定位乳房微钙化的基于图像的动态超声光谱术.pdf

上传人:32 文档编号:329193 上传时间:2018-02-09 格式:PDF 页数:27 大小:717.41KB
返回 下载 相关 举报
摘要
申请专利号:

CN200980114667.1

申请日:

2009.03.16

公开号:

CN102014756A

公开日:

2011.04.13

当前法律状态:

撤回

有效性:

无权

法律详情:

发明专利申请公布后的视为撤回IPC(主分类):A61B 8/00申请公布日:20110413|||实质审查的生效IPC(主分类):A61B 8/00申请日:20090316|||公开

IPC分类号:

A61B8/00

主分类号:

A61B8/00

申请人:

拜尔匡泰迪克斯公司

发明人:

E·兰伯德; Y·伊萨克; A·夏米斯; D·魏斯

地址:

美国加利福尼亚州

优先权:

2008.03.26 US 12/079,272

专利代理机构:

北京纪凯知识产权代理有限公司 11245

代理人:

赵蓉民

PDF下载: PDF下载
内容摘要

本发明的目的是通过超声冲击和超声频率波检测的精确方法提供乳房微钙化的检测和定位方法,该方法将使系统不但能够检测乳房中是否有微钙化,而且检测微钙化的精确位置和微钙化的质量。本发明还是这样的方法和系统,所述方法和系统提供乳房内靶团块的双模式图像引导激发以确定乳房内微钙化的位置和性质。

权利要求书

1: 鉴别人身体乳房中微钙化的非创伤性方法,包括 : a. 将一次性生物相容的、环形的和顺应性的环定位到所述乳房上 (O 形环 ),所述环 含有四个在所述 O 形环周围间隔大约 90 度的孔,并且每个孔保持有放置在所述 O 形环内 的声学接收传感器 ; b. 每个传感器孔的下表面是开放的并保持有薄的透明的生物相容塑料膜,所述膜将 所述接收传感器与所述乳房上的接触皮肤分开 ; c. 用生物相容的自粘材料覆盖所述接收传感器位置周围的所述 O 形环的下表面,所 述自粘材料与选自纸或塑料材料的可移除保护材料连接 ; d. 通过剥掉和移除所述保护纸或塑料材料来暴露所述生物相容的自粘材料 ; e. 将所述一次性 O 形环定位到人乳房上和其周围并且可移除地将所述 O 形环粘附到 所述乳房上,以便所述传感器孔和所述薄膜与所述乳房皮肤牢固地连接并位于所述乳房 上间隔大约 90 度的位置 ; f. 利用具有 “成像模式” 和 “激发模式” 的双模式 IDUS 功能成像系统 ; g. 将所述 IDUS 系统切换到其 “成像模式” ; h. 利用改进的超声成像扫描仪扫描所述乳房的不同部分并用 1 兆赫兹 (MHz) 至 14MHz 范围的超声成像频率冲击所述乳房以在每个给定的时间使所述乳房的所述部分成 像; i. 产生超声 B 模式灰度图像,由此将超声频率向所述乳房的特定部分发送并且随后从 所述乳房的特定部分向所述扫描仪反射 ; j. 然后保持所述扫描仪不动,将所述 IDUS 系统切换到其 “激发模式” ; k. 通过由相同成像扫描仪输送的非创伤性短脉冲或线性调频脉冲方案来激发所述乳 房的所选部分 ; l. 当所述激发频率作为线性调频脉冲方案输送时,一个信号发生器提供不同频率范围 的线性调频脉冲,而另一个信号发生器提供固定频率,以便由于施用的频率的不同,产 生某些声学力,其与靶微钙化团块的固有频率成比例,所述固有频率激发和振动所述靶 团块 ; m. 将单一线性调频脉冲分解成不同的部分,以便所述频率扫描按被称作 “一个显示 (one presentation)” 的特定的和控制的顺序发生,这样所述线性调频脉冲能扫描期望的频 率跨度并寻找所述靶标的任何共振,以最大化每个频率跨度被引入的时间,这进而增加 信噪比 (S/N) ; n. 当所述激发频率作为短脉冲扫描形式输送时,所述数据随着时间被获得,其中固 定兆赫频率以短脉冲形式施用到所述靶微钙化团块,而另一个不同的兆赫频率被增量 ; o. 在静止的乳房微钙化的检测中,所述短脉冲扫描激发方案是优选的,其中所述响 应的直接估量被获得,然后线性调频脉冲频率方案被施用 ; p. 在线性调频脉冲或短脉冲扫描方案中,所述激发信号在赫兹至千赫兹范围频率波 段上进行扫描,并且所述频率在兆赫超声载波频率上进行调制 ; q. 作为激发的结果,所述微钙化团块产生对它们的质量密度特异的声学信号,所述 声学信号被放置在所述 O 形环上的所述接收传感器接收 ; r. 利用声学读取装置,由此某些频率被放置在所述一次性 O 形环上的一个或多个所述 2 传感器接收 ; s. 将每个接收传感器获得的扫描频率与预先确定的相应于不同微钙化团块的峰值频 率图进行比较,并与其关联 ; t. 如果传感器 ( 或多个 ) 检测到的 ( 接收的 ) 频率与所述频率标记图中的预先确定的 频率相关联,则使用预先确定的颜色方案对所述 B 模式图像上的所述靶位点进行颜色编 码,并且使用某个三角测量技术,基于来自每个传感器的读数,确定所述乳房内所述位 点的所述准确坐标 ;和 u. 在所述 IDUS 中将第五个传感器与成像激发换能器合并,所述第五个传感器结合所 述四个声学接收传感器创建参考轴,所述第五个传感器用于创建参考轴,以便可以标记 检测到的微钙化位点的相对位置以确定所述准确位置。
2: 根据权利要求 1 所述的设备,其中被由载波超声频率输送的声学力冲击的乳房软组 织发出 1-50Hz 的响应频率,以及微钙化团块发出 100Hz 至 1KHz 范围的频率。
3: 鉴别人乳房中微钙化的非创伤性方法,包括 : a. 将一次性的和顺应性的 O 形环放置在所述乳房周围,并且留出超声扫描仪扫描可 用的所述乳房的所述中心部分 ; b. 将四个敏感的可重复使用的传感器定位到一次性 O 形环上,所述 O 形环放置在所 述乳房周围并可移除地粘附到所述乳房上,每个传感器分别与透明的薄膜连接,所述膜 通过所述 O 形环上所述薄膜周围的生物相容粘合剂层与所述乳房上的皮肤牢固地连接 ; c. 利用 B 模式超声扫描仪来扫描所述乳房的四个象限中的每一个,产生具有潜在微钙 化团块的感兴趣区域的灰度 B 模式图像 ; d. 所述发射的超声频率从 1MHz 至 14MHz 变化,覆盖一定的深度范围 ; e. 一旦所述感兴趣区域的图像被获得,所述扫描仪相对于乳房成像的象限保持不 动,所述 B 模式图像被定格并且所述感兴趣区域被标记 ; f. 然后通过频率扫描波段激发所述感兴趣区域,所述频率扫描波段由相同的超声成像 扫描仪输送的专门方案的专用顺序产生 ; g. 当微钙化团块存在时,它被连续频率方案激发,导致发出与其质量成比例的特征 响应频率 ; h. 实时监测所述响应,以便记录包括峰值共振频率在内的波谱并进行波谱分析 ; i. 使检测到的峰值共振频率与预先限定的峰值共振频率的预先确定的数据库相关联, 以确定特定微钙化团块的存在 ; j. 如果所述检测到的响应频率或频率波段与预先限定的频率标记图中的一个峰值或多 个峰值相关联,则在所述 B 模式图像上标出所述一个频率或多个频率已被检测到的所述 区域的准确三维坐标,并且根据特定的预先确定的颜色编码方案进行着色,和 k. 利用某个专门的三角测量技术,基于接收传感器和分析器分别接收的信号,确定 所述感兴趣区域的所述准确三维位置,以及所述靶区域的所述准确三维位置显示在 B 模 式图像上并被记录用于将来参考。
4: 根据权利要求 3 所述的方法,其中所述乳房软组织的频率在 1-50Hz 范围内,并且 检测微钙化的频率在 100Hz 至 1KHz 范围内。
5: 根据权利要求 3 所述的方法,进一步包括将第五个传感器并入 IDUS 中,所述第五 3 个传感器用于结合所述四个声学接收传感器创建参考轴,所述第五个传感器用于创建参 考轴,以便可以标记检测到的微钙化的相对位置以确定所述准确位置。
6: 鉴别身体乳房中微钙化的非创伤性方法,包括 : a. 在传感器保持装置上定位多个声学接收传感器,以便所述声学接收传感器彼此间 隔开 ; b. 将所述传感器保持装置定位到人乳房上和其周围,以便所述多个声学传感器定位 在所述乳房上和其周围 ; c. 利用具有成像模式和激发模式的双模式 IDUS 功能成像系统 ; d. 利用具有改进超声成像扫描仪的 IDUS 的成像模式来扫描所述人乳房的不同部分并 用 1 兆赫兹 (MHz) 至 14MHz 范围的超声成像频率冲击所述人乳房以在给定的时间使所述 乳房的部分成像,从而产生超声 B 模式灰度图像,其中将超声频率向所述乳房的特定部 分发射并且随后从所述乳房的每个特定部分向所述扫描仪反射 ; e. 利用具有所述改进的超声成像扫描仪的所述 IDUS 的激发模式并且用所述改进的超 声成像扫描仪输送的非创伤性线性调频脉冲方案激发所述乳房的选择部分,所述改进的 超声成像扫描仪利用两个信号发生器,以便一个信号发生器提供不同频率范围的线性调 频脉冲,而另一个信号发生器提供固定频率这样由于施用的频率的不同,产生某些声学 力,其与靶微钙化团块的固有频率成比例,所述固有频率激发和振动所述靶团块 ; f. 将单一线性调频脉冲分解成不同的部分,以便所述频率扫描按被称作 “一个显示” 的特定的和控制的顺序发生,这样所述线性调频脉冲能扫描期望的频率跨度并寻找所述 靶标的任何共振,以最大化每个频率跨度被引入的时间,从而增加信噪比 (S/N) ; g. 所述激发信号在赫兹或千赫兹范围频率波段上进行扫描,并且所述频率在兆赫超 声载波频率上进行调制以便所述微钙化团块产生对它们的质量密度特异的声学信号,所 述声学信号被所述声学传感器接收并且由声学读取装置进行读取以获得扫描频率 ;以及 h. 将所述获得的扫描频率与预先确定的相应于不同微钙化团块的峰值频率图进行比 较并与其关联,以便当检测到的频率与所述频率标记图中预先确定的频率相关联时,利 用预先确定的颜色方案对所述 B 模式图像上的所述靶位点进行颜色编码并确定所述乳房 内所述位点的所述准确坐标。
7: 根据权利要求 6 所述的方法,进一步包括将另外的传感器并入所述 IDUS 中,所述 另外的传感器用于创建参考轴,以便检测到的微钙化的所述相对位置能被标记以确定所 述准确位置。
8: 根据权利要求 6 所述的非创伤性方法,其中所述乳房内所述位点的准确坐标基于来 自每个声学接收传感器的读数并利用三角测量技术进行确定。
9: 根据权利要求 6 所述的非创伤性方法,其中所述传感保持装置是环形的顺应性环, 其含有间隔的孔以分别保持所述多个声学保持传感器中的每一个。
10: 根据权利要求 9 所述的非创伤性方法,进一步包括将四个声学接收传感器中的每 一个分别放置在孔中,其中所述孔间隔 90 度。
11: 根据权利要求 6 所述的非创伤性方法,其中每个声学接收传感器在下表面上具有 薄的、透明的、生物相容的塑料膜以将各个声学接收传感器与所述乳房上的皮肤分开。
12: 根据权利要求 11 所述的非创伤性方法,进一步包括在每个生物相容塑料膜上的生 4 物相容自粘材料。
13: 根据权利要求 12 所述的非创伤性方法,其中每个生物相容自粘材料被可移除的保 护材料覆盖。
14: 鉴别身体乳房中微钙化的非创伤性方法,包括 : a. 在传感器保持装置上定位多个声学接收传感器,以便所述声学接收传感器彼此间 隔; b. 将所述传感器保持装置定位到乳房上和其周围,以便所述多个声学传感器定位在 所述乳房上和其周围 ; c. 利用具有成像模式和激发模式的双模式 IDUS 功能成像系统 ; d. 利用具有改进超声成像扫描仪的 IDUS 的成像模式来扫描所述乳房的不同部分并用 1 兆赫兹 (MHz) 至 14MHz 范围的超声成像频率冲击所述人乳房以在给定的时间使所述乳 房的部分成像,从而产生超声 B 模式灰度图像,其中将超声频率向所述乳房的特定部分 发射并且随后从所述乳房的每个特定部分向所述扫描仪反射 ; e. 利用具有所述改进的超声成像扫描仪的所述 IDUS 的激发模式并且用非创伤性短脉 冲扫描形式激发所述乳房的选择部分,以便随时间获得数据,其中固定兆赫兹频率以短 脉冲的形式施加到所述靶微钙化团块,而另一个不同的兆赫兹频率被增量以获得所述响 应的直接估量 ; f. 所述激发信号在赫兹或千赫兹范围频率波段上进行扫描,并且所述频率在兆赫超声 载波频率上进行调制以便所述微钙化团块产生对它们的质量密度特异的声学信号,所述 声学信号被所述声学传感器接收并且由声学读取装置进行读取以获得扫描频率 ;以及 g. 将所述获得的扫描频率与预先确定的相应于不同微钙化团块的峰值频率图进行比 较并与其关联,以便当检测到的频率与所述频率标记图中预先确定的频率相关联时,利 用预先确定的颜色方案对所述 B 模式图像上的所述靶位点进行颜色编码并确定所述乳房 内所述位点的所述准确坐标。
15: 根据权利要求 14 所述的方法,进一步包括将另外的传感器并入所述 IDUS 中,所 述另外的传感器用于创建参考轴,以便检测到的微钙化的所述相对位置能被标记以确定 所述准确位置。
16: 根据权利要求 14 所述的非创伤性方法,其中所述乳房内所述位点的准确坐标基于 来自每个声学接收传感器的读数并利用三角测量技术进行确定。
17: 根据权利要求 14 所述的非创伤性方法,其中所述传感保持装置是环形的顺应性 环,其含有间隔的孔以分别保持所述多个声学保持传感器中的每一个。
18: 根据权利要求 17 所述的非创伤性方法,进一步包括将四个声学接收传感器中的每 一个分别放置在孔中,其中所述孔间隔 90 度。
19: 根据权利要求 14 所述的非创伤性方法,其中每个声学接收传感器在下表面上具有 薄的、透明的、生物相容的塑料膜以将各个声学接收传感器与所述乳房上的皮肤分开。
20: 根据权利要求 19 所述的非创伤性方法,进一步包括在每个生物相容塑料膜上的生 物相容自粘材料。
21: 根据权利要求 20 所述的非创伤性方法,其中每个生物相容自粘材料被可移除的保 护材料覆盖。 5
22: 鉴别人乳房中微钙化的非创伤性方法,包括 : a. 在传感器保持装置上定位多个声学接收传感器,以便所述声学接收传感器彼此间 隔开 ; b. 将所述传感器保持装置定位到乳房上和其周围,以便所述多个声学传感器定位在 所述乳房上和其周围,并且留出超声扫描仪扫描可用的所述乳房的所述中心部分 ; c. 利用 B 模式超声扫描仪来扫描所述乳房的四个象限中的每一个,产生具有潜在微钙 化团块的感兴趣区域的灰度 B 模式图像 ; d. 所述发射超声频率从 1MHz 至 14MHz 变化,覆盖一定的深度范围 ; e. 一旦所述感兴趣区域的图像被获得,所述扫描仪相对于乳房成像的象限保持不 动,所述 B 模式图像被定格并且所述感兴趣区域被标记 ; f. 然后通过频率扫描波段激发所述感兴趣区域,所述频率扫描波段被由相同的超声成 像扫描仪输送的专门方案的专用顺序产生 ; g. 当微钙化团块存在时,它被连续频率方案激发,导致发出与其质量成比例的特征 响应频率 ; h. 实时监测所述响应,以便记录包括峰值共振频率在内的波谱并进行波谱分析 ; i. 使检测到的峰值共振频率与预先限定的峰值共振频率的预先确定的数据库相关联, 以确定特定微钙化团块的存在 ;
23: 根据权利要求 22 所述的方法,利用另外的传感器创建参考轴,以便详细的微钙化 的所述相对位置能被标记以确定所述准确位置。
24: 根据权利要求 22 所述的非创伤性方法,其中所述传感保持装置是环形的顺应性 环,其含有间隔的孔以分别保持所述多个可重复使用传感器中的每一个。
25: 根据权利要求 24 所述的非创伤性方法,进一步包括将四个声学接收传感器中的每 一个分别放置在孔中,其中所述孔间隔 90 度。
26: 根据权利要求 22 所述的非创伤性方法,其中各个声学传感器是可重复使用的。
27: 根据权利要求 26 所述的非创伤性方法,其中每个可重复使用的传感器在下表面上具 有薄的、透明的、生物相容的塑料膜以将各个声学接收传感器与所述乳房上的皮肤分开。
28: 根据权利要求 27 所述的非创伤性方法,进一步包括在每个生物相容塑料膜上的生 物相容自粘材料。
29: 根据权利要求 28 所述的非创伤性方法,其中每个生物相容自粘材料被可移除的保 护材料覆盖。
30: 根据权利要求 22 所述的方法,其中所述乳房软组织的频率在 1-50Hz 范围内,并 且检测到微钙化的频率在 100Hz 至 1KHz 范围内。
31: 根据权利要求 23 所述的方法,进一步包括 : a. 如果所述检测到的响应频率或频率波段与预先限定的频率标记图中的一个峰值或 多个峰值相关联,则在所述 B 模式图像上标出所述一个频率或多个频率已被检测到的所 述区域的准确三维坐标,并且根据特定的预先确定的颜色编码方案进行着色,和 b. 利用某个专门的三角测量技术,基于接收传感器和分析器分别接收的信号,确定 所述感兴趣区域的所述准确三维位置,以及所述靶区域的所述准确三维位置显示在 B 模 式图像上并被记录用于将来参考。

说明书


定位乳房微钙化的基于图像的动态超声光谱术

    【技术领域】
     本发明涉及医学病症的诊断,并具体涉及女性乳房内异常的医学诊断,其通过 非创伤性超声技术的使用来进行,以确定女性乳房中是否存在任何微钙化并进一步确定 微钙化所处的位置以及微钙化的大小。背景技术
     一般而言,已使用现有技术中不同的成像方式进行乳房癌症筛查和微钙化检 测,并有几种目前正在使用的技术。 这些技术如下 :
     乳房 X 线造影术
     迄今为止,乳房 X 线造影术与其它的技术相比是选择的方法并且是乳房筛查及 诊断的 “黄金标准”。 为了进行这种检测,将乳房暴露于 X 射线束,测量 X 射线束的透 射。 乳房被相当强地压缩在 X 线敏感屏和透明板之间以 : · 获得均一厚度,
     · 为了促进在较低光子能量水平和组织之间较高对比度范围中的操作而减少总 厚度,以获得较清楚的图像,和
     · 减少不同内部乳房组织的重叠以增加图像的清晰性和更好的灵敏度。
     乳房 X 线造影术是 1930 年由 Warren 首先开发,但是其被广泛使用仅仅是最近 30 年。 乳房病变的鉴别依赖病变引起的射线造影密度变化和乳房构造、血管分布或皮肤 轮廓中相关变化的成像。 在射线造影上,良性病变的密度通常较恶性的低,并且一般而 言它们具有光滑的外形。 另一方面,恶性病变具有不规则的外形。 当乳房呈腺性时将其 构造成像较当乳房含有大量脂肪时更难。 在射线造影上乳房可能是如此地致密,以致乳 房结构不能被足够清晰地成像以鉴别离散的团块。 在脂肪性乳房中,肿瘤以及血管分布 和皮肤轮廓的变化可以清晰可见。 尽管致密的乳房中较大肿瘤可以看得不太清楚,但是 它可通过微钙化进行鉴别。 微钙化发病率的体内射线造影研究显示,它们可以在 40%至 50%的恶性肿瘤和约 20%的良性肿瘤中检测到,并且组织切片显示甚至更高的百分比。 几个在不同国家进行的用以评价筛查乳房造影术价值的随机对照研究已显示了,筛查乳 房造影术对一些国家中超过 50 岁或甚至超过 40 岁的妇女的明显益处。 尽管小于 50 岁的 妇女的结果仍是有争议的。
     在最近 15 年间,通过检测大约 85%至 90%的乳腺癌,乳房造影术筛查已大大 降低了患有乳腺癌的妇女的死亡率 1。 报道的乳房 X 线造影术的灵敏度从 83%至 95%变 化。 报道的乳房 X 线造影术的特异性从 90%至 98%变化。 然而,报道的包括检测疾病 流行的阳性预测值 (PPV) 相当低,从 10%至 50%变化。
     在 许 多 发 达 国 家, 胶 片 - 屏 幕 乳 房 X 线 造 影 术 (FSM)(film-screen mammography) 正 在 逐 渐 地 被 全 数 字 化 乳 房 X 线 造 影 术 (FFDM)(full-field digital mammography) 代替,除了捕获并促进 X 线信号在计算机或激光打印的胶片上显示的电子 检测器之外, FFDM 与 FSM 相同。 尽管新的 FFDM 仪器的分辨率不比传统的 FSM 技术
     高,但是附加的数据处理可有助于较高准确度地发现肿瘤标记。
     二维和三维超声成像
     传统的超声成像利用兆赫兹频率声波,所述兆赫兹频率声波以不同的声学阻抗 在组织之间的边界进行反射,这是穿透声速和物质密度的产物。 这些反射到达的时间间 隔与景深 ( 靶区域的边界 ) 成比例。 因此,超声能绘制声学组织边界。 传统地,二维超 声成像在囊肿和实体团块的鉴别和区分中作为乳房 X 线造影术的辅助手段而使用。 乳房 的超声成像还可帮助放射学家评价一些肿块,所述肿块能摸到但在乳房 X 线照片上难以 看到,尤其是在致密的乳房或植入物中。 由于它允许乳房的实时成像,所以它还能被广 泛地用在引导活组织检查中。 由于非常有限的附加信息,三维超声成像很少用在乳房筛 查中。
     超声技术在区分良性肿瘤与恶性肿瘤中的评价已显示,良性病症检测的准确度 为 99.5%。 据报导,超声波扫描术与标准的乳房 X 线造影术的组合已产生 92%的灵敏度 和 98%的特异性。 随着超声平台近来的发展,筛查乳房造影术遗漏的一些更早期、临床 上隐秘的肿瘤能被检测到。 由于声音在脂肪和较少脂肪的乳房组织中的速度大致相同, 超声在未来具有致密的乳房和高危因素的更年轻妇女的筛查中具有重要作用。 磁共振成像 (MRI)
     MR 图像是通过记录暴露于强静电磁场的组织中氢核 ( 或其它元素 ) 的射频激发 之后产生的信号而形成。 该信号具有根据组织类型 ( 脂肪、肌肉、纤维变性组织等 ) 而 变化的特性。
     该方法具有来自磁场影响的最小危害,并且不使用电离辐射。 人乳房的首次 MRI 结果令人失望,但是随后基于静脉内钆的对比剂的使用已提供了明显的进步和增加 的灵敏度。 据报道,对比度提高的 MRI 在可疑的乳房病变检测中的灵敏度从 88 %至 100%变化 ( 报道的平均灵敏度为约 95% )。 然而,对比度提高的 MRI 的特异性已被指 出相当易变,范围从 37%至 100%。 这主要是因为在良性和恶性肿瘤之间对比剂吸收和 动力学的相当大的差异 (exception) 和重叠。 在高危妇女中用 MRI 筛查的癌症流行显著大 于在相似的人群中用超声筛查的癌症流行 (4%对 1.3% )2。 然而,技术标准和解释标准 目前都未进行标准化,导致操作和结果解释的可变性。 此外, MRI 只能在这样的设置中 进行 :其中可能进行 MRI 单独检测的病变的活组织检查。
     尽管它在检测乳房恶性肿瘤中准确度高,但是 MRI 未被推荐为区分良性和恶性 病变 / 肿瘤的常规检查。 MRI 是极其昂贵的方式,并且它不适合大规模的筛查程序。 由 市场研究公司 IVM 进行的美国调查已揭示,不超过 17%的美国成像设备在现场提供 MRI 成像。 然而,在可用的情况下, MRI 可用作补充方法学来辅助不确定病变的鉴别诊断。
     正电子发射断层显像 (PET) 扫描
     为了进行 PET 扫描,通过发射正电子 ( 化学地掺入到代谢的活性分子中 ) 而衰 变的短寿命放射性追踪同位素被注射进血液循环中。 存在一个等待期,此时代谢活性分 子在感兴趣的组织中变得集中 ;然后将患者被放置在图像扫描仪中,其中正电子遇到电 子,产生一对在几乎相反的方向移动的光子。 当它们到达扫描装置中的敏感材料时被检 测到,产生由光倍增管检测到的光猝发。
     乳房的光学乳房造影术和光谱术
     在过去十年间,应用近红外光 (NIR) 的光学成像技术已引起了相当大的兴趣。 不同病变的特征、鉴别和定位由于肿瘤和健康组织之间光吸收差异的存在而成为可能, 该光吸收差异归因于因血管发生而增加的血红蛋白浓度。 可疑位点的血红蛋白氧饱和度 能通过光谱分析进行重建并能另外充当诊断恶性肿瘤的标准。 光学成像技术掺入光子的 检测,所述光子以光传播模式传播穿过乳房,以重建被照亮组织的光学特性。 通过改变 光源的波长,可以获得光学特性的光谱依赖性。
     用于乳房病变检测的早期透射照明 (trans-illumination) 平台显示低的灵敏度、特 异性和再现性。 光学成像技术可以分成三组 :
     · 连续波 (CW)
     · 时间 - 域
     · 频率 - 域
     每组具有其自身的优点和缺点。 光学成像技术具有一些优点和缺点。 显著的优 点是它们 :
     · 是相对价廉的
     · 使用 NIR 而不施加电离辐射
     · 具有可携带的潜能
     与光学成像相关的主要缺点依旧是生物组织中光的传播,它是高度散射的,导 致差的分辨率。 提高空间分辨率和区别吸收及散射依旧是光学成像面对的最大挑战。
     光学乳房造影术还没有显示出其成为独立的成像模式的潜力,主要因为其特异 性和灵敏度差。 尽管如此,它可通过表征可疑病例中的病变来弥补现有的乳房成像技 术,从而减少不必要的活组织检查数目。
     热 / 光声学乳房成像
     热声学将乳房暴露于短脉冲的外部施用的电磁能。 有差别的吸收引起组织有差 别的加热,接着快速热膨胀。 这产生放置在乳房周围的声学换能器检测到的声波。 吸收 较多能量的组织膨胀较多并产生较高振幅的声波。 在组织表面上记录的飞行时间、振幅 和声学脉冲的持续时间具有关于来源的定位、吸收和尺寸的信息,因而允许靶吸收体的 三维重建。
     当事件电磁能是可见的或 NIR 光时,术语 “光声学”代替热声学被使用。 光声 学组合了两种技术的优点。 首先,如同光学乳房造影术,光声学探测肿瘤位点相对于周 围组织的光学对比度。 其次,关于光吸收不均一性的所有信息通过超声波携带到乳房表 面,所述超声波在软组织中具有低的衰减和散射作用,因此,导致灵敏度差。 与热声学 技术相似,光声学保持靶区域三维结构信息。
     这些技术的一个主要缺点是显示和分析从靶区域保留的三维信息困难。 因此, 当与乳房 X 线造影术和超声相比,热 / 光声学技术的图像检索和分析需要的时间和费用可 能较大。 而且,这些技术还未显示再现性、足够的灵敏度、特异性和实用性。
     在优选实施方式的详细描述之后将更加可理解的现有技术的概要列在表 1 中, 其比较了本发明 IDUS 技术与主要的诊断成像方式。 同样,在优选实施方式的详细描述 的结尾参考表 2,其指出了有竞争的成像技术以及与本发明 IDUS 系统相比有竞争的成像 技术的优点和缺点。对改进的方法存在明显的需求,所述改进的方法不但能测定在女性乳房中是否 存在微钙化,而且能评估微钙化的大小和位置,并通过预先确定的一系列信息,测定并 评估微钙化是否有可能是恶性的,这将导致进一步的医学治疗和活组织检查以移除微钙 化。 发明内容
     本发明基于利用外部产生的、非创伤性基于图像的动态超声光谱术,用于乳房 微钙化团块的实时成像和激发,该微钙化团块大小可以在 100 微米以下并局限在乳房组 织内。 该设计的目的是 :1) 检测和 2) 体内测定乳房内微钙化区的三维定位,用于各种 医疗操作的追踪和向导。
     根 据 本 发 明, 已 发 现 定 位 微 钙 化 的 改 进 技 术 包 括 利 用 一 次 性 的 顺 应 性 (disposable complaint)O 形环,该环被设计来放置在乳房周围,留出超声扫描仪可用的中 心部分。
     根据本发明,已进一步发现在优选的实施方式中四个圆形的可重复使用的传感 器 ( 接收器 ) 被牢固地以 90 度间隔安置在 O 形环上。 其中三个传感器将测定乳房内微 钙化准确位置的 X-Y-Z 坐标。 第四个传感器用于校准通过其它三个传感器测定 X-Y-Z 坐标中的任何误差。 另一个这样的传感器被放置在成像扫描仪内并且用于提供参考垂直 轴以 :1) 测定微钙化位点的深度和 2) 相对于此垂直轴测定所述 X-Y-Z 坐标。 在本发明 中,该垂直轴是重要的,以确保乳房内微钙化的定位被进行,而不论在不同时间和一个 检查至另一个检查之间乳房中可能发生的几何形状变化。 根据本发明,也已发现,一旦 O 形环和安置的传感器被放置在乳房周围,超声 换能器 ( 扫描仪 ) 便扫描乳房四个象限中的每一个,寻找具有潜在微钙化的感兴趣区域。 一旦感兴趣区域 (AOI) 被定位,扫描仪将在乳房上保持不动,所述 IDUS 装置的成像模式 关闭,所述装置的激发模式激活。 然后通过在给定范围的频率扫描波段 (swept band) 激 发感兴趣区域,所述频率扫描波段相应于所述微钙化的固有频率并用兆赫兹 (1-14MHz) 载波频率进行调制。 当微钙化存在时,它将通过本发明的连续频率方案进行激发,导致 与其质量密度成比例的特征响应。 该响应将被实时监测和记录并且作为光谱呈现,其中 峰值频率将被记录和进行光谱分析。 基于预先测定的相应于特定微钙化团块的频率图, 记录的峰值频率将实时与预先测定的频率数据库比较,该数据库提供关于所述频率相应 多大的特定微钙化的信息。 然后应用既定程序的颜色编码方案给具有所测定微钙化的位 点涂颜色,其中根据颜色编码方案不同的微钙化团块将被涂成不同的颜色。
     已进一步发现,从靶标软组织发射的频率估计在几赫兹 (1-50Hz),而相应的从 微钙化位点发射的频率估计在 100Hz 至 1KHz 的范围内。 根据本发明,也已发现用于激 发微钙化位点的被调制频率波段不在能激发软组织的范围内,因此,通过独特的一组频 率将具有微钙化的位点与周围组织区别开来。
     根据本发明,已进一步发现利用专门的定位方法学测定具有微钙化的感兴趣区 域的准确三维位置,其基于接收传感器接收的信号并分别进行分析。 靶区域准确的三维 位置将显示在 B 模式图像上并被标记,用于将来 ( 进一步 ) 参考和追踪。
     本发明的目的是通过超声冲击和超声频率波检测的精确方法提供乳房微钙化检
     测和定位的方法,该方法使系统能够不但检测乳房中是否存在微钙化,而且检测微钙化 的精确位置和微钙化的质量。
     本发明进一步的目的是提供方法和系统,所述方法和系统提供乳房内靶团块的 双模式图像引导激发,以测定乳房内微钙化的位置和性质。
     本发明进一步的目的是提供靶区域的实时定性成像和关于靶区域团块结构的定 量数据。
     本发明的目的还提供定位微钙化和测定微钙化性质的方法学,其没有其它成 像和筛查方式的缺点如创伤性,没有电离辐射、安全、可靠、有成本效益、不基于 Doppler、没有角度依赖性并且便携,适于现场应用并适于手术室条件。
     本发明进一步的目的是提供预先测定的一系列频率图信息,该信息被编程到系 统中,以便一旦特定微钙化位点被定位并且一旦其峰值响应频率被测定,所述峰值响应 频率能与预先设置的一系列被绘制频率进行比较,用于相关的检测和位点鉴定。
     从下列详细描述、讨论和所附权利要求来看并结合附图,本发明进一步的新特 点和其它目的将变得明显。 附图说明 具体参考附图的目的只是为了说明而不是进行限制,图解的是 :
     图 1 是本发明 IDUS 技术的示意图,其显示了通过调制超声频率施加在靶标上的 声透射 (insonification) 操作以及从所述靶标发出的响应频率的检测和分析方法学 ;
     图 2 是显示本发明 IDUS 技术的步骤顺序的流程图 ;
     图 3 是利用本发明 IDUS 技术的流程图和部件图片 ;
     图 4 是显示本发明在乳房筛查中的过程的流程图 ;
     图 5 大体上说明了本发明中的技术的应用 ;
     图 5A 是一次性 O 形环的透视图,所述 O 形环具有接收传感器用的四个间隔的孔 (housing) ;
     图 5B 是显示 O 形环的分解图,特定的接收传感器被放置在所述 O 形环上 ;
     图 5C 是 O 形环的底部透视图,其图解了 O 形环内的接收传感器,并且还图解了 传感器下面的透明薄膜,所述膜使传感器不与皮肤接触 ;
     图 5D 是显示一次性 O 形环的分解图,该 O 形环具有在适当位置的接收传感器, 其在所述 O 形环定位在乳房上之前位于乳房上方 ;
     图 5E 是显示一次性 O 形环和接收传感器的透视图,所述一次性 O 形环和接收传 感器定位在乳房上接触皮肤 ;
     图 5F 是显示定位在乳房上的一次性 O 形环和接收传感器以及扫描乳房的超声扫 描仪的透视图 ;
     图 5G 是显示处于激发模式的装置和通过超声 B 模式扫描仪向感兴趣区域发射激 发信号的透视图 ;
     图 5H 是显示超声扫描仪的透视图,所述超声扫描仪发射扫描频率,从感兴趣区 域寻找峰值响应频率。 一次性 O 形环被粘附到乳房上,并且接收传感器感应从感兴趣 区域发出的响应频率。 当检测到某一团块微钙化的区域时,检测到的响应频率将达到峰
     值 ;和 图 5I 显示了记录的响应频率达到峰值,其表明在乳房内检测到的某一微钙化团 块的区域 ;
     图 6A 显示五个接收传感器的相对位置的示意图。 四个传感器定位在 O 形环 周围,其中第五个传感器嵌入到发射换能器内并提供相对于其它四个接收传感器的参考 轴。
     图 6B 显示接收传感器接收的、来自靶标的信号的示意图。 被激发靶标向所有方 向发出共振频率信号。 四个接收传感器测定靶标的三维位置,其中第五个传感器给靶标 提供参考轴。 该参考轴用于将在任何时间点检测到的任何靶标位置作为相同受试者任何 未来检查的参考。 这将能够在不同的时间内使用该技术以检查相同的靶区域。
     具体实施方式
     尽管现在参考附图对本发明的具体实施方式进行了描述,但是应当理解为这些 实施方式只是作为例子并且仅仅说明了能代表本发明原理应用的许多可能的具体实施方 式中的少数几个。 对本发明所属领域的技术人员来说明显的各种变化和修改被认为在本 发明的精神、范围和考虑之内,如所附权利要求中所进一步限定。 本发明的基本概念描述在附图 1 中,如下所述,图 1 是本发明的示意性表示。
     本发明——通过感应靶乳房微钙化团块发出的声波响应对靶乳房微钙化团块进 行非创伤性远距离超声检测和定位——是基于用具有频率稍微不同的两个或多个扫描超 声波对具有微钙化团块的乳房区域进行声透射,以导致将扫描低频 ( 赫兹或千赫兹 ) 声学 力应用在微钙化区域。 该低频辐射力将激发微钙化团块并引起微钙化团块以其典型的频 率振动,产生独特的标记。 与两个或多个发射超声频率 (transmitted ultrasound frequency) ( 低频调制 ) 的差异有关的微钙化的振动响应通过非创伤性远距离低频 ( 赫兹或千赫兹 ) 声波检测器进行测量。 该测量允许根据预先限定的相应于不同微钙化团块的频率标记图 评价声波标记,从而提供关于体内乳房组织中微钙化区域的三维实时定位的信息。 该技 术包括两个主要部件 :
     (i) 目标高频超声扫描仪和声透射器 (insonifier),和
     (ii) 广角、低频阵列的声学检测器 / 接收器。
     超声辐射方式具有非常小的波长,以显示准确靶向被查询乳房微钙化区域所需 的空间分辨率。 一般地,本领域熟知的是许多刚性结构,尤其是特征为区别振动的团 块、形状和材料的那些刚性结构,在特定频率显示声学固有共振,这可以充当其声学标 记。 该声学标记强烈地依赖结构、密度和材料应变系数以及相对于周围环境的靶区域。 可以通过激发振动模式和通过已知的收听装置,像我们的耳朵、麦克风、加速计等收听 辐射的声波来以实验测量这些共振。 另外,使用不同的计算机程序,像有限元法 (Finite Elements Method) 可以理论上预测这些声学共振。
     本发明使用高频超声 (1-14MHz) 远距离地测量微钙化区域 / 团块的特征性声学 标记 ( 或多个 ),所述高频超声公知能穿透人体 ( 皮肤、脂肪、肌肉等 ) 并以高精确度对 感兴趣区域成像。 通过查询成像的感兴趣区域,如果存在微钙化,则记录特征性响应频 率。 通过单个检测器 / 接收器对从具有微钙化的区域发射的声学响应标记进行实时检测
     和分析可以提供靶区域的单维位置。 使用飞行时间 (Time-of-Flight) 和其它三角测量技 术,并且放置至少三个接收器以获得靶区域的三维实时位置。 本发明的优点在于其空间 分辨率,其不依赖于超声成像分辨率和超声成像能力,这与其它基于 X 线的成像方式相 比是安全的。
     IDUSTM 技术 - 基础理论
     已经显示,基于图像的动态超声光谱术 (IDUS)TM 提供用于检测被植入医疗装置 中结构缺陷的实时、安全、可靠和有成本效益的诊断技术。 IDUSTM 的基本概念是在外部 激发靶标,然后通过使用专门的传感器 ( 或多个 ) 测量其响应。 通过测量靶标发射的响 应,可以相对于周围环境测定其结构状态。
     IDUSTM- 原理
     基于图像的动态超声光谱术 (IDUS)TM 是一门主动声学技术,其中靶位点首先 被成像,然后使用专用的和专门的超声方案激发靶位点,所述超声方案由相同的超声成 像换能器进行输送 ( 见图 1)。 所产生的激发的频率响应通过一个检测器或一系列检测 器——其放置在身体外部上并且紧邻发射换能器——进行检测,并使用专用的算法进行 实时分析。
     IDUSTM- 顺序
     传统的超声成像以后,主动声学方法 (AAA) 使用多种差示频率的超声射束来 激发靶位点 ( 图 2,步骤 1)。 通过将这些射束投射到目标上,振荡辐射点力 (oscillating radiation point-force) 被应用到目标上,这进而产生独特的声学信号 ( 步骤 2)。 发射的声 学信号由位于靶目标附近的一个敏感检测器或一系列检测器进行记录 ( 步骤 3)。 随后对 所记录的响应进行分析并与预先限定的频率图比较并且进行表征 ( 步骤 4)。
     IDUSTM 是一种利用 AAA 提供实时、双模式方法学的平台技术,其基于感兴趣 区域 (AOI) 的非创伤性成像,以及
     A) 用专门的基于超声的波形方案激发 AOI,
     B) 进行靶标对外部激发响应的光谱分析,
     C) 将所述响应与预先存在的频率图相关联,并鉴定所述靶标,和
     D) 操纵和定位 AOI 的三维。
     靶标的鉴定根据其特征峰值响应频率标记进行,所述特征峰值响应频率标记对 于靶标的机械和材料性质 ( 粘度、弹性、塑性、粘弹性等 ) 是独特的。 基于所记录的声 学指纹,以不同种类的频率波段对靶标进行分类。 在 IDUSTM 中,通过扫描超声能量来研 究所限定种类中的每一种,所述超声能量被以每种超声波段施加到靶标上。 基于靶区域 / 物质的质量密度和硬度系数,响应频率可以偏离几赫兹到几千赫并且响应可以是窄峰形 式或频率波段。 IDUSTM 和用于测量靶区域弹性的其它方式的组合将提供乳房筛查的完全 和独特的方法学。 例如,乳房组织中微钙化的早期检测 ( 通常尺寸< 100 微米 ) 和 AOI 弹性 / 硬度的评价将提供关于靶区域的重要诊断信息。
     提供用于乳房微钙化检测的 IDUSTM 系统
     IDUSTM 已被设计成独立的双模式诊断超声平台或被整合成结合标准超声成像平 台进行。 IDUSTM 系统使用 BioQuantetics 专用超声技术来激发乳房中感兴趣区域 (AOI) 并 随后基于波谱学技术分析和表征靶区域的响应频率,寻找微钙化。 双模式平台技术可利用现有技术中的超声平台和声学技术对 AOI 进行成像、激发、频率记录和定位。 实时光 谱分析测定相应于靶标状态的靶标特定光谱共振标记。
     在常规临床超声检查中,将使用 IDUSTM 系统进行乳房微钙化 ( < 100 微米 ) 的检 测,提供另外的定量信息 ( 储存在每个患者的个人库中 )。 由于所述检查有成本效益并且 无论如何不会使受检者暴露于任何电离辐射,因此可以在更频繁的基础上重复检查 ( 如 果需要的话 ),用于指导、更有效地追踪和选择治疗。 用于乳房筛查的 IDUSTM 系统的部 件描述在图 3 中。 除了用于激发方案、数据分析和处理和三维导航的软件外,IDUSTM 系 统最重要的硬件部件是 :1) 专门的功率放大器、2) 传感器和 3) 改进的成像换能器。 功 率放大器是任何标准超声平台的主要部分,其可被改进来满足 IDUSTM 规格。 传感器必须 是定制的以满足对从乳房微钙化发射的频率范围的灵敏度要求。 对成像换能器的唯一改 进涉及 IDUSTM 系统的三维定位能力。 IDUSTM 系统实施所需要的其它装置是任何超声平 台的标准部件,并且可以容纳在平台自身内。 这些包括 :A) 电子滤波器、 B) 高速处理 器、 C) 显示监控器和 D) 视频卡、键盘和轨迹球。
     重要的是注意 IDUSTM 还包括一次性 “O 形环”,其由生物相容性材料制成,根 据乳房大小有五个不同的大小可用 ( 即 x- 小、小、中、大和 x- 大 ) 并安置四个传感器。 在检查之前,该环通过生物相容的粘合材料稳固地环绕乳房,促进传感器经由薄膜与乳 房皮肤牢固连接。 该膜防止传感器和皮肤之间形成空隙,从而增强返回的数据采集并消 除信号衰减或失真的可能性。 期望使用两个环筛查一个受检者的两个乳房。
     它如何工作?
     成像模式——超声平台的成像特征提供靶区域的二或三维 B 模式 ( 灰度 ) 图像 ( 在任何常规操作期间通常所进行的 ),图 4。 取决于应用和 AOI 的深度,通过使用具有 1.0 兆赫兹 (MHz) 至 14MHz 范围的中心频率的线性阵列换能器来获得该图像。 较高的频 率提供较小深度的成像。 例如,3MHz 换能器能提供体内 12 至 15 厘米深度的图像,而 14MHz 换能器 ( 通常用在儿科应用中 ) 能提供大约 1.5 厘米深度的靶标图像。 高级超声 平台的灰度成像分辨率适度地高,因此其绘图能力提高。
     激发模式——一旦获得了靶区域 ( 任何横断面扫描区 ) 的灰度图像并且标记出 AOI,便将操作切换到激发模式,其中用特定的超声波形 ( 能量 ) 方案 ( 或多个 ) 投射 AOI,所述特定的超声波形 ( 能量 ) 方案 ( 或多个 ) 经由相同的成像换能器由 IDUSTM 输 送。 通过将超声能量方案 ( 或多个 ) 投射到靶标上,来产生振荡力,所述振荡力使目标 在其最低固有频率或附近振动。 所形成的振动产生声信号 ( 独特的标记 ),该信号被一 系列放置在身体 ( 即乳房 ) 上、邻近超声成像扫描仪的接收传感器接收。 典型的接收器 直径为约 19 毫米。 发射频率可从几赫兹至几千赫兹变化,这取决于被激发靶标的物理性 质。
     IDUSTM 实时分析所记录的信号以鉴别最大发射频率。 然后将频率波谱的最大峰 值与预先限定的、相应于潜在靶区域 ( 即微钙化 ) 的频率图进行比较。 可以将预先限定 的频率图编程到超声平台软件中。 当发现所记录的峰值频率和被编程频率图之间的相关 性时, B 模式图像上的 AOI 根据被编程颜色编码方案进行着色。 然后将操作切回到成像 模式,筛查另一个区域并且重复所述顺序。
     特定频率图将被开发用于 IDUSTM 平台技术的每个医疗应用 ( 乳房、心脏、整形外科等 ),并且嵌入超声成像平台数据库中。 期望 IDUSTM 不同应用之间的转换是简便的 并基本上与目前进行的相同。
     IDUSTM 具有许多独特的优势 :
     基于对作为外部激发结果的响应频率进行光谱分析,可以实现靶区域中结构差 异的非创伤性检测——各种靶标 ( 乳房微钙化、应力性骨折、植入机械装置的破裂、膝软 骨损伤、肌梗死等 ) 的振动特征和所产生的声信号是不同的并且在不同物质和介质中是 可区别的。 因此,独特频率标记的检测和分类允许机械特性的鉴别和诊断。
     实时成像——节省费时的图像采集和后处理,尤其是流线 (streamlines) 引导的 活组织检查和手术。
     高灵敏度和特异性——不同的靶标具有相应于其状态的不同的和特定的频率响 应标记。 这些将导致 IDUSTM 技术的灵敏度和特异性提高。
     使用直观——该系统是基于常用的超声筛查技术。 因此,不需要复杂的或特别 的培训。
     无电离辐射—— IDUSTM 允许高危人群的频繁筛查和频繁的治疗追踪,而没有基 于 X 线的筛选方式所牵涉的辐射危害。 低成本固定设备——该系统是基于传统的超声成像技术,并且由超声制造商作 为单独的系统或作为高端超声平台的完整部分以可接受的溢价进行销售。
     患者追踪的高可及性—— IDUSTM 系统在目前装有超声设备的每个医院、现场和 临床机构是潜在可用的。 此外,其可用在手术室、野战医院和乡村地区中,而不需要主 要的不动产和专门的基础设施。
     有成本效益的治疗 —— 期望新方式的成本补偿比有竞争的功能成像方式诸如 MRI 更加低。
     多种应用——例如,乳房、心脏、整形外科、头颅、腹部等。
     三维定位—— IDUSTM 系统的独特优势,当与三维超声能力结合时 IDUSTM 系统 允许更好的成像,或允许通过使用 GPS 相容技术对 AOI 进行更好的放置和定位。
     表 1 根据几个关键性的成功因素比较了 IDUSTM 技术与主要的成像技术 ( 目前可 用于乳房筛查的或正在开发的 )。注意关于正在开发的其中一些新方式的全面信息不容易 获取,因此基于初步评估和估计,完成了该表中所呈现的评价。 例如,光 / 热声学技术 还有待推向市场并证明是实用的和可靠的。 在临床环境中初始使用后,它们的真正评价 将成为可能。
     介绍 IDUSTM 乳房筛查应用
     IDUSTM 功能成像诊断技术提供无电离辐射的安全、有成本效益和可靠的方法 学,该方法学能基于微钙化特征发射频率准确地检测乳房中小面积的微钙化 ( < 100 微 米 )。
     其如何在乳房筛查中工作?
     参考图 4 和图 5 以及子图 5A 至 5I,根据下面的步骤实施 IDUSTM 功能成像诊断 操作 :
     1. 要求患者仰卧在检查床上。
     2. 将一次性的和顺应性的 O 形环放置在乳房周围,留出超声扫描仪可用的中心
     部分。 一次性的 O 形环具有四个用于接收传感器的孔口 (housing opening),它们间隔 90 度。 在每个 O 形环中接收可重复使用的传感器,所述传感器被设计为放置在各自孔内。 可重复使用的传感器的透视图显示在图 5B 中。
     3. 将四个小的 ( 圆形,直径 20mm) 且敏感的可重复使用的传感器放置到 O 形环 周围所设计的孔中 ( 步骤 2)。 如图 5C 所示,一旦它们在孔中,传感器便与薄且透明的 膜结合,所述膜将通过开口周围生物相容粘合剂层与皮肤牢牢地连接。 参考图 5D,一次 性 O 形环——其具有在适当位置的传感器——位于乳房上方,之后如图 5E 所示,将 O 形 环定位在乳房上并通过一次性 O 形环底部周围的可移除粘合剂以及在薄透明膜上的粘合 剂附着到乳房上,以便在扫描操作期间一次性 O 形环牢牢地定位在乳房上。
     4. 参考图 5F 至 5I, B 模式超声扫描仪然后将扫描乳房四个象限中的每一个,寻 找具有潜在微钙化的 AOI。 发射的超声频率可以从 1-14MHz 变化,以覆盖一定范围的深 度。 自动频率转换是目前高级超声平台的标准特征。 一旦被定位,扫描仪将保持不动, B 模式图像将被 “锁定”,并且标记出 AOI。 AOI 然后通过超声频率的扫描波段进行激 发,所述扫描波段经由相同超声成像仪 / 扫描仪通过专门方案的专用顺序而产生。
     4.A. 图 5F 显示的是透视图,所述透视图显示了定位在乳房上的一次性 O 形环和 接收传感器以及扫描乳房的超声扫描仪。 产生 B 模式超声图像。 图 5G 是透视图,其显 示了处于激发模式的装置和通过超声 B 模式扫描仪向感兴趣区域发射的激发信号。 图 5H 是显示发射扫描频率、从感兴趣区域寻找峰值响应频率的超声扫描仪的透视图。 一次性 O 形环被粘附到乳房上,并且接收传感器感应从感兴趣区域发射的响应频率。 当检测到 某一团块的微钙化区域时,所检测到的响应频率将达到峰值。 最后,图 5I 显示所记录的 响应频率达到峰值,该峰值表明在乳房内检测到的某一微钙化团块区域。 所检测到的微 钙化区域然后根据预先限定的颜色编码方案在 B 模式图像上进行标记,随后测定微钙化 区域的准确三维位置并标记在 B 模式图像上并且进行记录用于将来的追踪。
     5. 当微钙化存在时,其将通过连续频率方案进行激发,导致发出与微钙化团块 成比例的特征响应。 该响应将被实时监测并作为光谱出现,其中峰值频率将被记录并进 行光谱分析。 在乳房模型 (phantom) 中使用 IDUSTM 的初步实验已表明,从靶软组织发 出的频率可以从 50-200 赫兹 (Hz) 变化,而相应的从微钙化位点发出的频率估计在 250Hz 至范围内。
     6. 如果所记录的响应与预先限定的频率数据库相关,则根据特定颜色编码方 案,对在 B 模式图像上标记的 AOI 进行着色,所述特定颜色编码方案与超声彩色多普勒 仪血流图中的速度分类相似。
     7. 使用专门的定位软件,测定 AOI 的三维位置,其基于接收传感器所接收的信 号并分别进行分析。 靶区域准确的三维位置将显示在 B 模式图像上,并标记在单独的参 考装置上,用于将来参考。
     将四个圆形可重复使用传感器 ( 接收器 ) 以 90 度间隔牢牢地安置于 O 形环上。 其中三个传感器将测定乳房内微钙化准确位置的 X-Y-Z 坐标。 第四个传感器用于校准其 它三个传感器在测定 X-Y-Z 坐标中的任何误差。 另一此类传感器放置在图像扫描仪内并 用于提供参考垂直轴 ( 图 6A 和 6B) 以 :1) 测定微钙化位点的深度和 2) 相对于所述深度测 定所述 X-Y-Z 坐标。 在本发明中,该垂直轴是重要的,以确保乳房内微钙化的定位被进行,而不论在不同时间和一个检查至另一个检查之间乳房中可能发生的几何形状变化。
     比较成像技术
     表 2 呈现了成像技术之间的比较 —— 当与 IDUSTM 技术相比时它们的优点和缺 点。
     *这些技术还未显示在临床应用中的数据再现性和实用性。 光 / 热声学技术的成本是未知的,已基于最初的评估进行评价。 DIC——诊断成像中心 PO——医生办公室**
    

定位乳房微钙化的基于图像的动态超声光谱术.pdf_第1页
第1页 / 共27页
定位乳房微钙化的基于图像的动态超声光谱术.pdf_第2页
第2页 / 共27页
定位乳房微钙化的基于图像的动态超声光谱术.pdf_第3页
第3页 / 共27页
点击查看更多>>
资源描述

《定位乳房微钙化的基于图像的动态超声光谱术.pdf》由会员分享,可在线阅读,更多相关《定位乳房微钙化的基于图像的动态超声光谱术.pdf(27页珍藏版)》请在专利查询网上搜索。

1、10申请公布号CN102014756A43申请公布日20110413CN102014756ACN102014756A21申请号200980114667122申请日2009031612/079,27220080326USA61B8/0020060171申请人拜尔匡泰迪克斯公司地址美国加利福尼亚州72发明人E兰伯德Y伊萨克A夏米斯D魏斯74专利代理机构北京纪凯知识产权代理有限公司11245代理人赵蓉民54发明名称定位乳房微钙化的基于图像的动态超声光谱术57摘要本发明的目的是通过超声冲击和超声频率波检测的精确方法提供乳房微钙化的检测和定位方法,该方法将使系统不但能够检测乳房中是否有微钙化,而且检测微。

2、钙化的精确位置和微钙化的质量。本发明还是这样的方法和系统,所述方法和系统提供乳房内靶团块的双模式图像引导激发以确定乳房内微钙化的位置和性质。30优先权数据85PCT申请进入国家阶段日2010102586PCT申请的申请数据PCT/US2009/0016522009031687PCT申请的公布数据WO2009/120274EN2009100151INTCL19中华人民共和国国家知识产权局12发明专利申请权利要求书5页说明书14页附图7页CN102014764A1/5页21鉴别人身体乳房中微钙化的非创伤性方法,包括A将一次性生物相容的、环形的和顺应性的环定位到所述乳房上O形环,所述环含有四个在所述。

3、O形环周围间隔大约90度的孔,并且每个孔保持有放置在所述O形环内的声学接收传感器;B每个传感器孔的下表面是开放的并保持有薄的透明的生物相容塑料膜,所述膜将所述接收传感器与所述乳房上的接触皮肤分开;C用生物相容的自粘材料覆盖所述接收传感器位置周围的所述O形环的下表面,所述自粘材料与选自纸或塑料材料的可移除保护材料连接;D通过剥掉和移除所述保护纸或塑料材料来暴露所述生物相容的自粘材料;E将所述一次性O形环定位到人乳房上和其周围并且可移除地将所述O形环粘附到所述乳房上,以便所述传感器孔和所述薄膜与所述乳房皮肤牢固地连接并位于所述乳房上间隔大约90度的位置;F利用具有“成像模式”和“激发模式”的双模式。

4、IDUS功能成像系统;G将所述IDUS系统切换到其“成像模式”;H利用改进的超声成像扫描仪扫描所述乳房的不同部分并用1兆赫兹MHZ至14MHZ范围的超声成像频率冲击所述乳房以在每个给定的时间使所述乳房的所述部分成像;I产生超声B模式灰度图像,由此将超声频率向所述乳房的特定部分发送并且随后从所述乳房的特定部分向所述扫描仪反射;J然后保持所述扫描仪不动,将所述IDUS系统切换到其“激发模式”;K通过由相同成像扫描仪输送的非创伤性短脉冲或线性调频脉冲方案来激发所述乳房的所选部分;L当所述激发频率作为线性调频脉冲方案输送时,一个信号发生器提供不同频率范围的线性调频脉冲,而另一个信号发生器提供固定频率,。

5、以便由于施用的频率的不同,产生某些声学力,其与靶微钙化团块的固有频率成比例,所述固有频率激发和振动所述靶团块;M将单一线性调频脉冲分解成不同的部分,以便所述频率扫描按被称作“一个显示ONEPRESENTATION”的特定的和控制的顺序发生,这样所述线性调频脉冲能扫描期望的频率跨度并寻找所述靶标的任何共振,以最大化每个频率跨度被引入的时间,这进而增加信噪比S/N;N当所述激发频率作为短脉冲扫描形式输送时,所述数据随着时间被获得,其中固定兆赫频率以短脉冲形式施用到所述靶微钙化团块,而另一个不同的兆赫频率被增量;O在静止的乳房微钙化的检测中,所述短脉冲扫描激发方案是优选的,其中所述响应的直接估量被获。

6、得,然后线性调频脉冲频率方案被施用;P在线性调频脉冲或短脉冲扫描方案中,所述激发信号在赫兹至千赫兹范围频率波段上进行扫描,并且所述频率在兆赫超声载波频率上进行调制;Q作为激发的结果,所述微钙化团块产生对它们的质量密度特异的声学信号,所述声学信号被放置在所述O形环上的所述接收传感器接收;R利用声学读取装置,由此某些频率被放置在所述一次性O形环上的一个或多个所述权利要求书CN102014756ACN102014764A2/5页3传感器接收;S将每个接收传感器获得的扫描频率与预先确定的相应于不同微钙化团块的峰值频率图进行比较,并与其关联;T如果传感器或多个检测到的接收的频率与所述频率标记图中的预先确。

7、定的频率相关联,则使用预先确定的颜色方案对所述B模式图像上的所述靶位点进行颜色编码,并且使用某个三角测量技术,基于来自每个传感器的读数,确定所述乳房内所述位点的所述准确坐标;和U在所述IDUS中将第五个传感器与成像激发换能器合并,所述第五个传感器结合所述四个声学接收传感器创建参考轴,所述第五个传感器用于创建参考轴,以便可以标记检测到的微钙化位点的相对位置以确定所述准确位置。2根据权利要求1所述的设备,其中被由载波超声频率输送的声学力冲击的乳房软组织发出150HZ的响应频率,以及微钙化团块发出100HZ至1KHZ范围的频率。3鉴别人乳房中微钙化的非创伤性方法,包括A将一次性的和顺应性的O形环放置。

8、在所述乳房周围,并且留出超声扫描仪扫描可用的所述乳房的所述中心部分;B将四个敏感的可重复使用的传感器定位到一次性O形环上,所述O形环放置在所述乳房周围并可移除地粘附到所述乳房上,每个传感器分别与透明的薄膜连接,所述膜通过所述O形环上所述薄膜周围的生物相容粘合剂层与所述乳房上的皮肤牢固地连接;C利用B模式超声扫描仪来扫描所述乳房的四个象限中的每一个,产生具有潜在微钙化团块的感兴趣区域的灰度B模式图像;D所述发射的超声频率从1MHZ至14MHZ变化,覆盖一定的深度范围;E一旦所述感兴趣区域的图像被获得,所述扫描仪相对于乳房成像的象限保持不动,所述B模式图像被定格并且所述感兴趣区域被标记;F然后通过。

9、频率扫描波段激发所述感兴趣区域,所述频率扫描波段由相同的超声成像扫描仪输送的专门方案的专用顺序产生;G当微钙化团块存在时,它被连续频率方案激发,导致发出与其质量成比例的特征响应频率;H实时监测所述响应,以便记录包括峰值共振频率在内的波谱并进行波谱分析;I使检测到的峰值共振频率与预先限定的峰值共振频率的预先确定的数据库相关联,以确定特定微钙化团块的存在;J如果所述检测到的响应频率或频率波段与预先限定的频率标记图中的一个峰值或多个峰值相关联,则在所述B模式图像上标出所述一个频率或多个频率已被检测到的所述区域的准确三维坐标,并且根据特定的预先确定的颜色编码方案进行着色,和K利用某个专门的三角测量技术。

10、,基于接收传感器和分析器分别接收的信号,确定所述感兴趣区域的所述准确三维位置,以及所述靶区域的所述准确三维位置显示在B模式图像上并被记录用于将来参考。4根据权利要求3所述的方法,其中所述乳房软组织的频率在150HZ范围内,并且检测微钙化的频率在100HZ至1KHZ范围内。5根据权利要求3所述的方法,进一步包括将第五个传感器并入IDUS中,所述第五权利要求书CN102014756ACN102014764A3/5页4个传感器用于结合所述四个声学接收传感器创建参考轴,所述第五个传感器用于创建参考轴,以便可以标记检测到的微钙化的相对位置以确定所述准确位置。6鉴别身体乳房中微钙化的非创伤性方法,包括A在。

11、传感器保持装置上定位多个声学接收传感器,以便所述声学接收传感器彼此间隔开;B将所述传感器保持装置定位到人乳房上和其周围,以便所述多个声学传感器定位在所述乳房上和其周围;C利用具有成像模式和激发模式的双模式IDUS功能成像系统;D利用具有改进超声成像扫描仪的IDUS的成像模式来扫描所述人乳房的不同部分并用1兆赫兹MHZ至14MHZ范围的超声成像频率冲击所述人乳房以在给定的时间使所述乳房的部分成像,从而产生超声B模式灰度图像,其中将超声频率向所述乳房的特定部分发射并且随后从所述乳房的每个特定部分向所述扫描仪反射;E利用具有所述改进的超声成像扫描仪的所述IDUS的激发模式并且用所述改进的超声成像扫描。

12、仪输送的非创伤性线性调频脉冲方案激发所述乳房的选择部分,所述改进的超声成像扫描仪利用两个信号发生器,以便一个信号发生器提供不同频率范围的线性调频脉冲,而另一个信号发生器提供固定频率这样由于施用的频率的不同,产生某些声学力,其与靶微钙化团块的固有频率成比例,所述固有频率激发和振动所述靶团块;F将单一线性调频脉冲分解成不同的部分,以便所述频率扫描按被称作“一个显示”的特定的和控制的顺序发生,这样所述线性调频脉冲能扫描期望的频率跨度并寻找所述靶标的任何共振,以最大化每个频率跨度被引入的时间,从而增加信噪比S/N;G所述激发信号在赫兹或千赫兹范围频率波段上进行扫描,并且所述频率在兆赫超声载波频率上进行。

13、调制以便所述微钙化团块产生对它们的质量密度特异的声学信号,所述声学信号被所述声学传感器接收并且由声学读取装置进行读取以获得扫描频率;以及H将所述获得的扫描频率与预先确定的相应于不同微钙化团块的峰值频率图进行比较并与其关联,以便当检测到的频率与所述频率标记图中预先确定的频率相关联时,利用预先确定的颜色方案对所述B模式图像上的所述靶位点进行颜色编码并确定所述乳房内所述位点的所述准确坐标。7根据权利要求6所述的方法,进一步包括将另外的传感器并入所述IDUS中,所述另外的传感器用于创建参考轴,以便检测到的微钙化的所述相对位置能被标记以确定所述准确位置。8根据权利要求6所述的非创伤性方法,其中所述乳房内。

14、所述位点的准确坐标基于来自每个声学接收传感器的读数并利用三角测量技术进行确定。9根据权利要求6所述的非创伤性方法,其中所述传感保持装置是环形的顺应性环,其含有间隔的孔以分别保持所述多个声学保持传感器中的每一个。10根据权利要求9所述的非创伤性方法,进一步包括将四个声学接收传感器中的每一个分别放置在孔中,其中所述孔间隔90度。11根据权利要求6所述的非创伤性方法,其中每个声学接收传感器在下表面上具有薄的、透明的、生物相容的塑料膜以将各个声学接收传感器与所述乳房上的皮肤分开。12根据权利要求11所述的非创伤性方法,进一步包括在每个生物相容塑料膜上的生权利要求书CN102014756ACN10201。

15、4764A4/5页5物相容自粘材料。13根据权利要求12所述的非创伤性方法,其中每个生物相容自粘材料被可移除的保护材料覆盖。14鉴别身体乳房中微钙化的非创伤性方法,包括A在传感器保持装置上定位多个声学接收传感器,以便所述声学接收传感器彼此间隔;B将所述传感器保持装置定位到乳房上和其周围,以便所述多个声学传感器定位在所述乳房上和其周围;C利用具有成像模式和激发模式的双模式IDUS功能成像系统;D利用具有改进超声成像扫描仪的IDUS的成像模式来扫描所述乳房的不同部分并用1兆赫兹MHZ至14MHZ范围的超声成像频率冲击所述人乳房以在给定的时间使所述乳房的部分成像,从而产生超声B模式灰度图像,其中将超。

16、声频率向所述乳房的特定部分发射并且随后从所述乳房的每个特定部分向所述扫描仪反射;E利用具有所述改进的超声成像扫描仪的所述IDUS的激发模式并且用非创伤性短脉冲扫描形式激发所述乳房的选择部分,以便随时间获得数据,其中固定兆赫兹频率以短脉冲的形式施加到所述靶微钙化团块,而另一个不同的兆赫兹频率被增量以获得所述响应的直接估量;F所述激发信号在赫兹或千赫兹范围频率波段上进行扫描,并且所述频率在兆赫超声载波频率上进行调制以便所述微钙化团块产生对它们的质量密度特异的声学信号,所述声学信号被所述声学传感器接收并且由声学读取装置进行读取以获得扫描频率;以及G将所述获得的扫描频率与预先确定的相应于不同微钙化团块。

17、的峰值频率图进行比较并与其关联,以便当检测到的频率与所述频率标记图中预先确定的频率相关联时,利用预先确定的颜色方案对所述B模式图像上的所述靶位点进行颜色编码并确定所述乳房内所述位点的所述准确坐标。15根据权利要求14所述的方法,进一步包括将另外的传感器并入所述IDUS中,所述另外的传感器用于创建参考轴,以便检测到的微钙化的所述相对位置能被标记以确定所述准确位置。16根据权利要求14所述的非创伤性方法,其中所述乳房内所述位点的准确坐标基于来自每个声学接收传感器的读数并利用三角测量技术进行确定。17根据权利要求14所述的非创伤性方法,其中所述传感保持装置是环形的顺应性环,其含有间隔的孔以分别保持所。

18、述多个声学保持传感器中的每一个。18根据权利要求17所述的非创伤性方法,进一步包括将四个声学接收传感器中的每一个分别放置在孔中,其中所述孔间隔90度。19根据权利要求14所述的非创伤性方法,其中每个声学接收传感器在下表面上具有薄的、透明的、生物相容的塑料膜以将各个声学接收传感器与所述乳房上的皮肤分开。20根据权利要求19所述的非创伤性方法,进一步包括在每个生物相容塑料膜上的生物相容自粘材料。21根据权利要求20所述的非创伤性方法,其中每个生物相容自粘材料被可移除的保护材料覆盖。权利要求书CN102014756ACN102014764A5/5页622鉴别人乳房中微钙化的非创伤性方法,包括A在传感。

19、器保持装置上定位多个声学接收传感器,以便所述声学接收传感器彼此间隔开;B将所述传感器保持装置定位到乳房上和其周围,以便所述多个声学传感器定位在所述乳房上和其周围,并且留出超声扫描仪扫描可用的所述乳房的所述中心部分;C利用B模式超声扫描仪来扫描所述乳房的四个象限中的每一个,产生具有潜在微钙化团块的感兴趣区域的灰度B模式图像;D所述发射超声频率从1MHZ至14MHZ变化,覆盖一定的深度范围;E一旦所述感兴趣区域的图像被获得,所述扫描仪相对于乳房成像的象限保持不动,所述B模式图像被定格并且所述感兴趣区域被标记;F然后通过频率扫描波段激发所述感兴趣区域,所述频率扫描波段被由相同的超声成像扫描仪输送的专。

20、门方案的专用顺序产生;G当微钙化团块存在时,它被连续频率方案激发,导致发出与其质量成比例的特征响应频率;H实时监测所述响应,以便记录包括峰值共振频率在内的波谱并进行波谱分析;I使检测到的峰值共振频率与预先限定的峰值共振频率的预先确定的数据库相关联,以确定特定微钙化团块的存在;23根据权利要求22所述的方法,利用另外的传感器创建参考轴,以便详细的微钙化的所述相对位置能被标记以确定所述准确位置。24根据权利要求22所述的非创伤性方法,其中所述传感保持装置是环形的顺应性环,其含有间隔的孔以分别保持所述多个可重复使用传感器中的每一个。25根据权利要求24所述的非创伤性方法,进一步包括将四个声学接收传感。

21、器中的每一个分别放置在孔中,其中所述孔间隔90度。26根据权利要求22所述的非创伤性方法,其中各个声学传感器是可重复使用的。27根据权利要求26所述的非创伤性方法,其中每个可重复使用的传感器在下表面上具有薄的、透明的、生物相容的塑料膜以将各个声学接收传感器与所述乳房上的皮肤分开。28根据权利要求27所述的非创伤性方法,进一步包括在每个生物相容塑料膜上的生物相容自粘材料。29根据权利要求28所述的非创伤性方法,其中每个生物相容自粘材料被可移除的保护材料覆盖。30根据权利要求22所述的方法,其中所述乳房软组织的频率在150HZ范围内,并且检测到微钙化的频率在100HZ至1KHZ范围内。31根据权利。

22、要求23所述的方法,进一步包括A如果所述检测到的响应频率或频率波段与预先限定的频率标记图中的一个峰值或多个峰值相关联,则在所述B模式图像上标出所述一个频率或多个频率已被检测到的所述区域的准确三维坐标,并且根据特定的预先确定的颜色编码方案进行着色,和B利用某个专门的三角测量技术,基于接收传感器和分析器分别接收的信号,确定所述感兴趣区域的所述准确三维位置,以及所述靶区域的所述准确三维位置显示在B模式图像上并被记录用于将来参考。权利要求书CN102014756ACN102014764A1/14页7定位乳房微钙化的基于图像的动态超声光谱术技术领域0001本发明涉及医学病症的诊断,并具体涉及女性乳房内异。

23、常的医学诊断,其通过非创伤性超声技术的使用来进行,以确定女性乳房中是否存在任何微钙化并进一步确定微钙化所处的位置以及微钙化的大小。背景技术0002一般而言,已使用现有技术中不同的成像方式进行乳房癌症筛查和微钙化检测,并有几种目前正在使用的技术。这些技术如下0003乳房X线造影术0004迄今为止,乳房X线造影术与其它的技术相比是选择的方法并且是乳房筛查及诊断的“黄金标准”。为了进行这种检测,将乳房暴露于X射线束,测量X射线束的透射。乳房被相当强地压缩在X线敏感屏和透明板之间以0005获得均一厚度,0006为了促进在较低光子能量水平和组织之间较高对比度范围中的操作而减少总厚度,以获得较清楚的图像,。

24、和0007减少不同内部乳房组织的重叠以增加图像的清晰性和更好的灵敏度。0008乳房X线造影术是1930年由WARREN首先开发,但是其被广泛使用仅仅是最近30年。乳房病变的鉴别依赖病变引起的射线造影密度变化和乳房构造、血管分布或皮肤轮廓中相关变化的成像。在射线造影上,良性病变的密度通常较恶性的低,并且一般而言它们具有光滑的外形。另一方面,恶性病变具有不规则的外形。当乳房呈腺性时将其构造成像较当乳房含有大量脂肪时更难。在射线造影上乳房可能是如此地致密,以致乳房结构不能被足够清晰地成像以鉴别离散的团块。在脂肪性乳房中,肿瘤以及血管分布和皮肤轮廓的变化可以清晰可见。尽管致密的乳房中较大肿瘤可以看得不。

25、太清楚,但是它可通过微钙化进行鉴别。微钙化发病率的体内射线造影研究显示,它们可以在40至50的恶性肿瘤和约20的良性肿瘤中检测到,并且组织切片显示甚至更高的百分比。几个在不同国家进行的用以评价筛查乳房造影术价值的随机对照研究已显示了,筛查乳房造影术对一些国家中超过50岁或甚至超过40岁的妇女的明显益处。尽管小于50岁的妇女的结果仍是有争议的。0009在最近15年间,通过检测大约85至90的乳腺癌,乳房造影术筛查已大大降低了患有乳腺癌的妇女的死亡率1。报道的乳房X线造影术的灵敏度从83至95变化。报道的乳房X线造影术的特异性从90至98变化。然而,报道的包括检测疾病流行的阳性预测值PPV相当低,。

26、从10至50变化。0010在许多发达国家,胶片屏幕乳房X线造影术FSMFILMSCREENMAMMOGRAPHY正在逐渐地被全数字化乳房X线造影术FFDMFULLFIELDDIGITALMAMMOGRAPHY代替,除了捕获并促进X线信号在计算机或激光打印的胶片上显示的电子检测器之外,FFDM与FSM相同。尽管新的FFDM仪器的分辨率不比传统的FSM技术说明书CN102014756ACN102014764A2/14页8高,但是附加的数据处理可有助于较高准确度地发现肿瘤标记。0011二维和三维超声成像0012传统的超声成像利用兆赫兹频率声波,所述兆赫兹频率声波以不同的声学阻抗在组织之间的边界进行反。

27、射,这是穿透声速和物质密度的产物。这些反射到达的时间间隔与景深靶区域的边界成比例。因此,超声能绘制声学组织边界。传统地,二维超声成像在囊肿和实体团块的鉴别和区分中作为乳房X线造影术的辅助手段而使用。乳房的超声成像还可帮助放射学家评价一些肿块,所述肿块能摸到但在乳房X线照片上难以看到,尤其是在致密的乳房或植入物中。由于它允许乳房的实时成像,所以它还能被广泛地用在引导活组织检查中。由于非常有限的附加信息,三维超声成像很少用在乳房筛查中。0013超声技术在区分良性肿瘤与恶性肿瘤中的评价已显示,良性病症检测的准确度为995。据报导,超声波扫描术与标准的乳房X线造影术的组合已产生92的灵敏度和98的特异。

28、性。随着超声平台近来的发展,筛查乳房造影术遗漏的一些更早期、临床上隐秘的肿瘤能被检测到。由于声音在脂肪和较少脂肪的乳房组织中的速度大致相同,超声在未来具有致密的乳房和高危因素的更年轻妇女的筛查中具有重要作用。0014磁共振成像MRI0015MR图像是通过记录暴露于强静电磁场的组织中氢核或其它元素的射频激发之后产生的信号而形成。该信号具有根据组织类型脂肪、肌肉、纤维变性组织等而变化的特性。0016该方法具有来自磁场影响的最小危害,并且不使用电离辐射。人乳房的首次MRI结果令人失望,但是随后基于静脉内钆的对比剂的使用已提供了明显的进步和增加的灵敏度。据报道,对比度提高的MRI在可疑的乳房病变检测中。

29、的灵敏度从88至100变化报道的平均灵敏度为约95。然而,对比度提高的MRI的特异性已被指出相当易变,范围从37至100。这主要是因为在良性和恶性肿瘤之间对比剂吸收和动力学的相当大的差异EXCEPTION和重叠。在高危妇女中用MRI筛查的癌症流行显著大于在相似的人群中用超声筛查的癌症流行4对132。然而,技术标准和解释标准目前都未进行标准化,导致操作和结果解释的可变性。此外,MRI只能在这样的设置中进行其中可能进行MRI单独检测的病变的活组织检查。0017尽管它在检测乳房恶性肿瘤中准确度高,但是MRI未被推荐为区分良性和恶性病变/肿瘤的常规检查。MRI是极其昂贵的方式,并且它不适合大规模的筛查。

30、程序。由市场研究公司IVM进行的美国调查已揭示,不超过17的美国成像设备在现场提供MRI成像。然而,在可用的情况下,MRI可用作补充方法学来辅助不确定病变的鉴别诊断。0018正电子发射断层显像PET扫描0019为了进行PET扫描,通过发射正电子化学地掺入到代谢的活性分子中而衰变的短寿命放射性追踪同位素被注射进血液循环中。存在一个等待期,此时代谢活性分子在感兴趣的组织中变得集中;然后将患者被放置在图像扫描仪中,其中正电子遇到电子,产生一对在几乎相反的方向移动的光子。当它们到达扫描装置中的敏感材料时被检测到,产生由光倍增管检测到的光猝发。0020乳房的光学乳房造影术和光谱术说明书CN1020147。

31、56ACN102014764A3/14页90021在过去十年间,应用近红外光NIR的光学成像技术已引起了相当大的兴趣。不同病变的特征、鉴别和定位由于肿瘤和健康组织之间光吸收差异的存在而成为可能,该光吸收差异归因于因血管发生而增加的血红蛋白浓度。可疑位点的血红蛋白氧饱和度能通过光谱分析进行重建并能另外充当诊断恶性肿瘤的标准。光学成像技术掺入光子的检测,所述光子以光传播模式传播穿过乳房,以重建被照亮组织的光学特性。通过改变光源的波长,可以获得光学特性的光谱依赖性。0022用于乳房病变检测的早期透射照明TRANSILLUMINATION平台显示低的灵敏度、特异性和再现性。光学成像技术可以分成三组00。

32、23连续波CW0024时间域0025频率域0026每组具有其自身的优点和缺点。光学成像技术具有一些优点和缺点。显著的优点是它们0027是相对价廉的0028使用NIR而不施加电离辐射0029具有可携带的潜能0030与光学成像相关的主要缺点依旧是生物组织中光的传播,它是高度散射的,导致差的分辨率。提高空间分辨率和区别吸收及散射依旧是光学成像面对的最大挑战。0031光学乳房造影术还没有显示出其成为独立的成像模式的潜力,主要因为其特异性和灵敏度差。尽管如此,它可通过表征可疑病例中的病变来弥补现有的乳房成像技术,从而减少不必要的活组织检查数目。0032热/光声学乳房成像0033热声学将乳房暴露于短脉冲的。

33、外部施用的电磁能。有差别的吸收引起组织有差别的加热,接着快速热膨胀。这产生放置在乳房周围的声学换能器检测到的声波。吸收较多能量的组织膨胀较多并产生较高振幅的声波。在组织表面上记录的飞行时间、振幅和声学脉冲的持续时间具有关于来源的定位、吸收和尺寸的信息,因而允许靶吸收体的三维重建。0034当事件电磁能是可见的或NIR光时,术语“光声学”代替热声学被使用。光声学组合了两种技术的优点。首先,如同光学乳房造影术,光声学探测肿瘤位点相对于周围组织的光学对比度。其次,关于光吸收不均一性的所有信息通过超声波携带到乳房表面,所述超声波在软组织中具有低的衰减和散射作用,因此,导致灵敏度差。与热声学技术相似,光声。

34、学保持靶区域三维结构信息。0035这些技术的一个主要缺点是显示和分析从靶区域保留的三维信息困难。因此,当与乳房X线造影术和超声相比,热/光声学技术的图像检索和分析需要的时间和费用可能较大。而且,这些技术还未显示再现性、足够的灵敏度、特异性和实用性。0036在优选实施方式的详细描述之后将更加可理解的现有技术的概要列在表1中,其比较了本发明IDUS技术与主要的诊断成像方式。同样,在优选实施方式的详细描述的结尾参考表2,其指出了有竞争的成像技术以及与本发明IDUS系统相比有竞争的成像技术的优点和缺点。说明书CN102014756ACN102014764A4/14页100037对改进的方法存在明显的需。

35、求,所述改进的方法不但能测定在女性乳房中是否存在微钙化,而且能评估微钙化的大小和位置,并通过预先确定的一系列信息,测定并评估微钙化是否有可能是恶性的,这将导致进一步的医学治疗和活组织检查以移除微钙化。发明内容0038本发明基于利用外部产生的、非创伤性基于图像的动态超声光谱术,用于乳房微钙化团块的实时成像和激发,该微钙化团块大小可以在100微米以下并局限在乳房组织内。该设计的目的是1检测和2体内测定乳房内微钙化区的三维定位,用于各种医疗操作的追踪和向导。0039根据本发明,已发现定位微钙化的改进技术包括利用一次性的顺应性DISPOSABLECOMPLAINTO形环,该环被设计来放置在乳房周围,留。

36、出超声扫描仪可用的中心部分。0040根据本发明,已进一步发现在优选的实施方式中四个圆形的可重复使用的传感器接收器被牢固地以90度间隔安置在O形环上。其中三个传感器将测定乳房内微钙化准确位置的XYZ坐标。第四个传感器用于校准通过其它三个传感器测定XYZ坐标中的任何误差。另一个这样的传感器被放置在成像扫描仪内并且用于提供参考垂直轴以1测定微钙化位点的深度和2相对于此垂直轴测定所述XYZ坐标。在本发明中,该垂直轴是重要的,以确保乳房内微钙化的定位被进行,而不论在不同时间和一个检查至另一个检查之间乳房中可能发生的几何形状变化。0041根据本发明,也已发现,一旦O形环和安置的传感器被放置在乳房周围,超声。

37、换能器扫描仪便扫描乳房四个象限中的每一个,寻找具有潜在微钙化的感兴趣区域。一旦感兴趣区域AOI被定位,扫描仪将在乳房上保持不动,所述IDUS装置的成像模式关闭,所述装置的激发模式激活。然后通过在给定范围的频率扫描波段SWEPTBAND激发感兴趣区域,所述频率扫描波段相应于所述微钙化的固有频率并用兆赫兹114MHZ载波频率进行调制。当微钙化存在时,它将通过本发明的连续频率方案进行激发,导致与其质量密度成比例的特征响应。该响应将被实时监测和记录并且作为光谱呈现,其中峰值频率将被记录和进行光谱分析。基于预先测定的相应于特定微钙化团块的频率图,记录的峰值频率将实时与预先测定的频率数据库比较,该数据库提。

38、供关于所述频率相应多大的特定微钙化的信息。然后应用既定程序的颜色编码方案给具有所测定微钙化的位点涂颜色,其中根据颜色编码方案不同的微钙化团块将被涂成不同的颜色。0042已进一步发现,从靶标软组织发射的频率估计在几赫兹150HZ,而相应的从微钙化位点发射的频率估计在100HZ至1KHZ的范围内。根据本发明,也已发现用于激发微钙化位点的被调制频率波段不在能激发软组织的范围内,因此,通过独特的一组频率将具有微钙化的位点与周围组织区别开来。0043根据本发明,已进一步发现利用专门的定位方法学测定具有微钙化的感兴趣区域的准确三维位置,其基于接收传感器接收的信号并分别进行分析。靶区域准确的三维位置将显示在。

39、B模式图像上并被标记,用于将来进一步参考和追踪。0044本发明的目的是通过超声冲击和超声频率波检测的精确方法提供乳房微钙化检说明书CN102014756ACN102014764A5/14页11测和定位的方法,该方法使系统能够不但检测乳房中是否存在微钙化,而且检测微钙化的精确位置和微钙化的质量。0045本发明进一步的目的是提供方法和系统,所述方法和系统提供乳房内靶团块的双模式图像引导激发,以测定乳房内微钙化的位置和性质。0046本发明进一步的目的是提供靶区域的实时定性成像和关于靶区域团块结构的定量数据。0047本发明的目的还提供定位微钙化和测定微钙化性质的方法学,其没有其它成像和筛查方式的缺点如。

40、创伤性,没有电离辐射、安全、可靠、有成本效益、不基于DOPPLER、没有角度依赖性并且便携,适于现场应用并适于手术室条件。0048本发明进一步的目的是提供预先测定的一系列频率图信息,该信息被编程到系统中,以便一旦特定微钙化位点被定位并且一旦其峰值响应频率被测定,所述峰值响应频率能与预先设置的一系列被绘制频率进行比较,用于相关的检测和位点鉴定。0049从下列详细描述、讨论和所附权利要求来看并结合附图,本发明进一步的新特点和其它目的将变得明显。附图说明0050具体参考附图的目的只是为了说明而不是进行限制,图解的是0051图1是本发明IDUS技术的示意图,其显示了通过调制超声频率施加在靶标上的声透射。

41、INSONIFICATION操作以及从所述靶标发出的响应频率的检测和分析方法学;0052图2是显示本发明IDUS技术的步骤顺序的流程图;0053图3是利用本发明IDUS技术的流程图和部件图片;0054图4是显示本发明在乳房筛查中的过程的流程图;0055图5大体上说明了本发明中的技术的应用;0056图5A是一次性O形环的透视图,所述O形环具有接收传感器用的四个间隔的孔HOUSING;0057图5B是显示O形环的分解图,特定的接收传感器被放置在所述O形环上;0058图5C是O形环的底部透视图,其图解了O形环内的接收传感器,并且还图解了传感器下面的透明薄膜,所述膜使传感器不与皮肤接触;0059图5D。

42、是显示一次性O形环的分解图,该O形环具有在适当位置的接收传感器,其在所述O形环定位在乳房上之前位于乳房上方;0060图5E是显示一次性O形环和接收传感器的透视图,所述一次性O形环和接收传感器定位在乳房上接触皮肤;0061图5F是显示定位在乳房上的一次性O形环和接收传感器以及扫描乳房的超声扫描仪的透视图;0062图5G是显示处于激发模式的装置和通过超声B模式扫描仪向感兴趣区域发射激发信号的透视图;0063图5H是显示超声扫描仪的透视图,所述超声扫描仪发射扫描频率,从感兴趣区域寻找峰值响应频率。一次性O形环被粘附到乳房上,并且接收传感器感应从感兴趣区域发出的响应频率。当检测到某一团块微钙化的区域时。

43、,检测到的响应频率将达到峰说明书CN102014756ACN102014764A6/14页12值;和0064图5I显示了记录的响应频率达到峰值,其表明在乳房内检测到的某一微钙化团块的区域;0065图6A显示五个接收传感器的相对位置的示意图。四个传感器定位在O形环周围,其中第五个传感器嵌入到发射换能器内并提供相对于其它四个接收传感器的参考轴。0066图6B显示接收传感器接收的、来自靶标的信号的示意图。被激发靶标向所有方向发出共振频率信号。四个接收传感器测定靶标的三维位置,其中第五个传感器给靶标提供参考轴。该参考轴用于将在任何时间点检测到的任何靶标位置作为相同受试者任何未来检查的参考。这将能够在不。

44、同的时间内使用该技术以检查相同的靶区域。具体实施方式0067尽管现在参考附图对本发明的具体实施方式进行了描述,但是应当理解为这些实施方式只是作为例子并且仅仅说明了能代表本发明原理应用的许多可能的具体实施方式中的少数几个。对本发明所属领域的技术人员来说明显的各种变化和修改被认为在本发明的精神、范围和考虑之内,如所附权利要求中所进一步限定。0068本发明的基本概念描述在附图1中,如下所述,图1是本发明的示意性表示。0069本发明通过感应靶乳房微钙化团块发出的声波响应对靶乳房微钙化团块进行非创伤性远距离超声检测和定位是基于用具有频率稍微不同的两个或多个扫描超声波对具有微钙化团块的乳房区域进行声透射,。

45、以导致将扫描低频赫兹或千赫兹声学力应用在微钙化区域。该低频辐射力将激发微钙化团块并引起微钙化团块以其典型的频率振动,产生独特的标记。与两个或多个发射超声频率TRANSMITTEDULTRASOUNDFREQUENCY低频调制的差异有关的微钙化的振动响应通过非创伤性远距离低频赫兹或千赫兹声波检测器进行测量。该测量允许根据预先限定的相应于不同微钙化团块的频率标记图评价声波标记,从而提供关于体内乳房组织中微钙化区域的三维实时定位的信息。该技术包括两个主要部件0070I目标高频超声扫描仪和声透射器INSONIFIER,和0071II广角、低频阵列的声学检测器/接收器。0072超声辐射方式具有非常小的波。

46、长,以显示准确靶向被查询乳房微钙化区域所需的空间分辨率。一般地,本领域熟知的是许多刚性结构,尤其是特征为区别振动的团块、形状和材料的那些刚性结构,在特定频率显示声学固有共振,这可以充当其声学标记。该声学标记强烈地依赖结构、密度和材料应变系数以及相对于周围环境的靶区域。可以通过激发振动模式和通过已知的收听装置,像我们的耳朵、麦克风、加速计等收听辐射的声波来以实验测量这些共振。另外,使用不同的计算机程序,像有限元法FINITEELEMENTSMETHOD可以理论上预测这些声学共振。0073本发明使用高频超声114MHZ远距离地测量微钙化区域/团块的特征性声学标记或多个,所述高频超声公知能穿透人体皮。

47、肤、脂肪、肌肉等并以高精确度对感兴趣区域成像。通过查询成像的感兴趣区域,如果存在微钙化,则记录特征性响应频率。通过单个检测器/接收器对从具有微钙化的区域发射的声学响应标记进行实时检测说明书CN102014756ACN102014764A7/14页13和分析可以提供靶区域的单维位置。使用飞行时间TIMEOFFLIGHT和其它三角测量技术,并且放置至少三个接收器以获得靶区域的三维实时位置。本发明的优点在于其空间分辨率,其不依赖于超声成像分辨率和超声成像能力,这与其它基于X线的成像方式相比是安全的。0074IDUSTM技术基础理论0075已经显示,基于图像的动态超声光谱术IDUSTM提供用于检测被植。

48、入医疗装置中结构缺陷的实时、安全、可靠和有成本效益的诊断技术。IDUSTM的基本概念是在外部激发靶标,然后通过使用专门的传感器或多个测量其响应。通过测量靶标发射的响应,可以相对于周围环境测定其结构状态。0076IDUSTM原理0077基于图像的动态超声光谱术IDUSTM是一门主动声学技术,其中靶位点首先被成像,然后使用专用的和专门的超声方案激发靶位点,所述超声方案由相同的超声成像换能器进行输送见图1。所产生的激发的频率响应通过一个检测器或一系列检测器其放置在身体外部上并且紧邻发射换能器进行检测,并使用专用的算法进行实时分析。0078IDUSTM顺序0079传统的超声成像以后,主动声学方法AAA。

49、使用多种差示频率的超声射束来激发靶位点图2,步骤1。通过将这些射束投射到目标上,振荡辐射点力OSCILLATINGRADIATIONPOINTFORCE被应用到目标上,这进而产生独特的声学信号步骤2。发射的声学信号由位于靶目标附近的一个敏感检测器或一系列检测器进行记录步骤3。随后对所记录的响应进行分析并与预先限定的频率图比较并且进行表征步骤4。0080IDUSTM是一种利用AAA提供实时、双模式方法学的平台技术,其基于感兴趣区域AOI的非创伤性成像,以及0081A用专门的基于超声的波形方案激发AOI,0082B进行靶标对外部激发响应的光谱分析,0083C将所述响应与预先存在的频率图相关联,并鉴定所述靶标,和0084D操纵和定位AOI的三维。0085靶标的鉴定根据其特征峰值响应频率标记进行,所述特征峰值响应频率标记对于靶标的机械和材料性质粘度、弹性、塑性、粘弹性等是独特的。基于所记录的声学指纹,以不同种类的频率波段对靶标进行分类。在IDUSTM中,通过扫描超声能量来研究所限定种类中的每一种,所述超声能量被以每种超声波段施加到靶标上。基于靶区域/物质的质量密度和硬度系数,响应频率可以偏离几赫兹到几千赫并且响应可以是窄峰形式或频率波段。IDUSTM和用于测量靶区域弹性的其它方式的组合将提供乳房筛查的完全和独特的方法学。例如,乳房组织中微钙化的早。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人类生活必需 > 医学或兽医学;卫生学


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1