头孢呋辛与他唑巴坦的组合物 【技术领域】
本发明涉及一种具有广谱抗菌作用的药物组合物,特别是涉及一种头孢呋辛与他唑巴坦的组合物。
背景技术
头孢呋辛(cefuroxime)为第二代头孢菌素中的代表品种,其在7位有一个甲氧肟基侧链,其抗菌机制是妨碍细胞壁合成。头孢呋辛本身即对革兰阳性菌具有较强的抗菌作用。医学文献报道对MSSA的MIC90值在2mg.L-1左右,对肺炎链球菌的MIC90值在0.125-1mg.L-1之间,对卡他莫拉菌的MIC90值为1mg.L-1。2000-2001中国细菌耐药监测结果显示,头孢呋辛对MSSA和MSSE的MIC90值均为4mg.L-1,对肺炎链球菌MIC90值为2mg.L-1。第二代头孢呋辛对革兰阴性菌作用优于一代头孢菌素,对革兰阳性菌作用(包括产酶耐药金葡球菌)优于三代头孢菌素,对厌氧菌有一定作用,对β-内航胶酶稳定:其在体内分布广,各组织液中包括骨、滑液与房水中均可超过抑制常见菌所需浓度,肾毒性比一代头孢菌毒低。
头孢呋辛虽对大多数革兰阳性及阴性菌具有较强的抗菌活性,但对超广谱β内酷胶酶(ESBLs,Extended-spectrum β-lactamase)稳定性差,产ESBLs细菌对其耐药。自上世纪70年代后开始在临床广泛应用。它即保持了第一代头孢菌素对革兰阳性菌抗菌作用强的优势,同时对细菌产生的广谱酶稳定,提高了对革兰阴性菌的抗菌作用。然而随着超广谱酶的出现与增多,其对革兰阴性菌地耐药率开始上升。2000-2001中国细菌耐药监测研究结果显示,其对革兰阴性菌中较敏感的细菌,如:沙门菌属、志贺菌属、嗜血杆菌属等,耐药率分别为4.8%、11.8%和0%;对临床常见的大肠埃希菌和肺炎克雷伯菌,耐药率在30%左右;而对于耐药性较高的肠杆菌科细菌如阴沟肠杆菌、沙雷菌属等,耐药率基本上在40%以上。
他唑巴坦(tazobactam)是一种竞争性不可逆的广谱β-内酰胺酶抑制剂,它在目前临床常见的三个酶抑制剂中,抑酶作用较强,对大部分超广谱β-内酰胺酶有抑制作用,对某些超广谱β-内酰胺酶的作用甚至超过克拉维酸。
如何在保持头孢呋辛较强的抗菌活性的前提下,有效解决其对革兰阴性菌的耐药性问题,是人们迫切需要解决的问题。迄今为止,尚未见有关头孢呋辛与他唑巴坦的组合物的报导。
【发明内容】
本发明旨在解决头孢呋辛对细菌的耐药性问题,而提供一种既能保持对革兰阳性菌的较强的抗菌作用,又能明显加强对革兰阴性菌的抗菌作用的具有强效广谱抗菌作用的头孢呋辛与他唑巴坦的组合物。
为实现上述目的,本发明提供一种头孢呋辛与他唑巴坦的组合物,该组合物由头孢呋辛与他唑巴坦按1~10∶1的重量比混合而成。
头孢呋辛与他唑巴坦的优选重量比为:1∶1,2∶1,4∶1,8∶1,头孢呋辛与他唑巴坦的最佳重量比为:2∶1。
该组合物按如下工艺制备:
a、将1~10份重量的头孢呋辛与1份重量的他唑巴坦置于100级洁净室内的混合机中混合3~8分钟,过30目筛;
b、将混合液再置于混合机中混合3~8分钟,再过30目筛;如此反复2~5次;
c、混合完成后经检验中间体含量合格后,进行无菌分装。
在对混合液进行无菌分装过程中采用二次充氮工艺,使药液瓶中的含氧量在1%左右。
本发明的贡献在于,它有效解决了近年来由于广泛大量选用头孢菌素,导致细菌对三代头孢菌高度耐药的问题。试验结果证实,本发明的混合物明显增强了对革兰阴性菌的抗菌作用,尤其是对大肠埃希菌、克雷伯菌属、变形杆菌属、摩氏摩根菌、阴沟肠杆菌、弗劳地枸橡酸杆菌。酶抑制剂他唑巴坦的加入则明显提高了头孢呋辛对耐药菌的抗菌作用,使得MIC90值下降了8-128倍,耐药率减少了12-80个百分点。该混合物和头孢呋辛都对除MRSA以外的其它革兰阳性球菌有很好的抗菌作用。本发明的混合物明显加强了对革兰阴性菌的抗菌作用并保持对革兰阳性菌很好的抗菌、杀菌作用,可作为强效广谱杀菌药。
【附图说明】
图1是两株大肠埃希菌的杀菌曲线图,其中图1A是其中一株大肠埃希菌的杀菌曲线图,图1B是另一株大肠埃希菌的杀菌曲线图。
图2是两株肺炎克雷伯菌的杀菌曲线图,其中图2A是其中一株肺炎克雷伯菌的杀菌曲线图,图2B是另一株肺炎克雷伯菌的杀菌曲线图。
图3是两株金黄色葡萄球菌的杀菌曲线图,其中图3A是其中一株金黄色葡萄球菌的杀菌曲线图,图3B是另一株金黄色葡萄球菌的杀菌曲线图。
【具体实施方式】
下列实施例是对本发明的进一步解释和说明,对本发明不构成任何限制。
取2份(重量)的头孢呋辛与1份(重量)的他唑巴坦,置于100级洁净室内的V型混合机中,混合5分钟,过30目筛;将混合药液再置于混合机中混合5分钟,再过30目筛;如此反复3次;将混合药液装于无菌罐中,严封。再依照临床用质量标准检验中间体含量,合格后进行无菌分装。为减少残留氧量对药品含量的影响,在无菌分装过程中采用二次充氮工艺,使药液瓶中的含氧量控制在1%左右(一次充氮,残留氧量在5%左右),以确保在贮存期间药品含量的稳定。分装操作方法采用制药工业中常规的无菌分装工艺。
下列实验有助于说明本发明的组合物的抗菌作用及效果。
本发明对头孢呋辛与他唑巴坦的四种配比(1∶1、2∶1、4∶1、8∶1)及单剂对临床分离致病菌的体外抗菌作用进行了试验。
1.实验菌株:
实验菌株共计661株,菌种来自全国10个地区中的15家医院2001年1月~2003年1月临床分离致病菌,包括革兰阴性菌439株和革兰阳性菌222株,其中革兰阴性菌包括大肠埃希菌、克雷伯菌属、产气肠杆菌、阴沟肠杆菌、弗劳地枸橡酸杆菌、奇异变形杆菌、普通变形杆菌、摩氏摩根菌、宋氏志贺菌、福氏志贺菌、伤寒沙门菌、粘质沙雷菌、鲍曼不动杆菌、铜绿假羊胞菌、嗜麦芽窄食单胞菌、流感嗜血杆菌);革兰阳性菌包括金黄色葡萄球菌、甲氧西株耐药金葡菌、甲氧西株敏感金葡菌、表皮葡萄球菌、肺炎链球菌、化月农性链球菌、元乳链球菌、卡他莫才立。上述菌种由北京大学临床药理研究所实验室按2002年美国临床实验标准委员会(NCCLS2002)标准进行菌株复核、鉴定。
每株细菌在试验前都经过平板转活分纯,以新鲜菌体用于试验。每次实验均用标准菌株:大肠杆菌ATCC 25922,金黄色葡萄球菌ATCC 29213,铜绿假单胞菌ATCC 27853作为敏感实验质控菌;用不含抗菌药物的平皿做为试验菌株生长对照。
2.培养基与孵育条件:
金黄色葡萄球菌和表皮葡萄球菌在MH培养基,35℃孵育24h;肺炎链球菌在营养培养基中加入5%脱纤维羊血的血培基上,35℃,5%CO2环境(CO2培养箱)中孵育24h;化脓性链球菌和粪链球菌在MH培养基中加入5%脱纤维羊血的血培基上,35℃孵育24h;流感嗜血杆菌在脑心浸液培基中加入5%脱纤维羊血,制成“巧克力”培养基,放置在35℃,5%CO2环境中孵育24h;其它革兰阴性菌均为MH培养基,37℃孵育16-18h。
3.最低抑菌浓度(MIC)测定
采用平皿二倍稀释法,抗菌药物测定浓度范围为256-0.004mg.L-1。被试菌悬液用Denley多点接种仪接种,测定各抗菌药物对各种致病菌的最低抑菌浓度(MICmg)。细菌原液浓度为>108CFU/mL,接种物悬液按1∶10稀释以获得107CFU/mL的接种浓度,接种物复种器可在琼脂表面接种1-2μl的菌液,最终琼脂上的点所含的接种菌约104CFU。按NCCLS 2002规定的判定标准计算细菌耐药率。头孢呋辛与他唑巴坦混合物的判定参照单药的判定标准。
4.最低杀菌浓度(MBC)测定
采用试管二倍稀释法,将系列稀释的抗菌药物溶液与菌应用液(106CFU/ml)混合,经37℃过夜孵育后,澄清的试管继续孵育6小时再接种于不含抗生素的平皿中。经37℃,18小时孵育,未见细菌生长的最低抗菌药物浓度为最低杀菌浓度(MBC,mg.L-1)。
5.杀菌曲线
在营养肉汤中加入一定浓度的待测抗菌药物及菌应用液,使培养液中细菌的终浓度为106CFU/ml(对照管中不含抗生素)。取即刻、1、2、4、6、8、12及24小时的培养物,进行菌落计数,并绘制杀菌曲线。
6.对体外抗菌作用的影响因素
(1)、细菌接种量影响
用平皿二倍稀释法测定四种自己比头孢呋辛/他唑巴坦对测试菌的不同菌量(104、105、106、107CFU/ml)对MIC值的影响。
(2)、培养基pH值的影响
用平皿二倍稀释法测定四种配比头孢呋辛/他唑巴坦对测试菌在不同pH值(pH5.0、pH6.0、pH7.0、pH7.5、pH8.0、pH8.5)条件下对MIC值的影响。
(3)、血清蛋白含量的影响
用平皿二倍稀释法测定四种配比头孢呋辛/他唑巴坦对测试菌在不同的血清浓度(25%、50%、75%)与不含血清的培养基观察血清蛋白含量对MIC值的影响。
试验结果如下:
1.不同配比的头孢呋辛/他唑巴坦对661株临床分离致病菌的MIC结果(见表1.)
表1
Organism MIC(mg/L)
(strains/β-lactamase positive strains) Antibiotic MIC50MIC
MICmode MICrange
90
Cefuroxime 16 512 2 1-512
CXM+TAZ(1∶1) 2 16 2 1-16
Escherichia coli CXM+TAZ(2∶1) 4 16 2 1-32
(58/53) CXM+TAZ(4∶1) 4 16 2 1-32
CXM+TAZ(8∶1) 4 16 2 1-32
Tazobactam 256 256 256 128-512
Cefuroxime 4 512 2 1-512
CXM+TAZ(1∶1) 2 16 1 1-128
Klebsiella spp. CXM+TAZ(2∶1) 4 64 1 1-512
(47/32) CXM+TAZ(4∶1) 4 64 1 1-512
CXM+TAZ(8∶1) 2 512 2 1-512
Tazobactam 256 512 128 128-512
Cefurroxime 4 256 2 1-512
CXM+TAZ(1∶1) 4 128 2 0.5-128
Enterobacter aerogenes CXM+TAZ(2∶1) 4 128 2 2-256
(28/26) CXM+TAZ(4∶1) 4 128 2 1-256
CXM+TAZ(8∶1) 4 256 2 0.5-256
Tazobactam 256 512 256 128-512
Enterobacter cloacae Cefuroxime 128 512 512 0.25-512
(33/30) CXM+TAZ(1∶1) 8 64 4 0.25-128
CXM+TAZ(2∶1) 8 64 4 0.25-128
CXM+TAZ(4∶1) 8 64 4 0.25-128
CXM+TAZ(8∶1) 8 64 4 0.25-128
Tazobactam 512 512 512 64-512
Cefuroxime 8 256 4 1-512
CXM+TAZ(1∶1) 4 32 2 1-64
Citrobacter freundii CXM+TAZ(2∶1) 4 64 2 1-128
(30/28) CXM+TAZ(4∶1) 8 64 2 1-128
CXM+TAZ(8∶1) 4 128 4 1-128
Tazobactam 256 512 256 128-512
Cefuroxime 1 4 1 0.25-4
CXM+TAZ(1∶1) 0.5 4 0.5 0.25-4
Shigella flexneri CXM+TAZ(2∶1) 1 4 1 0.25-4
(15/5) CXM+TAZ(4∶1) 1 4 1 0.25-4
CXM+TAZ(8∶1) 1 4 1 0.25-4
Tazobactam 128 256 128 128-256
Organism MIC(mg/L)
(strains/β-lactamase positive strains) Antibiotic MIC MIC
MICrang
MICmode
50 90
Cefuroxime 4 4 4 0.5-4
CXM+TAZ(1∶1) 2 2 2 0.5-4
Shigella sonnei
CXM+TAZ(2∶1) 2 2 2 0.5-4
(15/5)
CXM+TAZ(4∶1) 2 2 2 0.5-4
CXM+TAZ(8∶1) 2 2 2 0.5-4
Tazobactam 128 128 128 128
Salmonella typhi Cefuroxime 2 8 2 1-16
(18/2) CXM+TAZ(1∶1) 1 4 1 1-8
CXM+TAZ(2∶1) 1 4 2 1-8
CXM+TAZ(4∶1) 1 4 1 1-16
CXM+TAZ(8∶1) 1 4 1 1-8
Tazobactam 128 256 128 128-256
Cefuroxime 2 64 4 1-64
CXM+TAZ(1∶1) 2 16 1 0.5-16
Proteus mirabilis
CXM+TAZ(2∶1) 2 32 1 1-32
(14/2)
CXM+TAZ(4∶1) 2 64 2 0.5-64
CXM+TAZ(8∶1) 2 128 2 1-128
Tazobactam 256 512 256 256-512
Cefuroxime 256 512 512 1-512
CXM+TAZ(1∶1) 1 4 1 0.5-16
Proteus vulgaris
CXM+TAZ(2∶1) 1 8 1 0.5-8
(15/11)
CXM+TAZ(4∶1) 1 8 1 0.5-8
CXM+TAZ(8∶1) 2 8 1 0.5-8
Tazobactam 256 512 256 256-512
Cefuroxime 16 64 16 4-512
CXM+TAZ(1∶1) 2 4 2 1-32
Morganella morganii
CXM+TAZ(2∶1) 2 8 2 1-32
(26/22)
CXM+TAZ(4∶1) 4 16 4 2-128
CXM+TAZ(8∶1) 8 16 4 2-512
Tazobactam 256 512 256 128-512
Serratia marcescens Cefuroxime 512 512 512 32-512
(29/29) CXM+TAZ(1∶1) 32 64 64 8-128
CXM+TAZ(2∶1) 64 128 64 16-512
CXM+TAZ(4∶1) 64 128 64 16-512
CXM+TAZ(8∶1) 64 128 64 16-512
Tazobactam 512 512 512 256-512
Organism MIC(mg/L)
(strains/β-lactamase positive strains) Antibiotic MIC50 MIC
MICmode MICrange
90
Cefuroxime 512 512 512 2-512
CXM+TAZ(1∶1) 16 32 16 0.5-128
Acinetobacter baumannii
CXM+TAZ(2∶1) 32 32 32 1-128
(28/27)
CXM+TAZ(4∶1) 64 128 64 1-128
CXM+TAZ(8∶1) 128 128 128 2-256
Tazobactam 16 32 16 1-512
Cefuroxime 512 512 512 8-512
CXM+TAZ(1∶1) 512 512 512 16-512
Pseudomonas aeruginosa CXM+TAZ(2∶1) 512 512 512 32-512
(30/25) CXM+TAZ(4∶1) 512 512 512 16-512
CXM+TAZ(8∶1) 512 512 512 16-512
Tazobactam 512 512 512 256-512
Cefuroxime 512 512 512 128-512
CXM+TAZ(1∶1) 128 128 128 64-128
Stenotrophomonas maltophilla
CXM+TAZ(2∶1) 128 256 128 64-256
(25/21)
CXM+TAZ(4∶1) 128 256 128 64-256
CXM+TAZ(8∶1) 256 256 256 64-256
Tazobaetam 512 512 512 128-512
Cefuroxime 0.5 1 0.5 0.062-8
CXM+TAZ(1∶1) 0.25 0.5 0.5 0.622-2
Haemophilus spp.
CXM+TAZ(2∶1) 0.25 1 0.25 0.125-4
(28/21)
CXM+TAZ(4∶1) 0.25 1 0.25 0.125-4
CXM+TAZ(8∶1) 0.25 1 0.25 0.125-4
Tazobactam 256 512 256 4-512
Cefuroxime 512 512 512 8-512
Methicillin resistant CXM+TAZ(1∶1) 256 512 256 16-512
Staphylococcus aureus CXM+TAZ(2∶1) 512 512 512 32-512
(25/19) CXM+TAZ(4∶1) 512 512 512 32-512
CXM+TAZ(8∶1) 512 512 512 256-512
Tazobactam 128 512 128 64-512
Cefuroxime 2 8 2 0.5-16
Methicillin sensitive CXM+TAZ(1∶1) 2 4 2 0.25-8
Staphylococcus aureus CXM+TAZ(2∶1) 2 8 2 0.25-8
(32/15) CXM+TAZ(4∶1) 2 8 2 0.25-16
CXM+TAZ(8∶1) 2 8 2 0.25-32
Tazobactam 64 512 64 32-512
Organism MIC(mg/L)
Antibiotic
(strains/β-lactamase positive strains) MIC50 MIC90 MICmode MICrange
Cefuroxime 1 8 1 0.125-512
CXM+TAZ(1∶1) 0.5 2 0.5 0.125-512
Methicillin sensitive
CXM+TAZ(2∶1) 0.5 2 0.5 0.125-512
Staphylococcus epidermidis
CXM+TAZ(4∶1) 1 4 1 0.125-512
(47/36)
CXM+TAZ(8∶1) 1 4 2 0.125-512
Tazobactam 32 256 32 8-512
Cefuroxime 0.016 0.062 0.016 0.004-2
CXM+TAZ(1∶1) 0.008 0.062 0.004 0.004-2
Streptococcus pneumoniae CXM+TAZ(2∶1) 0.008 0.125 0.008 0.004-2
(60) CXM+TAZ(4∶1) 0.008 0.062 0.008 0.004-2
CXM+TAZ(8∶1) 0.008 0.062 0.008 0.004-2
Tazobactam 8 16 8 2-512
Cefuroxime 0.004 2 0.004 0.004-16
CXM+TAZ(1∶1) 0.004 2 0.004 0.004-8
Streptococcus pyogenes CXM+TAZ(2∶1) 0.004 2 0.004 0.004-16
(26) CXM+TAZ(4∶1) 0.004 2 0.004 0.004-16
CXM+TAZ(8∶1) 0.004 2 0.004 0.004-8
Tazobactam 32 256 32 32-512
Cefuroxime 0.25 1 0.25 0.004-1
CXM+TAZ(1∶1) 0.125 0.5 0.125 0.004-0.5
Moraxella catarrhalis CXM+TAZ(2∶1) 0.125 0.5 0.125 0.004-0.5
(19) CXM+TAZ(4∶1) 0.125 0.5 0.125 0.004-0.5
CXM+TAZ(8∶1) 0.125 0.5 0.125 0.004-0.5
Tazobactam 2 16 2 2-33
Cefuroxime 0.031 0.031 0.031 0.004-0.125
CXM+TAZ(1∶1) 0.031 0.031 0.031 0.004-0.125
Streptococcus agalactiae CXM+TAZ(2∶1) 0.031 0.031 0.031 0.004-0.125
(13) CXM+TAZ(4∶1) 0.031 0.031 0.031 0.004-0.125
CXM+TAZ(8∶1) 0.031 0.031 0.031 0.004-0.125
Tazobactam 128 256 128 64-256
(1)革兰阴性杆菌:
实验结果表明酶抑制剂他唑巴坦的加入明显提高了头孢呋辛对其耐药菌的抗菌活性。头孢呋辛/他唑巴坦1∶1混合物对大肠埃希菌、克雷伯菌属、普通变形杆菌、摩氏摩根菌、阴沟肠杆菌、弗劳地枸橡酸杆菌、粘质沙雷菌、鲍曼不动菌的MIC90值比单药头孢呋辛下降8~128倍。其中普通变形杆菌和摩氏摩根菌的MIC90值从512mg.L-1和64mg.L-1降至4mg.L-1,已落入敏感范围;大肠埃希菌和克雷伯菌属的MIC90值均从512mg.L-1降至16mg.L-1,属于中介范畴。从耐药率来看,加入他唑巴坦后,大肠埃希菌对头孢呋辛和4种不同配比的头孢呋辛/他唑巴坦(1∶1,2∶1,4∶1,8∶1)的耐药率由单药的50.0%,分别下降为0%、1.7%、1.7%、和3.4%;在15株普通变形杆菌中,有12株耐头孢呋辛,他唑巴坦的加入明显降低了头孢呋辛的耐药率,4种不同配比的头孢呋辛/他唑巴坦耐药率由单药时的80%,分别降至0%、0%、0%和6.7%,MIC90值也比单药下降了64-128倍;克雷伯菌属和奇异变形杆菌的耐药率也由46.8%、14.3%降至19.2%(1∶1,2∶1)和0.0%(1∶1);摩氏摩根菌耐药率由26.9%全部降为3.8%。对于阴沟肠杆菌、弗劳地枸橡酸杆菌和粘质沙雷菌,1∶1配比增效作用较明显,耐药率由57.6%、36.7%和100%分别降至45.5%、23.3%和79.3%。对于沙门菌属、志贺菌属和流感嗜血杆菌,头孢呋辛仍保有较好的抗菌作用,MIC90值均在敏感范围内,加入酶抑制剂后,MIC值下降1-2倍。对产气肠杆菌、铜绿假单胞菌和嗜麦芽窄食单胞菌,加入酶抑制剂他唑巴坦后未见明显增效作用。
(2)革兰阳性球菌:
对除MRSA以外的其它被测革兰阳性球菌,头孢呋辛仍具有较好的抗菌作用。对MSSA和MSSE,头孢呋辛的MIC90值均为8mg.L-1,属敏感范畴。加入他唑巴坦后,4种配比的MIC90值分别为:MSSA:4,8,8,8mg.L-1;MSSE:2,2,4,4mg.L-1,比单药下降了1~4倍。对链球菌属和卡他莫拉菌,头孢呋辛的MIC90值均≤2mg.L-1,加入酶抑制剂后作用相当。
2.不同配比的头孢呋辛/他唑巴坦对35株临床分离致病菌的MBC结果(见表2-1、表2-2)
表2-1
Organisms MIC(mg/L) MBC(mg/L)
Antibiltic
(strain NO.) 50% 90% Range 50% 90% Range
CXM+TAZ(1∶1)
4 4 2-4 4 8 2-8
CXM+TAZ(2∶1)
Escherichia coli 4 8 2-8 4 8 4-16
CXM+TAZ(4∶1)
(11) 8 16 4-16 8 16 4-16
CXM+TAZ(8∶1)
8 16 4-16 8 16 4-16
CXM+TAZ(1∶1)
2 4 0.5-4 2 4 0.5-4
CXM+TAZ(2∶1)
Klebsiella pneumoniae 2 4 0.5-4 4 4 0.5-4
CXM+TAZ(4∶1)
(13) 2 8 0.5-8 4 8 0.5-16
CXM+TAZ(8∶1)
4 8 0.5-8 4 8 0.5-8
CXM+TAZ(1∶1)
2 2 2-4 2 2 2-4
CXM+TAZ(2∶1)
Staphylococcus aureus 2 4 2-4 2 8 2-8
CXM+TAZ(4∶1)
(11) 2 4 2-4 4 4 2-8
CXM+TAZ(8∶1)
2 4 2-4 4 8 2-8
表2-2
No.of strains with different ratio of MBC/MIC
Organisms
Antibiotic 1 2 4 8 MIC/MBC≤4(%)
(strain no.)
CXM+TAZ(1∶1) 8 2 1 0 11(100)
Escherichia coli CXM+TAZ(2∶1) 8 2 1 0 11(100)
(11) CXM+TAZ(4∶1) 11 0 0 0 11(100)
CXM+TAZ(8∶1) 7 3 1 0 11(100)
CXM+TAZ(1∶1) 10 3 0 0 13(100)
Klebsiella pneumoniae CXM+TAZ(2∶1) 12 1 0 0 13(100)
(13) CXM+TAZ(4∶1) 9 4 0 0 13(100)
CXM+TAZ(8∶1) 10 3 0 0 13(100)
CXM+TAZ(1∶1) 11 0 0 0 11(100)
Staphylococcus aureus CXM+TAZ(2∶1) 7 3 1 0 11(100)
(11) CXM+TAZ(4∶1) 7 4 0 0 11(100)
CXM+TAZ(8∶1) 4 5 2 0 11(100)
MBC结果显示,4种不同配比的头孢呋辛/他唑巴坦对肺炎克雷伯菌的MBC/MIC≤2倍,对大肠埃希菌和金黄色葡萄球菌的MBC/MIC≤4倍,说明头孢呋辛/他唑巴坦的复方制剂具有典型的杀菌作用。
3.杀菌曲线结果:
四种配比的头孢呋辛/他唑巴坦及头孢呋辛单剂对大肠埃希菌、肺炎克雷伯菌、金黄色葡萄球菌的杀菌曲线见图1~6。
图1A、图1B为两株大肠埃希菌的杀菌曲线图。两株大肠埃希菌均产酶。头孢呋辛及1∶1,2∶1、4∶1、8∶1配比对01-1308和01-1311的MIC值分别为512和512mg/L,4和2mg/L,4和4mg/L,16和8mg/L,8和8mg/L。选择杀菌药物浓度为8mg.L-1。两株菌的曲线走势相似,1∶1配比从起始106CFU/ml经12或24小时,最终将细菌杀至0;2∶1和4∶1自己比也可将细菌数量杀至102CFU/ml以下;8∶1配比虽然在8或12小时时,可将细菌数量杀至103CFU/ml左右,但由于杀菌不够彻底,随着时间延长,药效下降,出现细菌数量反弹。头孢呋辛单药在此浓度不能起到杀菌作用。
图2A、图2B所示为两株肺炎克雷伯菌的杀菌曲线图。两株肺炎克雷伯菌均产酶。头孢呋辛及1∶1、2∶1、4∶1飞8∶1配比对01-76和01-77的MIC值分别为256和128mg.L,2和2mg/L,4和4mg/L,2和4mg/L,2和8mg/L。选择杀菌药物浓度为8mg.L-1。其中01-76株,1∶1配比从起始106CFU/ml经12小时杀至0,其它配比经24小时也均杀至0,头孢呋辛单药在此浓度不能杀菌。而01-77株,只有1∶1自己比将细菌杀至0,其它配比和单药均不能有效杀菌。
图3A、图3B所示为两株金黄色葡萄球菌的杀菌曲线图。两株金黄色葡萄球菌均产酶。头孢呋辛及1∶1、2∶1、4∶1、8∶1配比对01-281和01-192的MIC值分别为2和2mg/L,2和1mg/L,2和2mg/L,2和2mg/L,2和2mg/L选择杀菌药物浓度为16mg.L-1。由图可见,在此浓度下,各配比均能将细菌数量由106CFU/ml杀至0,单独头孢呋辛也可将细菌杀至0或102CFU/ml以下。
4.对体外抗菌作用的影响因素(见表3):
表3
Organism Inoculum Size(CFU/ml)
Antibiotic
(strain No.) 104 105 106 107
MIC50 2 2 2 2
CXM+TAZ(1∶1)
MIC90 2 2 4 4
MIC50 2 2 4 4
CXM+TAZ(2∶1)
Escherchia coli MIC90 4 4 4 8
(10) MIC50 2 2 2 4
CXM+TAZ(4∶1)
MIC90 4 4 4 8
MIC50 2 2 2 4
CXM+TAZ(8∶1)
MIC90 4 4 4 8
2Klebsiella pneumoniae
MIC50 1 1 1 2
(10)
CXM+TAZ(1∶1)
MIC90 1 2 2 2
MIC50 1 1 2 2
CXM+TAZ(2∶1)
MIC90 2 2 2 2
MIC50 1 1 2 2
CXM+TAZ(4∶1)
MIC90 1 2 2 2
MIC50 1 1 1 2
CXM+TAZ(8∶1)
MIC90 2 2 2 4
MIC50 1 1 1 2
CXM+TAZ(1∶1)
MIC90 2 2 2 2
MIC50 2 2 2 2
CXM+TAZ(2∶1)
MIC90 2 2 2 2
Staphylcoccus aureus
(10)
MIC50 1 2 2 2
CXM+TAZ(4∶1)
MIC90 2 2 2 2
MIC50 1 2 2 2
CXM+TAZ(8∶1)
MIC90 2 2 2 2
如表3所示,不同配比的头孢呋辛/他唑巴坦在细菌接种量分别为104、105和107CFU/ml时,对大肠埃希菌、肺炎克雷白菌和金黄色葡萄球菌MIC值与细菌接种量在106时相比无明显差异。说明细菌接种量在104-107CFU/ml对不同配比的头孢呋辛/他唑巴坦抗3种菌的MIC值无明显影响。
培养基pH值分别为5.0、6.0、7.0、7.5、8.0、和8.5时,四种配比的头孢呋辛/他唑巴坦对大肠埃希菌、肺炎克雷白菌、金黄色葡萄球菌的MIC值见表4。
表4
Organism Medium pH
Antbiotic
(strain No.) PH5.0 PH6.0 pH7.0 pH7.5 PH8.0 PH8.5
Escherchia coli 4 2
MIC50 2 2 2 1
(11)
CXM+TAZ(1∶1)
4 4
MIC90 4 2 2 1
8 4
MIC50 2 2 2 2
CXM+TAZ(2∶1)
8 4
MIC90 4 4 4 2
4 4
MIC50 2 2 2 2
CXM+TAZ(4∶1)
16 8
MIC90 8 4 4 4
4 4
MIC50 2 2 2 2
CXM+TAZ(8∶1)
16 16
MIC90 16 4 8 4
2 2
MIC50 2 1 1 1
CXM+TAZ(1∶1)
2 2
MIC90 2 2 1 1
2 2
MIC50 2 1 1 1
CXM+TAZ(2∶1)
2 2
Klebsiella MIC90 2 2 1 1
pneumoniae 2 2
(13) MIC50 2 2 1 1
CXM+TAZ(4∶1)
4 4
MIC90 2 2 2 1
2 2
MIC50 2 1 1 1
CXM+TAZ(8∶1)
2 4
MIC90 2 2 2 1
1 1
MIC50 1 2 1 1
CXM+TAZ(1∶1)
1 1
MIC90 1 2 1 2
1 1
MIC50 1 2 1 1
CXM+TAZ(2∶1)
1 1
Staphylcoccus MIC90 1 2 1 2
aureus 1 1
(10) MIC50 1 2 1 2
CXM+TAZ(4∶1)
1 1
MIC90 1 2 1 2
1 1
MIC50 1 2 1 2
CXM+TAZ(8∶1)
1 1
MIC90 1 2 1 2
由表4可见,对于大肠埃希菌和肺炎克雷白菌,随着pH值的增加,各配比的MIC50、MIC90值均略有下降,相差在2-4倍。说明在碱性条件下,该混合物的抗菌作用有所增强,而酸性环境则可减弱其抗菌作用。对金黄色葡萄球菌,pH值的改变没有明显影响药物对其抗菌作用。
培养基中分别加入25%、50%和75%人血清蛋白时,四种配比的头孢呋辛/他唑巴坦对大肠埃希菌、肺炎克雷白菌、金黄色葡萄球菌的MC值见表5。
表5
Organism Human Serum in Medium(%)
Antibiotic
(strain No.) 0 25% 50% 75%
MIC50 2 1 1 0.125
CXM+TAZ(1∶1)
MIC90 2 1 2 0.25
MIC50 2 2 2 0.125
CXM+TAZ(2∶1)
Escherchia coli MIC90 4 2 2 1
(10)
MIC50 2 1 2 0.125
CXM+TAZ(4∶1)
MIC90 4 2 2 1
MIC50 2 1 1 0.125
CXM+TAZ(8∶1)
MIC90 4 2 2 1
MIC50 0.031 0.062 0.062 0.031
CXM+TAZ(1∶1)
MIC90 0.031 0.062 0.062 0.062
MIC50 0.031 0.062 0.062 0.031
CXM+TAZ(2∶1)
MIC90 0.031 0.062 0.062 0.062
Klebsiella pneumoniae
(10)
MIC50 0.031 0.031 0.031 0.031
CXM+TAZ(4∶1)
MIC90 0.031 0.062 0.062 0.062
MIC50 0.031 0.031 0.031 0.031
CXM+TAZ(8∶1)
MIC90 0.031 0.062 0.031 0.062
MIC50 4 2 4 2
CXM+TAZ(1∶1)
MIC90 4 4 4 4
MIC50 4 4 4 2
CXM+TAZ(2∶1)
MIC90 4 4 4 4
Staphylcoccus aureus
(10)
MIC50 4 4 4 2
CXM+TAZ(4∶1)
MIC90 4 4 4 4
MIC50 4 4 4 2
CXM+TAZ(8∶1)
MIC90 4 4 4 4
由表可见,当培养基中加入75%人血清蛋白时,4种联合制剂对大肠埃希菌的MIC50、MIC90值较不加血清均有下降,降低4-16倍。其它比例及菌种对体外抗菌作用没有的显著影响。