本发明涉及由乳液聚合得到的含氟聚合物水分散体,它不可熔融加工,且烧结时可成膜,该分散体包含平均粒度(数均)为180-400nm的含氟聚合物A和平均粒度约比前者低0.3-0.7倍的含氟聚合物B,以使该分散体为非单一数均粒径分布的水分散体。 本发明更进一步涉及制备这些分散体的方法和它们作为涂料的应用。以下进一步说明本发明的细节和优选实施方案。
所用的含氟聚合物是通过已知的乳液聚合方法得到,且不能经熔融手段加工,即它们在372℃时的熔融粘度(剪切粘度)是从≥0.01GPas、一般从≥1GPas到900GPas。用通常的含氟热塑塑料的加工方法不能对这种聚合物粉末进行熔融加工。熔融粘度采用Ajroldi等的蠕升试验测定(参看J.Appl.Polym.Sci.,14(1970),79)。该方法在美国专利US-A 4036802第九栏46行至第十栏41行有更详细的描述。
所要求的平均粒度是大部分球形颗粒的颗粒直径地数均值,它可在用电镜测量该分散体时测得的数均粒径得到。对于非球形颗粒,其两个主轴的几何平均数可作为粒径。
含氟聚合物A的优选平均粒径为180-300nm,含氟聚合物B的优选平均粒径为50-150nm。
基于聚合物固体含量,适于本发明的分散体包含50-95%wt(重量百分数)、尤其是70-95%wt的含氟聚合物A和5-50%wt、较好为5-30%wt、尤其是5-20%wt的含氟聚合物B。
本发明分散体的含氟聚合物的固体的含量可在大的范围内变动,例如在10-80%wt(重量),最好30-65%wt的范围内。除了指定的含氟聚合物A和B外,它们还可以包括与A和B相容而且不干扰其预期应用的其它含氟聚合物。这些含氟聚合物可被视为填料,在此和后面在说明聚合物固体含量时并不包括这些含氟聚合物。含氟聚合物固体的含量仅指本发明中使用的含氟聚合物A和B的总量。
含氟聚合物A和B的差别仅在于它们的平均粒径,但它们的组成、颗粒形态结构和分子量可以相同。
含氟聚合物A和B烧结时应可成膜,但不是可用通常的方法熔融加工的含氟热塑塑料。含氟聚合物最好是“修饰的”聚四氟乙烯,即是由四氟乙烯和少量的修饰剂如六氟丙烯、氯代三氟乙烯和含有1至4个碳的全氟烷基、尤其是全氟正丙基的全氟代烷基乙烯基醚的共聚物。这些共聚单体或修饰剂在共聚物中摩尔含量可达2%。如果共聚物分子量足够高而使其不可熔融加工,则修饰剂的含量还可更高。一般这些共聚物的熔点都大于290℃。
US-A 4391940中叙述了一些适用的聚合物。这些聚合物的颗粒结构不均一,包含一个核心,一个具有不同化学组成的内壳和一个同样具有不同化学组成的外壳。这些颗粒可被视为不同质的颗粒。还已知具有数量不均一的颗粒,它们的核心与相连的壳或其他壳在修饰剂的含量上是不同的。
长时间以来人们已了解了含有这类含氟聚合物的涂料,例如US-A 31426654,3790403,4252859和EP-A-525660。这些涂料被用来喷涂金属表面和玻璃纤维。基于不同应用,含氟聚合物的抗粘性、抗污性和耐候性显得十分重要。
US-A 3790403叙述了当含氟聚合物被过厚或过快地涂布时可能产生的问题,特别是裂纹的形成。在其中所述的方法中,玻璃纤维先被涂一层聚四氟乙烯分散体,然后其上又涂一层可熔融加工的四氟乙烯共聚物涂层。在底部涂层的烧结过程中,上部涂层亦被熔化,这样可降低裂纹的生成。但是能可熔融加工和适于作上部涂层的共聚物因其修饰成分含量较高而价格较贵。而且这样得到的涂层较硬,不适于广泛应用。相反,本发明使用成本较低的含氟聚合物。而且,本发明调节具有不同粒径的含氟聚合物的组成,使灵活地符合不同场合不同目的所要求的涂层性能成为可能。
本发明的分散体可简单通过将含氟聚合物A水分散体和相应的含氟聚合物B水分散体相混合而得到。两种含氟聚合物的比例决定于其应用,而且如果需要的话,可通过简单的初步实验来确定。含量较少组分的所占比例必须大到足使整个分散体具有非均一的数均粒径分布。
细碎的含氟聚合物B可通过接种聚合很便利地得到,例如在US-A 4391940中有报道。但一般含氟聚合物用量较少,这不仅是出于经济考虑,因为制备这样一个种源比制备具有粗糙颗粒的分散体要复杂得多(固体含量越少,需要的高成本乳化剂就越多),出于经济上的原因,该含氟聚合物的用量通常较低。另外,增加细碎含氟聚合物B的比例,可使整个分散体混合物的粘度增大,这往往不利于加工。
本发明的分散体除了通过混合含氟聚合物A和B外,还可由合适的聚合过程引发颗粒的生成而得到,例如通过连续的乳液聚合(Polymer Reaction Engineering,Ed.Reichert and Geiseler,Huthig & Wepf,1986)。在连续批量过程中,颗粒的形成可在随后补加的一批中或在聚合中随后加入乳化剂来引发完成。
如上所述,本发明分散体中含氟聚合物的固体含量可在大的范围内变化。为适应许多用途,同时也为减小运输体积,采用更为浓缩的分散体而不是将各分散体混合,或经一合适的聚合过程得到一具有两种粒径分布的分散体。此时分散体采用本质上已知的方法被浓缩,例如使用超滤法(US-A 4369266),其中一般加入负离子表面活性剂十二烷基磺酸钠或非离子表面活性剂乙氧基化烷基酚类,特别是可容易生物降解的较长链的烷基胺氧化物(US-A 5219910)。
如果是通过混合各组分的水分散体来制备本发明分散体,最好在将组分混合后进行浓缩。奇怪的是将两种含氟聚合物A和B分散体混合后得到的分散体的粘度小于分散体A的粘度。加入分散体B带来的粘度的降低比加入相应的水的还要大。另外将两种分散体含氟聚合物A和B预先混合后进行超滤,能提高其固体含量且不致发生各组分可能发生的凝结。
表面活性剂的加入量取决于浓缩过程和其未来的用途。一般其重量范围为聚合物固体含量的4-15%wt。如果本发明的分散体是用于金属涂层,则相对较低的表面活性剂含量-约5%就足够了。若用于玻璃纤维涂层,表面活性剂的量应为9-11%(重量)。在这些情况中,所选用的表面活性剂在烧结时的成膜过程中或之后能被很容易地除去。
前面已述,除了含氟聚合物A)和B)外,本发明的分散体还可包含其它含氟聚合物做为填料。一般采用的填料为颜料、玻璃珠或纤维状填料如碳纤维。填料的总量可约达聚合物固体重量的40%wt,最好为10-25%wt。
本发明的分散体根据预期的用途还可包含其它组分。如果分散体是作为金属涂层,则它们还可包含一般的胶粘树脂。合适的树脂可以是选自聚酰胺、聚酰亚胺和聚酰胺酰亚胺的成膜剂。这种配方中还可包括常用的添加剂如聚苯硫和其相似物。
本发明的分散体适于用作光滑的、多孔的或纤维状的材料上的涂料的制备,例如可用于平面或非平面纤维材料或多孔材料如石墨的浸湿或浸渗。光滑的基体可以提及金属、陶瓷、玻璃或塑料的表面。前面已述,作为金属涂层时可加入所需的胶粘剂或用已知的方法对金属表面作预处理。
作为玻璃纤维织物涂层是本发明优选的应用领域。和各个单独组分的分散体比较,本发明的分散体可明显地在较少的步骤内达到预定的涂层厚度,同时不产生裂纹和非均一膜。因此使用它可大大缩短工序,节约时间和资金,同时不影响质量,而且比使用单独组分得到的涂层具有更密实的结构和更高的硬度。
本发明通过以下实施例说明。除非特别指出,所说的百分比均指重量百分比。
实施例1
组分B1)的制备:
在150升反应器中,在35℃恒温和15bar四氟乙烯(TFE)恒压条件下进行乳液聚合。将含有90g全氟辛酸铵的100升去离子水、25g25%的氨水和0.43g亚硫酸氢钠加入到该反应器中,抽真空、通氮气以除去空气氧。然后计量加入200g六氟丙烯(HFP)并用TFE气保持体系压力为15bar。用10分钟计量加入含有2.0g过硫酸铵和0.075g CuSO4·5H2O的300ml溶液,使反应开始。不断导入TFE以保持恒压并计量反应的TFE的量。当有11kg TFE已反应时,停止导入TFE,减压以除去反应器中残余的单体。
得到的粗分散体的固体含量为10%,聚合物中HFP的含量为0.45%,平均粒径为100nm。
HEP的含量通过红外光谱中,以2360cm-1吸收带为参比,在982cm-1处的吸收来测定。两个吸收峰的商乘以4.5就是重量百分含量。
平均粒径是采用Malvern Instruments公司的仪器,通过非弹性光散射法间接测量,并经电子显微镜校准。给出的数据为数均值。
实施例2
组分B2)的制备:
重量实施例1的步骤,但用300g全氟代(丙基乙烯基醚)(PPVE)代替HFP。
聚合物中PPVE的含量为0.9%,平均粒径为110nm。
PPVE的含量通过995cm-1和2360cm-1的吸收值的商乘以0.95而得到。
实施例3
组分A)的制备:
该组分的制备采用相似于US-A4391940所述的接种聚合方法。所用的种子是实施例1中得到的粗分散体。
在一150升的反应器中加入20升实施例1的分散体、80升去离子水、80g浓度为25%的浓氨水、2.5g二甘醇和75mg的CuSO4·5H2O。抽真空-通氮气除氧。温度保持在40℃,TFE压力维持在15bar。然后计量加入溶于300ml水的0.75g过硫酸铵(APS),并连续计量加入含有溶于25ml 10%浓NaOH溶液中的0.25g偶氮二酰胺(ADA)的1升水溶液,使反应开始。计量进料的方式应使聚合反应速率不会降低。
当已反应的TFE达到23.5kg时,停止加入ADA,并迅速依次加入溶于100ml水中的0.2g APS和75mg CuSO4·5H2O、溶于100ml水中的0.2g亚硫酸氢钠。从而反应速率很快提高,然后加入250g HFP以大大降低反应速率。此后若继续有1.5kg TFE参与了反应,则关闭搅拌并对反应器减压以停止反应,残余的单体用常规方法除去。得到的分散体的固体含量为20.7%,平均粒径约为220nm。聚合物中HFP的含量为0.043%。胶乳颗粒有三层壳,其外层约重5%。
实施例4
浓缩
将实施例1和3中得到的粗分散体混合,使按照实施例3制备的颗粒在总的聚合物中占90%。与含有10个氧化乙烯单元的占含氟聚合物11%的乙氧基化壬基酚混合,用25%的浓氨水溶液将混合体系的pH调至约为9。得到的混合体系按US-A 4369266中所述的方法超滤,聚合物的含量浓缩至58%。
另外,将粗分散体与含10mol氧化乙烯单元的相应量的乙氧基化壬基酚混合后再另外经旋转蒸发器浓缩,得到分散体,其聚合物含量为50%,并用于制备其它混合体系。
将各组分和它们不同的混合体系用于玻璃纤维涂层试验,并也可在20%玻璃珠(d=50μm)的存在下试验。
实施例5
涂布于玻璃纤维
将单位面积重量为200g/m2的部分脱浆轻质玻璃纤维(型号91121,Interglas,Ulm)用一分散体经涂布装置涂布浸渍,干燥并烧结。涂布速率为0.3m/min。加热区温度约为150℃、280℃和400℃。肉眼观察涂层上裂痕或细状裂纹的产生。表1中的分散体或分散体混合物中聚合物含量均为58%,乙氧基化壬基酚的重量均为聚合物的11%。涂层的重量比例根据重量分析法测定。
重复涂布工序直至分散体用量达到>55%,为此,一般需要涂布六次。
表1列举了产生细丝状裂纹时分散体的最大用量(重量百分数)。
表1
实施例6
将单位面积重为360g/m2的部分脱浆重质玻璃纤维(型号B18030,Verseidag,Krefeld)在与实施例5相同的条件下进行涂布工序。但第二次涂布时,加入了20%重量的粒径为50μm的玻璃球珠(型号3000,Ballotini,Italy),并在每次涂布时,都加入占含氟聚合物重量0.5%的丙烯酸酯增厚剂(VISCALEX VG2,Allied Colloids,Hamburg)。
表2概括了每种涂层的结果。
表2:90%A)+10%B1)
表3给出了组分A)的结果
表3给出了组分A的结果。
本实施例不仅说明本发明的分散体混合物具有较好的性能,而且表明只需涂布四次就可达到要求的超过50%的用量。该涂层通过已知的方式采用了含有96%的四氟乙烯和4%的全氟代正丙基乙烯基醚的共聚物(PFA)分散体和聚四氟乙烯的分散体的混合物,使得纤维单一的裂缝的焊接成为可能。这里总用量应大于55%,只有在前面无裂纹的应用实施例中,含氟聚合物用量大于50%时才能达到。
实施例7
金属涂层
以下的百分比是指在特定组合物中相对于具体固定含量的百分比。“浸润剂”是含有10个氧化乙烯单元的乙氧基化辛酚。“聚酰胺酰亚胺”是由偏苯三酸酐、4,4′-二氨基二苯甲烷反应产物与4,4′-二乙氧基烷基氨基二苯甲烷和4,4′-二异氰酸基二苯甲烷反应得到的聚(2,4,5-三酮基咪唑烷基-二苯基亚甲基-N,N′-二苯基亚甲基-双-亚氨基-偏苯三酰胺)。该产物与三级胺水溶液反应以使之可用水稀释。
在一个经喷砂的铝盘上涂上含有5%的聚酰胺酰亚胺、4%的浸润剂、1.5%的碳黑颜料、3%的二甲苯和25%的PFA(浓度为50%的分散体)的混合物底漆,在90℃下干燥。在其上涂一层含有3%的聚酰胺亚胺、1.2%的浸润剂、2%的碳黑颜料、6%的二甲苯和40%的含氟聚合物(浓度为58%的分散体)作为顶层漆,先于90℃下干燥、然后于280℃干燥,再在400℃下烧结15min。采用的含氟聚合物分散体一种是本发明的包含90%组分A和10%组分B的混合物,另一种作为比较,是100%的组分A。
形成的涂层的硬度按照法国标准(French standard)NF D21.511,第3.6项,于室温下在每种情况下对20只铝盘进行检测。在此测量步骤中,硬度指标是施加于球形探针并使其穿透涂层的重量。
采用本发明的含氟聚合物混合物作为顶部漆层,所需重量为1.8kg;对于纯组分A,所需重量为1.3kg(平均值)。
本发明的分散体显著地提高了按此法测定的硬度。