抗周期性偏头痛的吲哚衍生物盐 本发明涉及式(I)的3-(N-甲基-2(R)-吡咯烷基甲基)-5-(2-苯磺酰基乙基)-1H-吲哚氢溴酸盐。
本发明的一优选方面涉及如上所定义的氢溴酸盐的特定多晶形态(下称α-型)。它还涉及所说氢溴酸盐的中间多晶形态(下称β-型),α-和3-型的制备方法,含α-型的药物组合物以及α-型在医学上的应用。
WO-A-92/06973涉及用于治疗周期性偏头痛和其它疾病的一系列3,5-二取代吲哚及其药用盐。其中所举此类盐的实例是氢氯酸盐、氢溴酸盐、氢碘酸盐、硝酸盐、硫酸盐或硫酸氢盐、磷酸盐或酸式磷酸盐、乙酸盐、乳酸盐、柠檬酸盐或酸式柠檬酸盐、酒石酸盐或酒石酸氢盐、琥珀酸盐、马来酸盐、富马酸盐、葡糖酸盐、糖二酸盐、苯甲酸盐、甲磺酸盐和巴莫酸盐。其具体公开的是3-(N-甲基-2(R)-吡咯烷基甲基)-5-(2-苯磺酰基乙基)-1H-吲哚及其半琥珀酸盐,后者以非晶泡沫作为其特征。进一步的研究证明此盐不适合用于药物配方,因为力图使它成为具有配方所要求性质的形态的许多尝试都没有成功。
因而本发明提出的问题是提供3-(N-甲基-2(R)-吡咯烷基甲基)-5-(2-苯磺酰基乙基)-1H-吲哚的药用盐,它能有效地进行加工以提供稳定和有效的药物配方,特别是其固体或可压缩剂量形式。这种剂量形式包括常规释放的口服片剂、控制释放(基质)片剂、快溶片剂(例如冻干的)、舌下片剂、向颊片剂、口服粉末或颗粒装填胶囊、用于重构悬浮液的粉剂,常规释放和控制释放的多重颗粒体系填充的胶囊或压成的片剂、锭剂、糖衣丸、栓剂、阴道药栓、固体植入剂、亲液栓、纳米级微粒和毫米级微粒和悬浮液用和经鼻运送的粉剂,以及干吸入体系。
需要满足的重要标准,除了其它的外,特别是所选择的盐应当是结晶、有适合地熔点、不吸湿、可压缩和具有固态稳定性,还有可接受的溶解度和溶解行为。
由于惊异地发现了一种能满足上述各种要求的新颖α-型的式(1)化合物氢溴酸盐,问题便得到了解决。这种α-型盐特别适于提供固体剂型的药物配方,尤其是口服、向颊和舌下给药的配方。
解决此问题的第一步是要得到为结晶且熔点足够高(>约130℃)的3-(N-甲基-2(R)-吡咯烷基甲基)-5-(2-苯磺酰基乙基)-1H-吲哚的一元酸加成盐,以使其在制造固体剂型和压实过程中有能力经受药物加工。
已经试尝过制取适合形式的下述盐类,它们是氢氯酸盐、氢溴酸盐、半硫酸盐、硫酸氢盐、硝酸盐、酸式磷酸盐、磷酸盐、甲磺酸盐、苯磺酸盐、对甲苯磺酸盐、(+)-樟脑磺酸盐、乙酸盐、苯甲酸盐、柠檬酸盐、半富马酸盐、富马酸盐、半马来酸盐、马来酸盐、半琥珀酸盐、琥珀酸盐、半-L-酒石酸盐、L-酒石酸盐、半-D-酒石酸盐、D-酒石酸盐、L-乳酸盐、(R)-(-)-偏桃酸盐、马尿酸盐、半邻苯二甲酸盐、邻苯二甲酸盐和半对苯二甲酸盐。
在此30个可能的盐中,只有4个能得到结晶的固体,它们是半硫酸盐、氢氯酸盐、氢溴酸盐和苯磺酸盐,其余的是非结晶/低或无明显溶点/有粘性的固体、树胶、玻璃、泡沫、树脂或油状物质,而且在这四种结晶盐中,苯磺酸盐被证明其熔点不够高,mp为74-75℃。因此,要进行更详细研究的只有半硫酸盐、氢氯酸盐和氢溴酸盐。
半硫酸盐
最初分离出的被称为β-型的半硫酸盐(m.p.145-175℃)在进行差示扫描量热法(DSC)测定时不显示单熔点吸热性而显示指示多晶过渡的复杂轨迹。在高于50%的相对湿度(RH)下β-型确实是收湿性很强的,而且在某些条件下,水的吸收能引起多晶转变,形成被称为α-型的另一种形式(m.p.185℃),或甚至产生降解。再者,β-型在加压时有颜色改变,并在制片时形成冲头膜。因此,由于各种原因,其物理化学性质使其不适合于固体剂量形式的开发。
α-型的半硫酸盐显然不显示与吸水有关的固态不稳定性;然而它的收湿性极强,由此造成流动性可变,原料和剂量形式不稳定性,从而无法准确确定药物活性,由于这些困难它也不适合于开发。
氢氯酸盐
根据用作反应介质和用于结晶的溶剂,两种形式的氢氯酸盐都可以得到。这两种形式中第一个被分离和鉴定的是被称为β-型的熔点为125-129℃的形式(以扫描速度20℃/分钟进行DSC测定,在130℃时有宽的吸热峰;但无明显脱水吸热峰),发现其含水量为4.42%(1.08mol)(用Karl Fischer滴定法-KFT)。但是,虽然收湿性研究揭示了β-型不显示固态不稳定性,但由于它在受压研究中观察到了压片的熔融并粘结在冲头上,因而增加了对高熔点固体的要求,这种行为将其排除在进一步开发之外。
另一种定为α-型的氢氯酸盐,其DSC(扫描速度为20℃/分钟)分析在165℃显示了主要的尖锐明显的吸热峰。其收湿性曲线测定揭示了在40℃温度(T)和RH75%下七天后,与β-型不同,它吸收了显著量的水。发现这种吸水性与DSC轨迹的改变有关,这证明至少在这些湿度条件下无水的α-型向着水合的β-型转变。因此α-型的药物开发也因不适当的物理稳定性而被排除。
氢溴酸盐
氢溴酸盐也根据采用的制备条件可分离到两种形式中之一种。发现其低熔点的形式(称为β-型)对于固体剂量形式的开发也不是可行的选择,因为在改进其质量的尝试中,它发生了多晶转变,成为了高熔点的形式,称为α-型。
然而,经过对比,出人意外地发现唯有式(1)的α-型氢溴酸盐具有所有固体剂量形式有效开发所要求的性质,这些性质即结晶性、足够高的熔点、无收湿性、固态稳定性、承压性和无多晶转变,以及满意的溶解度和溶解速率曲线。
因此本发明提供了结晶的α-晶型式(I)氢溴酸盐,它的石蜡糊红外(IR)光谱在v=3371,3293,2713,2524,1419,1343,1307,1264,1151,1086,1020,1008,999,922,900,805,758,740,728,689,672,652,640,598,581,573,531,498,465,457,443,428,422,414和399cm-1处显示显著吸收带。
该α-型的进一步特征是其以石墨单色器(λ=0.15405nm)过滤的铜辐射得到的粉末X-射线衍射(PXRD)图案,其主要峰的2θ角为9.7,10.7,15.9,16.5,17.8,18.3,19.3,19.8,20.1,21.2,24.4,25.5,25.8,26.7,27.6和29.4度。
该α-型的又一特征是它的差示扫描量热法轨迹以20℃/分钟扫描速率在176.5℃时显示明显的吸热。
本发明也提供了结晶的β-晶型式(I)氢溴酸盐,它能作为制备α-型盐的中间体。它的石蜡糊IR谱在v=3239,2672,2656,2632,1409,1366,1351,1334,1303,1293,1152,1138,1122,1098,1086,791,771,746,688,634,557,528,484,476,469,463,455,432,424,413和401cm-1处显示显著吸收带。
该β-型的进一步特征是用石墨单色器(λ=0.15405nM)过滤的铜辐射得到的PXRD图案,其主要峰的2θ角为11.0,17.2,19.2,20.1,21.6,22.6,23.6和24.8度。
该β-型的又一特征是其差示扫描量热法轨迹以20℃/分钟扫描速率在154.8℃时显示明显的吸热。
本发明进一步提供了制备α-型式(I)化合物的方法。现说明如下:
(A)
在室温下用溴化氢水溶液处理3-(N-甲基-2(R)-吡咯烷基甲基)-5-(2-苯磺酰基乙基)-1H-吲哚于适合溶剂(最好是丙酮)中的溶液,接着在适合的溶剂(最好是2-丙醇)中将分离到的粗油状物进行结晶,便得到所要求的α-型氢溴酸盐。
(B)
在0-10℃下用溴化氢水溶液处理3-(N-甲基-2(R)-吡咯烷基甲基)-5-(2-苯磺酰基乙基)-1H-吲哚于适合溶剂(最好是丙酮或诸如四氢呋喃或1,2-二甲氧基乙烷之类的醚溶剂,更优选1,2-二甲氧基乙烷)中的溶液,得到所要求的β-型氢溴酸盐。
在适合的溶剂(最好是含水丙酮)中进行β-型盐的结晶,接着将得到的混合物制浆,便得到所需要的α-型盐。
(C)
于0-5℃下用溴化氢水溶液处理3-(N-甲基-2(R)-吡咯烷基甲基)-5-(2-苯磺酰基乙基)-1H-吲哚于适合溶剂(最好是丙酮)中的溶液,然后将反应混合物制浆,接着选择性地回流加热,冷却并进一步制浆,得到所需的α-型盐。
如前所述,WO-A-92/06973公开了3-(N-甲基-2(R)-吡咯烷基甲基)-5-(2-苯磺酰基乙基)-1H-吲哚及其药用盐用以治疗周期性偏头痛和其它的疾病(引入本文作为参考)。因此本发明也涉及含其α-型氢溴酸盐的药物组合物,该α-型作为药物的用途和用于制备治疗周期性偏头痛和所说其它疾病的药物的用途,以及用该α-型治疗哺乳动物周期性偏头痛和所说的其它疾病的方法。
该α-型盐的外周5-HT1受体激动剂活性的体外评定是以测试模拟舒马坦收缩离体狗隐静脉条的程度进行的(P.P.A.Humphrey等,英国药理学杂志1988,94,1123)。此效果可被甲硫噻庚嗪(mtthiothepin)(一种已知的5-HT拮抗剂)所阻断。舒马坦用于治疗周期性偏头痛是已知的,并且它使麻醉狗的颈动脉血管阻力选择性增加,其结果是颈动脉血流的降低。这被认为是其功效的基础(W.Feniuk等,英国药理学杂志,1989,96,83)。
该α-型盐的中枢5-HT1激动剂活性可用体外受体结合试验进行测定,如文献报道5-HT1A受体的测定是用大鼠皮质作为受体源、用[3H]8-OH-DPAT作为放射性配体(D.Hoyer等,欧洲药理学杂志,1985,118,13);据报道5-HT1D受体测定是用牛尾作为受体源、用[3H]5-HT作为放射性配体(R.E.Heuring和S.J.Perout-ka,神经科学杂志,1987 7,894)。
在治疗时,可以单独使用α-型的式(I)氢溴酸盐,但一般是与药物上可接受的赋形剂混合使用,包括滑动剂、崩解剂和润滑剂,其选择是根据给药途径和标准药物实践。它特别可以含诸如淀粉或乳糖之类的赋形剂的片剂、糖衣丸或锭剂形式口服给药;或以胶囊、卵状小粒或植入剂形式给药,可以单独使用或与赋形剂混合使用。如经颊或舌下给药,则可按常规方法配制成片剂、糖衣丸或锭剂的形式给药。
病人口服、经颊或舌下给药时,α-型式(I)盐的日剂量水平为0.01-20mg/kg(一次或分次给药),因而片剂或胶囊将含0.5mg-0.5g活性化合物,依情况一次服用一粒、二粒或多粒。无论如何,对于个体病人来说,医生将决定最适合该病人用的实际剂量,并且根据病人的年龄、体重和病人的个体反应而不同。上述剂量是按一般情况而举例的,当然会有使用更高或更低范围剂量的情况,这些都在本发明范围之内。
因此本发明提供了包括α-型式(I)化合物和与药物可接受稀释剂或载体的药物组合物。
本发明也提供了α-型式(I)化合物或其药物组合物作为药物的用途。
本发明进一步包括α-型式(I)化合物或其药物组合物在制备治疗或预防周期性偏头痛或相关症状(诸如簇头痛(clusterheadache)、慢性发作的偏头痛或与血管失常相关的头痛)、或抑郁、焦虑、饮食疾病、肥胖症、滥用毒品、高血压或呕吐的药物中的应用,也包括在制备治疗或预防需要5-HT1受体选择性激动剂的医学症状的药物中的应用。
本发明的又一方面是提供治疗或预防人类周期性偏头痛或相关症状(诸如簇头痛、慢性发作的偏头痛或与血管失常相关的头痛)、或抑郁、焦虑、饮食疾病、肥胖症、滥用毒品、高血压或呕吐的方法,以及治疗或预防人的需要5-HT受体的选择性激动剂的医学症状的方法,该方法包括给予所说人有效量的α-型式(I)化合物或其药物组合物。
现以下列实施例对α-型式(I)氢溴酸盐和其药物组合物的制备进行说明。
实施例中的室温指20-25℃,m.p.代表熔点。
IR是红外光谱,PXRD是粉末X-射线衍射,DSC为差示扫描量热法,T代表温度,RH代表相对湿度,HPLC为高效液相色谱法,KFT为卡尔·费歇尔(Karl Fischer)滴定法。
实施例1
3-(N-甲基-2(R)-吡咯烷基甲基)-5-(2-苯磺酰基乙基)-1H-吲哚·氢溴酸盐,α-型
在室温下将49%(重量/重量)氢溴酸(432mg,0.3ml,2.6mmol)加入搅拌着的3-(N-甲基-2(R)-吡咯烷基甲基)-5-(2-苯磺酰基乙基)-1H-吲哚(1.0g,2.6mmol)于丙酮(10ml)中的溶液。经另15分钟后,减压蒸发反应混合物,得到黄色液体,然后将其中残留的水用2-丙醇共沸蒸馏除去。用乙醚研磨所得到的浑浊淡黄色油(1.55g),然后将其溶解于热的2-丙醇(25ml)中。此溶液经冷却便得到标题化合物(1.13g),过滤后为灰黄色结晶固体。将其用2-丙醇洗涤并在真空中干燥。m.p.165-170℃,C22H26N2O2S·HBr:实验值:C56.67;H,5.78;N,5.82;理论值:C,57.02,H,5.87,N,6.04%。
实施例23-(N-甲基-2(R)-吡咯烷基甲基)-5-(2-苯磺酰基乙基)-1H-吲哚氢溴酸盐,α-型(a)3-(N-甲基-2(R)-吡咯烷基甲基)-5-(2-苯磺酰基乙基)-1H-吲哚氢溴酸盐,β-型
于约5℃下将49%(重量/重量)的氢溴酸(27.86ml,0.25mol)加入搅拌着的3-(N-甲基-2(R)-吡咯烷基甲基)-5-(2-苯磺酰基乙基)-1H-吲哚(92.86g,0.24mol)于1,2-二甲氧基乙烷(2.08升)中的溶液,历时1小时。移去冷却浴并在室温下将得到的浆状物进一步搅拌18小时,使其成粒。过滤后用1,2-二甲氧基乙烷洗涤并真空干燥,得到所需产物(97.9g),呈固态。m.p.150-151℃。C22H26N2O2S·HBr实验值:C,56.77;H,5.87;N,5.85,理论值C,57.02;H,5.87;N,6.04%。
(b)
将搅拌着的上述产物(20g)、丙酮(140ml)和水(6ml)的混合物回流加热直至β-型化合物完全溶解。然后将溶液冷至室温,搅拌1小时,再于得到的浆液中加入丙酮(460ml)。再经1小时后,将浆液冷至0-5℃并继续搅拌达18小时。过滤收集无色结晶固体,用丙酮洗涤,真空干燥,得到标题化合物(13.22g),该化合物与实施例1所得化合物相同。
实施例33-(N-甲基-2(R)-吡咯烷基甲基)-5-(2-苯磺酰基乙基)-1H-吲哚氢溴酸盐,α-型
在0-5℃下将62%(重量/重量)氢溴酸(1.706g,13.07mmol)加入搅拌着的3-(N-甲基-2(R)-吡咯烷基甲基)-5-(2-苯磺酰基乙基)-1H-吲哚(5.0g,13.07mmol)于丙酮(112ml)中的溶液,历时1小时。在0-5℃将反应混合物制浆3小时后,回流加热2小时,接着冷却至0-5℃,并在此温度下进一步制浆1小时。过滤,接着用丙酮洗涤并在真空中干燥,得到标题化合物(5.18g)。该化合物与实施例1所得化合物相同。
在实施例4-6中,所用的“活性组分”系指α-型氢溴酸盐。
实施例4口服片剂A.直接压片
mg/片 50克混合物中的量活性组分 12.12 6.06g微晶纤维素PhEur 25.00 12.50g乳糖PhEur 60.88 30.44g交联羧纤纳NF 1.00 0.50g硬脂酸镁Ph Eur 1.00 0.50g
活性组分过筛后与其它组分混合。使用旋转压片机(Manestyβ-压片机)将得到的混合物压成片,压片机使用6mm常规凹面冲头。得到的片剂可用适合的涂膜材料覆膜。B.湿法造粒
mg/片 50克混合物中的量
活性组分 1.21 0.76g
乳糖PhEur 56.03 35.02g
玉米淀粉PhEur 18.68 11.67g
聚乙烯吡咯烷酮(2%重量/
体积溶液 1.60 1.00g
无水硅胶PhEur 0.08 0.05g
交联羧纤纳NF 1.60 1.00g
硬脂酸镁Ph Eur 0.80 0.50g
将聚乙烯吡咯烷酮溶于纯水至适合的浓度。活性组分过筛后与除硬脂酸镁外的所有组分混合,加入适合体积的聚乙烯吡咯烷酮溶液将粉末造粒。颗粒干燥后过筛并与硬脂酸镁混合。然后用直径适合的冲头将颗粒压制成片。
改变活性组分与赋形剂的比率或改变加压重量并借助于冲头可以制备其它强度的片剂。
实施例5胶囊 mg/胶囊
活性组分 18.18
乳糖PhEur 208.89
玉米淀粉PhEur 69.63
无水硅胶Ph Eur 0.30
硬脂酸镁Ph Eur 3.00
装囊重量 300.00
活性组分筛分后与其它组分混合,用适合的机器将混合物装入No.2硬质明胶胶囊。改变装填重量可制备其它剂量的胶囊;如果需要,可以改换胶囊大小。
实施例6舌下片剂
mg/片 50克混合物中的量
活性组分 1.2 0.750g
乳糖PhEur 25.0 15.625g
玉米淀粉PhEur 25.0 15.625g
甘露糖醇Ph Eur 25.0 15.625g
交联羧纤纳NF 3.0 1.875g
硬脂酸镁Ph Eur 0.8 0.500g
活性组分通过适合的筛进行筛分后与各种赋形剂混合并用适合的冲头压片。改变活性组分与各种赋形剂的比率或改变加压重量并借助于冲头可以制备其它强度的片剂。
用IR、PXRD和DSC分析对α-和β-型氢溴酸盐的表征(a)IR光谱法
IR光谱测定的波数(v)范围为4000-400cm-1,使用石蜡糊,仪器为Nicolet 800傅里叶转换红外(FF-IR)光谱仪,并以图1A和1B表示,重要吸收谱带的v鉴定见上。(b)PXRD
PXRD图案使用Siemens D500衍射仪获得,操作条件为40KV/30mA,并用石墨单色器(λ=0.15405nm)过滤的铜辐射和闪烁计数检测器。对于每一形式,用阶跃扫描模式在2°-45°的2θ角范围内以0.03°的2θ角间隔计数6秒钟,以2θ角的函数记录光束强度。对于主要峰(2θ°)的鉴定见图2A和2B代表的各图案,参见上文。(c)DSC
用Perkin-Elmer 7系列的热分析仪以20℃/分钟的扫描速度对每种形式的样品(约5mg)进行分析。对于各吸热情况的鉴定,请见示于图3A和3B中的代表性DSC热图,参见上文。收湿性/固态稳定性研究
样品(约10mg)过筛(250μm),然后在下列各温度(T)和相对湿度(RH)条件下贮存达4周:
T:30℃,RH:11,75,90%
T:40℃,RH:11,75,90%湿度要求是在一干燥器中用饱和盐溶液来达到的。含水量改变的测定是用微量天平和卡尔·费歇尔滴定法(KFT)进行重量分析完成的。化学和物理稳定性评价是用高效液相色谱法(HPLC)和DSC。
HPIC分析是在LDC等梯度系统上进行的,条件如下:
色谱柱-Novapak C18,5μm,15cm;流动相-PH6.0,60:40v/v0.02M KH2PO4(0.5%三乙胺):甲醇;检测-UV(254nm);流速-1.0ml/min,注射体积-20μl;流动相中样品0.1mg/ml。
KFT是用三菱测湿计和约10mg的每个样进行的。
表1为α-型氢溴酸盐和α-和β-型半硫酸盐的收湿性研究结果,是以各种T(℃)和RH(%)条件下的%重量改变测定的水分改变表示的。
表1 盐的形式 T/RH 1周 2周 3周 4周 α-HBr 30/11 -0.45 -0.51 +0.20 +0.09 30/75 +0.08 +0.01 +0.17 +0.25 30/90 +0.53 +0.46 +0.50 +0.49 40/11 -0.48 +0.58 -0.51 -0.49 40/75 +0.06 +0.23 0.00 +0.11 40/90 +0.87 +1.27 +1.16 +1.23 β-1/2H2SO4 40/75 +1.33 +3.79 +3.38 +1.69 α-1/2H2SO4 40/75 +6.0 +4.85 +5.46 +4.04
表2(T/RH=40/75) 盐的形式 5天 1周 2周 3周 4周 β-HCl ND 0 +0.27 +0.23 +0.19 α-HCl +0.56 +0.79 ND ND ND
ND=未测定
从表1可见,在整个研究过程中α-型氢溴酸盐显示了相对稳定的重量,仅在30℃和40℃时于低的相对湿度RH(11%)下观察到微小的水份损失;这些结果得到了用KFT分析所得到结果的证实。特别值得注意的是,与在40℃所见的β-型和尤其是α-型半硫酸盐的显著吸水相比,在RH为75%时观察到其含湿量改变小。再者,β-型半硫酸盐的吸水伴随有颜色的变化,样品从奶油色变为黄色,而α-型半硫酸盐虽然吸水比β-型迅速,却未见相随的明显颜色变化。如前所述,β-型半硫酸盐的收湿性导致其多晶转变,生成α-型,并且最后导致降解。
T=40℃/RH=90%的α-型氢溴酸盐样品的DSC曲线没有明显变化,同时用HPLC分析确证了在所有研究条件下α-型氢溴酸盐的稳定性。
表2是α-型和β-型氢氯酸盐的收湿性测定结果,它是以T=40℃/RH=75%时测定的百分重量改变作为水份改变表示的。
以表2所显示的结果和在第4周用KFT分析得到的相近结果为基础,判定了β-型氢氯酸盐是非吸湿性的,也未检测出固态不稳定性。在此研究中,虽然α-型氢氯酸盐仅进行了1周的保温,但很清楚,即使在这一时间点上它已吸收了大量的水分,此水分的吸收是与DSC轨迹的变化有关的,它揭示了在这些条件下α-型氢氯酸盐至β-型的转变。承压研究
用台式IR压机(Graseby Specac型15.011)和13mm的一副冲模以5吨压力加压样品(200mg)1分钟,然后评定颜色变化和熔融证据。在用研缽和研杵将压实物磨细后进行进一步分析(DSC和HPIC)。
在加压或研磨后,没有观察到α-型氢溴酸盐的溶点热图或熔融热函热图的变化。而且,也没有证据说明样品外观改变或压实时的冲头成膜。
前已述及,β-型半硫酸盐在受压后有颜色的变化并且压实时冲头上成膜。β-型氢氯酸盐受压熔化并在加压时使压片粘连于冲头上,这种情况并不奇怪;是后者的很低的熔点所致,α-型的氢氯酸盐在压实时不熔化。晶型转变
用DSC测定了β-型氢溴酸盐和半硫酸盐至各自的α-型盐的多晶转变;也测定了α-型氢氯酸盐至其β-型盐的转变,相信它是无水物至水合物的转变。
在各种研究条件下均未观察到α-型氢溴酸盐的多晶转变。