所述融合蛋白包含的所述IGF-I或IGF-I变体的N末端与前肽的C末端连接,其特征在于所述前肽C末端以氨基酸-Y-Pro终止,其中Y选自Pro、Pro-Ala、Pro-Gly、Pro-Thr、Ala-Pro、Gly-Pro、Thr-Pro、Arg-Pro或Pro-Arg-Pro。因为具有-Y-Pro序列,可通过IgA蛋白酶处理从所述IGF-I或IGF-I变体上分离所述前肽。
优选地,本发明融合蛋白的特征在于通式Met-X1-Hisn-X2-Y-Pro-[IGF-I或IGF-I变体],其中
IGF-I表示人IGF-I,并且IGF-I变体表示IGF-I,其中选自第27位、第65位和/或第68位赖氨酸的一个或两个氨基酸独立地被另一个极性氨基酸取代,
·Met表示甲硫氨酸,
·X1是键、丝氨酸或天冬酰胺,
·His是组氨酸,
·n是从0至10间的数字,优选从0至6,
·X2是选自肽SEQ ID NO:6-10的接头肽,
·Pro是脯氨酸,并且
·Y选自Pro、Pro-Ala、Pro-Gly、Pro-Thr、Ala-Pro、Gly-Pro、Thr-Pro、Arg-Pro或Pro-Arg-Pro。
优选地,本发明融合蛋白选自融合蛋白SEQ ID NO:2-5和SEQ ID NO:22-25。
优选地,用通式Met-X1-Hisn-X2-Y-Pro-表示所述前肽,其中
·Met表示甲硫氨酸,
·X1是键、丝氨酸或天冬酰胺,
·His是组氨酸,
·n是从0至10间的数字,优选从0至6,
·X2是选自肽SEQ ID NO:6-10的接头肽,
·Pro是脯氨酸,并且
·Y选自Pro、Pro-Ala、Pro-Gly、Pro-Thr、Ala-Pro、Gly-Pro、Thr-Pro、Arg-Pro或Pro-Arg-Pro。
前肽经C末端与IGF-I或IGF-I变体的N末端(甘氨酸)相连。所述前肽优选不包括赖氨酸残基。所述前肽优选具有至多30个氨基酸的长度。X1优选为键。n优选为0或6。X2优选为肽SEQ ID NO:7。Y优选为Pro-Arg-Pro。
本发明的其他实施方案是赖氨酸聚(乙二醇)化的IGF-I,其特征在于不包含N末端的甲硫氨酸。
本发明的其他实施方案是赖氨酸聚(乙二醇)化的IGF-I变体,其中选自第27位、第65位和/或第68位赖氨酸的一个或两个氨基酸独立地被另一个极性氨基酸取代,其特征在于所述变体不包含N末端的甲硫氨酸。
所述极性氨基酸优选地独立地是精氨酸、谷氨酰胺或天冬酰胺,尤其优选是精氨酸。
IGF-I变体和融合蛋白中的变体优选是:RKK、RKR、RRK。将IGF-I变体命名如下:K65指第65位氨基酸为赖氨酸,R27指第27位氨基酸为精氨酸等。将携带氨基酸R27、K65、K68的IGF-I变体命名为RKK,并且所述RKK变体的其余氨基酸与IGF-I野生型SEQ ID NO.1中的氨基酸相同。因此RKK是IGF-I野生型的变体,其在第27位氨基酸处通过从K到R的交换发生突变。RKR是IGF-I野生型的变体,其在第27位氨基酸和第68位赖氨酸处通过从K到R的交换发生突变。RRK是IGF-I野生型的变体,其在第27位氨基酸和第65位赖氨酸处通过从K到R的交换发生突变。将其中没有氨基酸发生改变的IGF-I野生型命名为KKK。
赖氨酸聚(乙二醇)化的IGF-I优选在第27位、第65位和第68位赖氨酸残基处随机进行聚(乙二醇)化,优选进行单聚(乙二醇)化或二聚(乙二醇)化(每个IGF-I分子含有一个或两个PEG)。赖氨酸聚(乙二醇)化的IGF-I变体优选在第65位和第68位赖氨酸残基处进行单聚(乙二醇)化或二聚(乙二醇)化,优选在K65或K第68位赖氨酸进行单聚(乙二醇)化。一个或多个聚(乙二醇)基团通过一个或多个赖氨酸的伯氨结合到所述IGF-I或IGF-I变体上。
本发明的方法包括制备赖氨酸聚(乙二醇)化的IGF-I或IGF-I变体,通过使本发明的IGF-I融合蛋白与反应性的聚(乙二醇)在使得所述聚(乙二醇)通过IGF-I或IGF-I变体的一个或多个赖氨酸的伯氨化学结合至所述IGF-I中间体的条件下发生反应,每个IGF-I或IGF-I变体的所述聚(乙二醇)基团优选具有至少20kDa的总分子量,更优选从约20至100kDa的总分子量,并且尤其优选从20至80kDa的总分子量。优选地,所述赖氨酸聚(乙二醇)化的IGF-I或IGF-I变体被单聚(乙二醇)化。所述变体优选选自分别对应氨基酸第27位、第65位和第68位氨基酸的RKK、RKR、RRK。PEG优选具有30至45kDa,尤其是30kDa或40kDa的平均总分子量。
本发明还包含药物组合物,所述药物组合物含有本发明的赖氨酸聚(乙二醇)化的IGF-I或IGF-I变体,其优选含有可药用载体。
本发明还包含用于制备药物组合物的方法,所述药物组合物含有本发明的赖氨酸聚(乙二醇)化的IGF-I或IGF-I变体。
本发明还包含本发明的赖氨酸聚(乙二醇)化的IGF-I或IGF-I变体用于制备用于治疗AD的药物的用途。
本发明还包含用于治疗AD的方法,其特征在于对需要此类治疗的患者施用药学有效量的氨基反应性聚(乙二醇)化的IGF-I或IGF-I变体,优选每周应用一至两次。
发明详述
惊奇的发现IgA蛋白酶,优选来自淋球菌的IgA蛋白酶能够切割氨基酸序列Y-Pro.!.Gly-Pro。Y选自Pro、Pro-Ala、Pro-Gly、Pro-Thr、Ala-Pro、Gly-Pro、Thr-Pro、Arg-Pro或Pro-Arg-Pro。重要的切割位点优选为Pro-Pro.!.Gly-Pro(SEQ ID NO:15)或Pro-Arg-Pro-Pro.!.Gly-Pro(SEQ IDNO:11)(.!.:切割位置)。用于本发明方法的IgA蛋白酶切割位点具有氨基酸共有序列Y-Pro.!.Gly-Pro,由此Gly-Pro是IGF-I的前两个氨基酸。Y优选代表以氨基酸Pro、Pro-Ala、Arg-Pro或Pro-Arg-Pro终止的氨基酸序列。此类Y氨基酸序列,尤其是Pro-Arg-Pro可通过其他Ala或Pro-Ala基团得以延长,如在Ala-Pro-Arg-Pro(SEQ ID NO:12)或Pro-Ala-Pro-Arg-Pro(SEQ ID NO:13)中。特别优选的是切割氨基酸序列Pro-Ala-Pro.!.Gly-Pro(SEQ ID NO:14)、Pro-Pro-!.Gly-Pro(SEQ IDNO:15)、Pro-Arg-Pro-Pro.!.Gly-Pro(SEQ ID NO:16)、Ala-Pro-Arg-Pro-Pro.!.Gly-Pro(SEQ ID NO:17)或Pro-Ala-Pro-Arg-Pro-Pro.!.Gly-Pro(SEQ ID NO:18)。
根据本发明,术语“IgA蛋白酶”包括特异性切割IgA并例如Kornfeld,S.J.和Plaut,A.G.在Rev.Infekt.Dis.3(1981)521-534中描述为例如来自淋球菌(2型)的IgA1蛋白酶的蛋白酶。重组IgA蛋白酶(如在DE-A 3622 221;Koomey,J.M.,等,Proc.Natl.Acad.Sci.美国79(1982)7881-7885;Bricker,J.,等,Proc.Natl.Acad.Sci.美国80(1983)2681-2685;Pohlner,J.,等,Nature 325(1987)458-462;和Halter,R.,等,EMBO J.3(1984)1595-1601中描述的那些蛋白酶)也正合适。优选地,所述IgA蛋白酶是来自淋球菌的IgA蛋白酶,优选是淋球菌2型的IgA蛋白酶。所述来自淋球菌(2型)的IgA蛋白酶优选具有序列SEQ ID NO:26。
编码融合蛋白的基因优选处于合适的(优选诱导性)表达信号控制之下,使得可根据需要来产生融合蛋白。合适的原核或真核(植物及动物)细胞可用作产生蛋白融合物的宿主细胞;然而,无细胞体系也是可以的
本发明方法的优选实施方案的特征在于用重组DNA或重组载体转化宿主细胞,其中所述DNA或所述载体含有至少一个拷贝的编码本发明融合蛋白的基因,并且在合适的培养基上培养所述转化细胞,使得编码所述融合蛋白的基因在经转化的细胞中表达,将所述融合蛋白聚(乙二醇)化,随后用IgA蛋白酶进行切割并分离聚(乙二醇)化的IGF-I或IGF-I变体。
例如可通过与不含赖氨酸的β半乳糖苷酶基因融合以在DNA水平上改善本发明所述融合蛋白的表达,即Y含有不含赖氨酸的β半乳糖苷酶蛋白质的部分。用于增加所述融合蛋白表达的其他备选方案为专家已知。可通过与其他多肽,特别是与带电多(例如多聚赖氨酸、多聚精氨酸)的多肽或蛋白质融合,或与以高亲和力与特定物质(如链霉抗生物素蛋白)结合的多肽或蛋白质融合来促进表达产物的纯化和分离(参阅例如EP-A0089 626、EP-A 0 306 610)。特别优选的接头肽是肽SEQ ID NO:6-10,优选N末端前有SHHHHHH(SEQ ID NO:19)、NHHHHHH(SEQ ID NO:20)或HHHHHH(SEQ ID NO:21)的肽。
本发明还提供编码本发明融合蛋白的(重组)核酸,并且其中IgA蛋白酶切割位点掺入前肽与IGF-I或IGF-I变体间的接头区域中。
可以以分子生物学领域的技术人员已知的方式来获得本发明的重组DNA。为此,通常用一个或多个限制性内切核酸酶切割含有DNA序列(其编码IGF-I或IGF-I变体的氨基酸序列)的载体(在该基因的5′末端区域中),并将其与含有期望序列的寡核苷酸重新连接。
此外,本发明也提供含有至少一个拷贝的本发明重组DNA的重组载体。适合用作原核生物中蛋白质表达基础的载体为专家已知。该载体优选是允许本发明的重组DNA高度表达的一种载体。所述载体上的重组DNA优选在诱导性表达信号(例如λ、tac、lac或trp启动子)的控制之下。
本发明载体可存在于染色体外(例如质粒),也可以整合到宿主生物的基因组中(例如λ噬菌体)。本发明载体优选为质粒。在各种情况下适于在特定宿主生物中基因表达的载体为分子生物学领域中的技术人员已知。它可以是真核载体,但优选原核载体。用于本发明DNA在原核生物中表达的合适载体的实例是例如市售pUC和pUR载体。
本发明还提供细胞,优选原核细胞,特别优选大肠杆菌(E.coli)细胞,其转化有本发明的重组DNA或/和本发明的重组载体。
当融合蛋白在原核生物中表达时,会形成无活性的略溶聚集物(折射体、内含体)。因而,必须将所述融合蛋白转化成其活性形式。使用本领域技术人员熟悉的操作(参阅例如EP-A 0 219 874、EP A 0 114 506、WO84/03711),首先加入变性剂进行溶解,其后复性,并且需要时进行进一步的纯化步骤。在所述融合蛋白聚(乙二醇)化后用IgA蛋白酶处理所述融合蛋白。
处理待用IgA蛋白酶切割的聚(乙二醇)化IGF-I或IGF-I变体所需的条件并不是至关重要的。而在该方法中,优选聚(乙二醇)化的IGF-I或IGF-I变体与IgA蛋白酶的重量比值是1:1至500:1,优选100:1。反应优选在pH 6.5至8.5的缓冲水溶液中发生。缓冲液浓度优选在50至500mmol/l的范围之间,需要时加入0-100mmol/l的氯化钠。切割优选在室温下进行至少60分钟,至多5天,优选进行24-72小时。
溶解、复性、聚(乙二醇)化并用IgA蛋白酶切割后,以该方式获得的聚(乙二醇)化的切割产物优选通过离子交换层析、疏水作用层析和/或根据大小的分级分离进行纯化。以该方式产生的聚(乙二醇)化的IGF-I或IGF-I变体在位第1位上没有甲硫氨酸,并且优选没有其他蛋白质(像非聚(乙二醇)化的IGF-I或IGF-I变体),并且优选没有N末端聚(乙二醇)化的前肽(5%(w/w)或更低)。
此处所用的“聚(乙二醇)化的IGF-I或IGF-I变体”或“氨基反应性聚(乙二醇)化”指IGF-I或IGF-I变体通过氨基反应性偶联共价结合至聚(乙二醇)基团上。PEG基团连接到IGF-I或IGF-I变体分子的赖氨酸侧链ε-伯氨基团上。还可能的是聚(乙二醇)化还发生在前肽的N末端α氨基上。由于所用的合成方法和融合蛋白不同,聚(乙二醇)化的IGF-I或IGF-I变体可由混合物组成,由此聚(乙二醇)化的位点在不同的分子中可以不同,或在每个分子中聚(乙二醇)侧链的数量和/或分子中聚(乙二醇)化的位点方面可以基本同质。优选地,IGF-I或IGF-I变体被单聚(乙二醇)化和/或二聚(乙二醇)化。
如此处所用的氨基反应性聚(乙二醇)化表示通过使用反应性(活化的)聚(乙二醇),优选通过使用优选甲氧基聚(乙二醇)的N-羟基琥珀酰亚胺基酯将聚(乙二醇)链随机连接到IGF-I或IGF-I变体的赖氨酸伯氨上的方法。偶联反应将聚(乙二醇)连接到赖氨酸残基的反应性ε-伯氨上,并任选地连接到融合蛋白N末端氨基酸的α-氨基上。这种PEG通过氨基结合至蛋白质上为本领域所熟知。例如,Veronese,F.M.,Biomaterials 22(2001)405-417给出了此类方法的综述。根据Veronese,PEG结合到蛋白质的伯氨上可通过使用活化的PEG进行,所述活化的PEG进行所述伯氨的烷基化。对于该反应,可使用活化的烷基化PEG(例如PEG醛、PEG三氟代乙烷磺酰氯(PEG-tresyl chloride)或PEG环氧化物)。其他有用的试剂为酰化PEG,如羧化PEG的羟基琥珀酰亚胺基酯或其中末端羟基被氯甲酸酯或羰基咪唑(carbonylimidazole)活化的PEG。其他有用的PEG试剂是具有氨基酸臂的PEG。此类试剂可含有所谓的分支PEG,由此至少两个相同或不同的PEG通过肽间隔基(优选赖氨酸)连接在一起,并例如作为赖氨酸间隔基的反应性羧化物结合到IGF-I或IGF-I变体上。
此处所用的“PEG或聚(乙二醇)”指市售水溶性聚合物或可根据本领域所熟知的方法通过乙二醇的开环聚合制备的水溶性聚合物(Kodera,Y.,等,Progress in Polymer Science 23(1998)1233-1271;Francis,G.E.,等,Int.J.Hematol.68(1998)1-18)。术语“PEG”被广泛使用以包括任何聚乙二醇分子,其中乙二醇单元的数量至少为460,优选460至2300,并尤其优选460至1840(230个PEG单元指分子量约10kDa)。PEG单元的上限数量仅受限于赖氨酸聚(乙二醇)化的IGF-I或IGF-I变体的可溶性。通常不使用大于含有2300个PEG单元的PEG。优选地,本发明中所用的PEG一端以羟基或甲氧基(甲氧基PEG、mPEG)终止,而另一端通过醚氧键共价连接到接头部分。PEG聚合物是线性的或分支的。PEG优选为分支的。例如在Veronese,F.M.,等,Journal of Bioactive and CompatiblePolymers 12(1997)196-207中描述了分支PEG。例如可从NektarTherapeutics(www.nektar.com)获得有用的PEG试剂。例如,可通过向多种多羟基化合物(包括甘油酰、季戊四醇和山梨醇)中加入聚环氧乙烷来制备分支PEG。例如,可从季戊四醇和环氧乙烷制备四臂分支PEG。分支PEG通常具有2至8个臂,并且在例如EP A 0 473 084和美国专利号5,932,462中有所描述。尤其优选的是通过赖氨酸的伯氨连接两个PEG侧链的PEG(简写为PEG2)(Monfardini,C.,等,Bioconjugate Chem.6(1995)62-69)。
如特别需要时,可使用任何分子量的PEG,例如从约20k道尔顿(Da)至100kDa(n为460至2300)。PEG中重复单元的数量“n”近似于以道尔顿描述的分子量。例如,如果两个PEG分子连接到接头上,其中每个PEG分子具有10kDa的相同分子量(每个n约为230),那么接头上PEG的总分子量约为20kDa。连接到接头上的PEG的分子量也可以不同,例如接头上的两个分子,一个PEG分子可以为5kDa,一个PEG分子可以为15kDa。分子量通常指平均分子量。
在以下实施例中,描述了用于制备氨基反应性IGF-I或IGF-I变体的某些优选试剂。当然例如基于Veronese,F.M.,Biomaterials 22(2001)405-417描述的方法可在操作中进行修改,只要所述方法制备本发明的赖氨酸聚(乙二醇)化的IGF-I或IGF-I变体。
本发明提供用于制备具有改良性质的聚(乙二醇)化形式的IGF-I或IGF-I变体的方法。该赖氨酸聚(乙二醇)化的IGF-I或IGF-I变体含有随机连接到其上的线性或分支PEG,由此赖氨酸聚(乙二醇)化的IGF-I或IGF-I变体中所有PEG基团的总分子量优选约为20至80kDa。对本领域技术人员而言显而易见的是小范围偏离分子量的该范围是可以的,只要所述聚(乙二醇)化的IGF-I或IGF-I变体在降低脑中Aβ肽水平中具有活性。具有高于80kDa分子量的PEG也导致更高的生物利用率。然而,预计由于IGF-I受体的激活和血脑屏障运输的减少,随着分子量增加,该活性降低。因而,20至100kDa的PEG分子量范围应理解为赖氨酸聚(乙二醇)化的IGF-I或IGF-I变体可用于有效治疗患有AD的患者的最佳范围。
优选产生的是选自RKK、RKR和RRK的单聚(乙二醇)化的IGF-I变体,其中所述分支PEG基团具有30-45,优选40-45kDa(约920个PEG单元)的分子量。例如,基于PEG44kDa的平均分子量和IGF-I 7.6kDa的分子量,该单聚(乙二醇)化IGF-I的计算平均分子量约为51.6kDa。尤其优选的是使用分子量为40kDa的N羟基琥珀酰亚胺基反应性的分支PEG酯(mPEG2-NHS)(Monfardini,C.,等,Bioconjugate Chem.6(1995)62-69;Veronese,F.M.,等,J.Bioactive Compatible Polymers 12(1997)197-207;美国专利5,932,462)。也优选产生的是单聚(乙二醇)化的IGF-I,其中所述PEG具有30或40kDa的平均分子量。
如此处所用,“分子量”指PEG的平均分子量。
IGF-I或IGF-I变体的以下聚(乙二醇)化形式为优选的产物并可通过本发明的方法获得:
-K68单聚(乙二醇)化IGF-I变体,优选RRK或RKK变体,更优选RRK变体,其中所述PEG基团具有20至80kDa的分子量(460至1840个PEG单元);
-K65单聚(乙二醇)化IGF-I变体,优选RKR或RKK变体,更优选RKR变体,其中所述PEG基团具有20至80kDa的分子量(460至1840个PEG单元);
-二聚(乙二醇)化IGF-I变体,优选RKK变体,其中所述PEG基团每个具有大约10-50kDa的分子量(230至1150个PEG单元);和其混合物;
-K68单聚(乙二醇)化IGF-I变体,优选RRK或RKK变体,更优选RRK变体,其包含分子量40kDa的PEG2基团;
-K65单聚(乙二醇)化IGF-I变体,优选RKR或RKK变体,更优选RKR变体,其包含分子量40kDa的PEG2基团;
-单聚(乙二醇)化IGF-I,其中所述PEG基团具有大约20至80kDa的分子量(460至1840个PEG单元);
-二聚(乙二醇)化IGF-I,其中所述PEG基团每个具有大约10-50kDa的分子量(230至1150个PEG单元);
-单聚(乙二醇)化IGF-I,其包含分子量为40kDa的PEG2基团。
聚(乙二醇)化的IGF-I或IGF-I变体基本上是同质的。制备物可含有少量不反应(即缺少PEG基团)的蛋白质。如通过肽作图确证,变体的纯度为至少90%(w/w)。可通过常规纯化方法,优选通过分子排阻层析、疏水作用层析和/或离子交换层析,尤其通过阳离子交换层析进一步纯化此类制备物,所述制备物包括分离单和/或二聚(乙二醇)化的IGF-I或IGF-I变体。
如此处所用“单聚(乙二醇)化”指IGF-I或IGF-I变体在每个IGF-I或IGF-I变体分子的仅一个赖氨酸处被聚(乙二醇)化。
“活化PEG或活化PEG试剂”为本领域所熟知。优选使用的是亲电子反应性的PEG,如聚(乙二醇)的环氧丁酸琥珀酰亚胺基酯(“低级烷氧基PEG-SBA”)或聚(乙二醇)的烷氧基丙酸琥珀酰亚胺基酯(“低级烷氧基PEG-SPA”)或N羟基琥珀酰亚胺基酯活化的PEG。可使用使活化的酯与胺反应以形成酰胺的任何常规方法。在活化PEG与IGF-I的反应中,示例性琥珀酰亚胺基酯是导致酰胺形成的离去基团。在美国专利号5,672,662中公开了使用琥珀酰亚胺基酯产生与蛋白质的偶联物。
所用的反应条件对不同聚(乙二醇)化的IGF-I或IGF-I变体的相对量具有影响。通过控制反应条件(例如,试剂的比例、pH、温度、蛋白质浓度、反应时间等),不同聚(乙二醇)化种类的相对量可以不同。反应优选在缓冲水溶液pH8-10(任选地含有高达30%(v/v)的乙醇)中进行。摩尔蛋白质:PEG比例优选为1:1至1:6,优选为1:2至1:5。反应温度和反应时间根据技术人员的知识可以变化,由此高的温度和长的反应时间导致聚(乙二醇)化增加。如果制备单聚(乙二醇)化的蛋白质,因而优选在4℃到22℃之间进行,并进行至多30分钟或至多60分钟。当聚(乙二醇)化试剂在反应缓冲液中与IGF-I或IGF-I变体结合时,根据蛋白质中Lys残基的存在,产生单、二和痕量的三聚(乙二醇)化种类的混合物,其中所述反应缓冲液优选由50mM硼酸钠和25%乙醇组成,pH约9.0-9.5,蛋白质:PEG比例约1:3至1:4,并且反应温度为4℃。
本发明赖氨酸聚(乙二醇)化的IGF-I或IGF-I变体可通过使IGF-I或IGF-I变体的赖氨酸伯氨与双功能试剂共价反应以形成具有酰胺键的中间体,并使含有酰胺键的中间体与活化的聚(乙二醇)衍生物共价反应以形成赖氨酸聚(乙二醇)化的IGF-I或IGF-I变体。在上述方法中,所述双功能试剂优选为N-琥珀酰亚胺基-S-乙酰基硫代丙酸盐或N-琥珀酰亚胺基-S-乙酰基硫代乙酸盐,并且所述活性聚(乙二醇)衍生物优选选自碘代-乙酰基-甲氧基-PEG、甲氧基-PEG-乙烯砜和甲氧基-PEG-马来酰亚胺。
活化的PEG衍生物为本领域所知并例如在Morpurgo,M.,等,J.Bioconjugate Chem.7(1996)363-368中描述了PEG-乙烯砜。直链和分支PEG种类适合于制备通式I的化合物。反应性PEG试剂的实例为碘代-乙酰基-甲氧基-PEG和甲氧基-PEG-乙烯砜。这些碘代活化物质的用途为本领域所知并由例如Hermanson,G.T.,在Bioconjugate Techniques,Academic Press,San Diego(1996),147-148页中描述。
如此处所用“极性氨基酸”指选自半胱氨酸(C)、天冬氨酸(D)、谷氨酸(E)、组氨酸(H)、天冬酰胺(N)、谷氨酰胺(Q)、精氨酸(R)、丝氨酸(S)和苏氨酸(T)的氨基酸。赖氨酸也是极性氨基酸,但因为赖氨酸根据本发明被取代而排除在外。精氨酸优选用作极性氨基酸。
药物制剂
根据本发明制备的聚(乙二醇)化IGF-I或IGF-I变体提供了在循环中改善的稳定性,使得其能够以短的应用间隔持续到达全身的IGF-I受体。
可根据用于制备药物组合物的方法配制本发明的化合物,所述方法为本领域技术人员所知。为了产生此类组合物,将本发明聚(乙二醇)化的IGF-I或IGF-I变体与可药用载体组合成混合物,优选通过对含有所述药物组合物的期望成分的水溶液进行透析或渗滤。例如在Remington′sPharmaceutical Sciences,第18版,1990,Mack Publishing Company,Oslo等编著(例如第1435 1712页)中描述了此类可用载体。典型的组合物含有有效量的本发明物质,例如从约0.1至100mg/ml,以及适当量的载体。组合物可经肠胃外施用。本发明聚(乙二醇)化的IGF-I或IGF-I变体优选经腹膜内、皮下、静脉或鼻内施用。
可根据本领域已知的方法制备本发明的药物制剂。通常,从旨在用于药物组合物的缓冲液中透析或渗滤聚(乙二醇)化的IGF-I或IGF-I变体,并且通过浓缩或稀释来调整期望的最终蛋白质浓度。
提供以下实施例和附图来帮助理解本发明,在所附权利要求中阐明了本发明的真正范围。当然在进行的过程中可在不偏离本发明精神的情况下进行修改。使用单字母密码(例如R)或三字母密码(例如Arg)简写氨基酸的名称。
序列列表
SEQ ID NO:1     人IGF-I的氨基酸序列(来自SwissProt P01343
                的第49-118位氨基酸)。
SEQ ID NO:2     融合蛋白px3036_IAG_R K27R K65R K68的氨
                基酸序列
SEQ ID NO:3     融合蛋白px3036_IAEE_F1 K27R K65R K68的
                    氨基酸序列
SEQ ID NO:4         融合蛋白px3036_IAFX_F1 K27R K65R K68的
                    氨基酸序列
SEQ ID NO:5         融合蛋白px3036_IAFX_F2 K27R K65R K68的
                    氨基酸序列
SEQ ID NO:6-10      接头
SEQ ID NO:11-18     切割序列
SEQ ID NO:19-21     其他
SEQ ID NO:22        融合蛋白px3036_IAG_R K27R K65 K68R的氨
                    基酸序列
SEQ ID NO:23        融合蛋白px3036_IAEE_F1 K27R K65 K68R的
                    氨基酸序列
SEQ ID NO:24        融合蛋白px3036_IAFX_F1 K27R K65 K68R的
                    氨基酸序列
SEQ ID NO:25        融合蛋白px3036_IAFX_F2 K27R K65 K68R的
                    氨基酸序列
SEQ ID NO:26        来自淋球菌(2型)的IgA1蛋白酶的氨基酸序列

附图简述
图1:单聚(乙二醇)化融合蛋白的肽分析。
聚(乙二醇)化前和聚(乙二醇)化后对折叠的融合蛋白的SDS-PAGE分析。泳道1,标准蛋白质的混合物(牛肺抑酶肽,6.0kDa;鸡卵清溶菌酶,14.4kDa;大豆胰蛋白酶抑制剂,21.5kDa;牛红细胞碳酸酐酶,31.0kDa;猪肌肉乳酸脱氢酶,36.5kDa;牛肝谷氨酸脱氢酶,55.4kDa;牛血清白蛋白,66.3kDa;兔肌肉磷酸化酶,97.4kDa;大肠杆菌β-半乳糖苷酶,97.4kDa;兔肌肉肌球蛋白,200kDa);泳道2,聚(乙二醇)化前的前IGF-I;泳道3,聚(乙二醇)化后的前IGF-I。
图2:单聚(乙二醇)化IGF-I变体的肽分析。
IgA切割前和IgA切割后对聚(乙二醇)化融合蛋白的SDS-PAGE分析。泳道1,标准蛋白质的混合物(与图1中相同);泳道2,IgA蛋白酶切割前的反应混合物;泳道3,IgA蛋白酶切割后的反应混合物。
图3:SDS PAGE。
聚(乙二醇)化前和聚(乙二醇)化后对折叠的融合蛋白的SDS-PAGE分析。泳道1,标准蛋白质的混合物(与图1中相同);泳道2,IEC前的反应混合物;泳道3,流经IEC;泳道4-19,来自IEC的单个洗脱级分。
图4:体内脑Aβ降低B6.152H小鼠中的PEG-RRK。
用媒介物(NaCl)或用PEG-RRK(皮下注射5μg/kg,每周两次)处理9-10月龄的双转基因B6.152H小鼠14天。制备可溶性脑提取物并如描述评定APP、Aβ和肌动蛋白的水平。计算APP/肌动蛋白、Aβ/肌动蛋白和Aβ/APP的比值,并表述为对照的%。A,APP/肌动蛋白;B,Aβ/肌动蛋白,C,Aβ/APP。上图显示单个动物数据点,下图显示标尺图标(均值±SEM),其包括统计学差异(,p<0.05;**,p<0.01相对于未处理对照,n=10)。
实施例
实施例1
产生以下含通式I前肽的突变体(包含IGF-I变体RRK):
 

突变体X1X2nYPx3036_IAG K27R K65RK68               KAKRFKKH6PRPPPx3036_IAG_R K27R K65RK68                 RARRFRRH6PRPPPx3036_IAEE_F1 K27RK65R K68           SNTEHNREH6PRPPPx3036_IAFX_F1 K27RK65R K68           NIEGRH6PRPPPx3036_IAFX_F2 K27RK65R K68           NTEFENIEH6PRPP

K68-单-聚(乙二醇)化IGF-I-变体(RRK变体)的制备
所用的表达载体和大肠杆菌菌株描述于EP 0 972 838。将来自生长于选择性琼脂平板上的大肠杆菌克隆(该克隆表达融合蛋白px3036_IAG_RK27R K65R K68、px3036_IAEE_F1 K27R K65R K68、px3036_IAFX_F1K27R K65R K68或px3036_IAFX_F2 K27R K65R K68)的一个接种环转移至(100ml)选择性培养基中并于37℃下培养13小时至光密度(578nm)为2-4。在生长于37℃的主要培养物自动接种前,将该培养物于冰上继续保存6小时。IGF-I突变体在光密度(578nm)为50并加入1.0mM IPTG时开始表达。整个发酵持续多达16小时。通过用密度计比较SDS-PAGE凝胶上产物的蛋白质条带与IGF标准物条带的体积强度来确定蛋白质的量。通过离心收集培养液。
为获得纯化的内含体(IB)物质,用如下方法处理从标准发酵中收获的微生物物质:用pH7的TrisMgSO4缓冲液重悬微生物物质,并按0.3g/100g生物干重添加溶菌酶和5U/1g生物干重添加Benzonase,温育20分钟并匀浆。按30U/1g生物干重添加Benzonase并于37℃温育60分钟。加入0.5L Brij-缓冲液/升并于室温温育30分钟。离心后按每100g生物湿重(纯化IB湿重)用300ml Tris-EDTA-缓冲液重悬沉淀,室温温育30分钟并离心。1g IB/升在6.8M盐酸胍、0.1M TrisHCl、0.1M DTT、pH 8.5中于室温溶解过夜。浑浊溶液在4℃用6.8M盐酸胍、0.1M TrisHCl、pH 8.0进行透析。透析后通过离心除去不溶组分。在室温下将前-IGF-I溶液50倍稀释于0.8M精氨酸、0.1M TrisHCl、0.1M盐酸胍、1mM GSH、1mMGSSG、pH 8.5中进行折叠。两小时后,向溶液中添加2M氯化钠、过滤并以10ml/分钟的流速应用至HIC柱(Butyl Sepharose 4 Fast Flow;GE,Amersham Biosciences),该柱已在室温下用含2M NaCl、0.8M精氨酸、0.1M TrisHCl、0.1M盐酸胍、pH 8.5的缓冲液平衡。用平衡缓冲液洗涤柱直至达到基线,然后以起始于平衡缓冲液并终止于含0.1M TrisHCl、5%乙二醇、pH 8.5的缓冲液的十倍柱体积的线性梯度进行洗脱。通过反相高效层析(rpHPLC)分析洗脱级分。收集含正确形成SS-桥的蛋白质的级分。在4℃用pH 9.0的50mM硼酸钠对混合物进行透析。将mPEG MW20’000的NHS活化的40kDa分支PEG(N-羟基琥珀酰亚胺基(NHS))酯(mPEG2NHS,US 5,932,462,Nektar Shearwater Polymers,Huntsville,AL)在冰冷的2mM HCl中溶解并立即加入至透析过的蛋白质溶液(摩尔PEG-试剂/蛋白质比值为2:1)中。在冰上温育1小时和2小时后将相同量的酸性mPEG2-NHS溶液加入至蛋白质/PEG反应混合物中。在第三次加入相同量的酸性mPEG2-NHS溶液(摩尔数总计六倍过量于PEG试剂)后,将反应物在冰上额外温育1小时。通过加入固体氯化铵并再温育45分钟然后调整至pH值为8.0来终止反应(见图1)。向蛋白质/PEG反应混合物添加来自淋球菌(2型)的IgA1蛋白酶(w/w比例为1:50)并在室温温育过夜(见图2)。反应混合物用50mM pH4.5的醋酸按1:2稀释然后应用于阳离子IEC柱(MacroCap SP support;GE,Amersham Biosciences,Uppsala,瑞典),该柱已用50mM醋酸平衡。将柱洗涤直至到达基线,然后用起始于50mM醋酸并终止于添加有1M氯化钠的50mM醋酸的20柱体积的线性梯度洗脱。通过SDS-PAGE分析洗脱级分。收集含估计相对分子大小约为60kDa的单一条带的级分作为K68-单-聚(乙二醇)化IGF-I(见图3)。K68-单-聚(乙二醇)化IGF-I的鉴定通过带有静电光散射检测(static light scattering detection)的分析分子排阻层析(SEC)、胰蛋白酶消化的MS分析、Asp-N消化的MS分析和分析阳离子IEC来验证。除K68-单-聚(乙二醇)化IGF-I外未发现其他聚(乙二醇)化异变体(isovariant)。
实施例2
产生以下含通式I前肽的突变体(含IGF-I变体RKR):
 突变体X1X2nYPx3036_IAG K27R K65K68R             KAKRFKKH6PRPPPx3036_IAG_R K27RK65 K68R         RARRFRRH6PRPPPx3036_IAEE_F1 K27RK65 K68R           SNTEHNREH6PRPPPx3036_IAFX_F1 K27RK65 K68R           NIEGRH6PRPPPx3036_IAFX_F2 K27RK65K68R           NTEFENIEH6PRPP

K65-单-聚(乙二醇)化IGF-I-变体(RKR变体)的制备
所用的表达载体和大肠杆菌菌株描述于EP 0 972 838。将来自生长于选择性琼脂平板上的大肠杆菌克隆(该克隆表达融合蛋白px3036_IAG_RK27R K65 K68R、px3036_IAEE_F1 K27R K65 K68R、px3036_IAFX_F1K27R K65 K68R或px3036_IAFX_F2 K27R K65 K68R)的一个接种环转移至(100ml)选择性培养基并于37℃下培养13小时至光密度(578nm)为2-4。在生长于37℃的主要培养物自动接种前,将该培养物于冰上继续保存6小时。IGF-I突变体在光密度(578nm)为50并加入1.0mM IPTG时开始表达。整个发酵持续多达16小时。通过用密度计比较SDS-PAGE凝胶上产物的蛋白质条带与IGF标准物条带的体积强度来确定蛋白质的量。通过离心收集培养液。
为获得纯化的内含体(IB)物质,用如下方法处理从标准发酵中所获的微生物物质:用pH7的TrisMgSO4缓冲液重悬微生物物质并按0.3g/100g生物干重添加溶菌酶和5U/1g生物干重添加Benzonase,温育20分钟并匀浆。按30U/1g生物干重添加Benzonase并于37℃温育60分钟。加入0.5L Brij-缓冲液/升并于室温温育30分钟。离心后按每100g生物湿重(纯化IB湿重)用300ml Tris-EDTA-缓冲液重悬沉淀,室温温育30分钟并离心。1g IB/升在6.8M盐酸胍、0.1M TrisHCl、0.1M DTT、pH 8.5中于室温溶解过夜。浑浊溶液在4℃用6.8M盐酸胍、0.1M TrisHCl、pH 8.0进行透析。透析后通过离心除去不溶组分。在室温下将前-IGF-I溶液50倍稀释于0.8M精氨酸、0.1M TrisHCl、0.1M盐酸胍、1mM GSH、1mMGSSG、pH 8.5中进行折叠。2至48小时后,优选2至24小时后向溶液中添加2M氯化钠、过滤并以10ml/分钟的流速应用至HIC柱(ButylSepharose 4 Fast Flow;GE,Amersham Biosciences),该柱已在室温下用含2M NaCl、0.8M精氨酸、0.1M TrisHCl、0.1M盐酸胍、pH 8.5的缓冲液平衡。用平衡缓冲液洗涤柱至达到基线,然后以起始于平衡缓冲液并终止于含0.1M TrisHCl、5%乙二醇、pH 8.5的缓冲液的十倍柱体积的线性梯度进行洗脱。通过反相高效层析(rpHPLC)分析洗脱级分。收集含正确形成SS-桥的蛋白质的级分。在4℃用pH 9.0的50mM硼酸钠对混合物进行透析。将mPEG MW 20’000的NHS活化的40kDa分支PEG(N-羟基琥珀酰亚胺基(NHS))酯(mPEG2NHS,US 5,932,462,NektarShearwater Polymers,Huntsville,AL)在冰冷的2mM HCl中溶解并立即加入至透析过的蛋白质溶液(摩尔PEG-试剂/蛋白质比例为2:1)。在冰上温育1小时和2小时后将相同量的酸性mPEG2-NHS溶液加入至蛋白质/PEG反应混合物中。在第三次加入相同量的酸性mPEG2-NHS溶液(摩尔数总计六倍过量于PEG试剂)后,将反应物在冰上额外温育1小时。通过加入固体氯化铵并再温育45分钟然后调整pH值至8.0来终止反应(见图1)。向蛋白质/PEG反应混合物中添加来自淋球菌(2型)的IgA1蛋白酶(w/w比例为1:50)并在室温温育过夜(见图2)。反应混合物用50mMpH4.5的醋酸按1:2稀释然后应用于阳离子IEC柱(MacroCap SP support;GE,Amersham Biosciences,Uppsala,瑞典),该柱已用50mM醋酸平衡。将柱洗涤至到达基线然后用起始于50mM醋酸并终止于添加1M氯化钠的50mM醋酸的20柱体积的线性梯度洗脱。通过SDS-PAGE分析洗脱级分。收集含估计相对分子大小约为60kDa的单一条带的级分作为K65-单-聚(乙二醇)化IGF-I。K65-单-聚(乙二醇)化IGF-I的鉴定通过带有静电光散射检测的分析分子排阻层析(SEC)、胰蛋白酶消化的MS分析、Asp-N消化的MS分析和分析阳离子IEC来验证。
实施例3
在体内通过K68单聚(乙二醇)化IGF-I-变体RRK降低脑可溶性Aβ
为评估K68单聚(乙二醇)化IGF-I变体RRK(40kD,PEG2)(PEG-RRK)在降低可溶性Aβ水平上的能力,通过一周两次皮下注射5μg/kg PEG-RRK对具有严重淀粉状蛋白斑负担的9-10月龄的B6.152H小鼠(表达人APP和PS2突变体的双转基因小鼠)进行重复处理。14天后检测皮层APP、Aβ和肌动蛋白水平。PEG-RRK未显著改变APP/肌动蛋白比(图4A),这表示PEG-RRK在14天中对转基因表达无影响。相反,PEG-RRK显著降低Aβ/肌动蛋白比(图4B)和Aβ/APP比(图4C)。这表明了独立于通过转基因产生PEG-RRK,PEG-RRK对Aβ清除作用的正效应。
序列表
<110>弗·哈夫曼-拉罗切有限公司
<120>制备胰岛素样生长因子-1与聚(乙二醇)的偶联物的方法
<130>23907 FT
<150>EP06018170
<151>2006-08-31
<160>25
<170>PatentIn版本3.2
<210>1
<211>70
<212>PRT
<213>人(Homo sapiens)
<220>
<221>misc_feature
<223>人IGF-I的氨基酸序列(来自SwissProt P01343的第49-118位氨基酸)
<400>1

<210>2
<211>89
<212>PRT
<213>人工的
<220>
<223>融合蛋白px3036_IAG_R K27R K65R K68的氨基酸序列
<400>2

<210>3
<211>88
<212>PRT
<213>人工的
<220>
<223>融合蛋白px3036_IAEE_F1 K27R K65R K68的氨基酸序列
<400>3

<210>4
<211>87
<212>PRT
<213>人工的
<220>
<223>融合蛋白px3036_IAFX_F1 K27R K65R K68的氨基酸序列
<400>4

<210>5
<211>90
<212>PRT
<213>人工的
<220>
<223>融合蛋白px3036_IAFX_F2 K27R K65R K68的氨基酸序列
<400>5


<210>6
<211>8
<212>PRT
<213>人工的
<220>
<223>接头
<400>6

<210>7
<211>8
<212>PRT
<213>人工的
<220>
<223>接头
<400>7

<210>8
<211>8
<212>PRT
<213>人工的
<220>
<223>接头
<400>8

<210>9
<211>5
<212>PRT
<213>人工的
<220>
<223>接头
<400>9

<210>10
<211>8
<212>PRT
<213>人工的
<220>
<223>接头
<400>10

<210>11
<211>6
<212>PRT
<213>人工的
<220>
<223>切割序列
<400>11

<210>12
<211>4
<212>PRT
<213>人工的
<220>
<223>切割序列
<400>12

<210>13
<211>5
<212>PRT
<213>人工的
<220>
<223>切割序列
<400>13

<210>14
<211>5
<212>PRT
<213>人工的
<220>
<223>切割序列
<400>14

<210>15
<211>4
<212>PRT
<213>人工的
<220>
<223>切割序列
<400>15

<210>16
<211>6
<212>PRT
<213>人工的
<220>
<223>切割序列
<400>16

<210>17
<211>7
<212>PRT
<213>人工的
<220>
<223>切割序列
<400>17

<210>18
<211>8
<212>PRT
<213>人工的
<220>
<223>切割序列
<400>18

<210>19
<211>7
<212>PRT
<213>人工的
<220>
<223>其他
<400>19

<210>20
<211>7
<212>PRT
<213>人工的
<220>
<223>其他
<400>20

<210>21
<211>6
<212>PRT
<213>人工的
<220>
<223>其他
<400>21

<210>22
<211>89
<212>PRT
<213>人工的
<220>
<223>融合蛋白px3036_IAG_R K27R K65 K68R的氨基酸序列
<400>22

<210>23
<211>88
<212>PRT
<213>人工的
<220>
<223>融合蛋白px3036_IAEE_F1 K27R K65 K68R的氨基酸序列
<400>23

<210>24
<211>87
<212>PRT
<213>人工的
<220>
<223>融合蛋白px3036_IAFX_F1 K27R K65 K68R的氨基酸序列
<400>24

<210>25
<211>90
<212>PRT
<213>人工的
<220>
<223>融合蛋白px3036_IAFX_F2 K27R K65 K68R的氨基酸序列
<400>25

<210>26
<211>960
<212>PRT
<213>淋球菌(Neisseria gonorrhoea)
<220>
<221>misc_feature
<223>来自淋球菌(2型)的IgA1蛋白酶的氨基酸序列
<400>26




制备胰岛素样生长因子1与聚乙二醇的偶联物的方法.pdf_第1页
第1页 / 共47页
制备胰岛素样生长因子1与聚乙二醇的偶联物的方法.pdf_第2页
第2页 / 共47页
制备胰岛素样生长因子1与聚乙二醇的偶联物的方法.pdf_第3页
第3页 / 共47页
点击查看更多>>
资源描述

《制备胰岛素样生长因子1与聚乙二醇的偶联物的方法.pdf》由会员分享,可在线阅读,更多相关《制备胰岛素样生长因子1与聚乙二醇的偶联物的方法.pdf(47页珍藏版)》请在专利查询网上搜索。

制备赖氨酸聚(乙二醇)化IGF-I或IGF-I变体的方法,所述变体包含的选自第27位、第65位和/或第68位赖氨酸的一个或两个氨基酸独立地被另一个极性氨基酸取代,其特征在于培养包含表达载体的原核宿主细胞,所述表达载体含有编码融合蛋白的核酸,所述融合蛋白包含的所述IGF-I或IGF-I变体的N末端与前肽的C末端连接,所述前肽C末端以氨基酸-Y-Pro终止,其中Y选自Pro、Pro-Ala、Pro-G。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人类生活必需 > 医学或兽医学;卫生学


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1